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Abstract
This paper aims to develop distributed algorithms for nonconvex optimization prob-
lems with complicated constraints associated with a network. The network can be 
a physical one, such as an electric power network, where the constraints are non-
linear power flow equations, or an abstract one that represents constraint couplings 
between decision variables of different agents. Despite the recent development of 
distributed algorithms for nonconvex programs, highly complicated constraints still 
pose a significant challenge in theory and practice. We first identify some difficulties 
with the existing algorithms based on the alternating direction method of multipliers 
(ADMM) for dealing with such problems. We then propose a reformulation that ena-
bles us to design a two-level algorithm, which embeds a specially structured three-
block ADMM at the inner level in an augmented Lagrangian method framework. 
Furthermore, we prove the global and local convergence as well as iteration com-
plexity of this new scheme for general nonconvex constrained programs, and show 
that our analysis can be extended to handle more complicated multi-block inner-
level problems. Finally, we demonstrate with computation that the new scheme pro-
vides convergent and parallelizable algorithms for various nonconvex applications, 
and is able to complement the performance of the state-of-the-art distributed algo-
rithms in practice by achieving either faster convergence in optimality gap or in fea-
sibility or both.
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1 Introduction

This paper develops a new two-level distributed algorithm with global and local 
convergence guarantees for solving general smooth and nonsmooth constrained non-
convex optimization problems. We will start with a general constrained optimiza-
tion model that is motivated by nonlinear network flow problems, and then explore 
reformulations for distributed computation. This process of reformulation leads us 
to observe two structural properties that a distributed reformulation should possess, 
which in fact pose some challenges to existing distributed algorithms in terms of 
convergence and practical performance. This observation inspired us to develop the 
two-level distributed algorithm. We will summarize our contributions in the end of 
this section.

1.1  Constrained nonconvex optimization over a network

Consider a connected, undirected graph1 G(V, E) with a set of nodes V and a set of 
edges E . A centralized constrained optimization problem on G is given as 

 where each node i ∈ V of the graph G is associated with a decision variable xi and 
a cost function fi(xi) as in (1a). Variable xi and variables xj of i’s adjacent nodes 
j ∈ �(i) are coupled through constraints (1b)–(1c), and Xi in (1d) represents some 
constraints only for xi . The functions fi , hi , gi , and the set Xi may be nonconvex.

Any constrained optimization problem can be reformulated as (1) after proper trans-
formation. An especially interesting motivation for us is the nonlinear network flow 
problems. In this case, the graph G represents a physical network such as an electric 
power network, a natural gas pipeline network, or a water transport network, where 
the variables xi in (1) are nodal potentials such as electric voltages, gas pressures, or 
water pressures, and the constraints hi and gi are usually nonconvex functions that 
describe the physical relations between nodal potentials and flows on the edges, flow 
balance at nodes, and flow capacity constraints. Notice that a node i in the graph can 
also represent a sub-network of the entire physical network, and then the constraints 
could involve variables in adjacent sub-networks. There has been much recent interest 
in solving nonlinear network flow problems, e.g. applications in the optimal power flow 

(1a)min
∑
i∈V

fi(xi)

(1b)s.t. hi(xi, {xj}j∈�(i)) = 0, ∀i ∈ V,

(1c)gi(xi, {xj}j∈�(i)) ≤ 0, ∀i ∈ V,

(1d)xi ∈ Xi, ∀i ∈ V,

1 In this paper, we use “networks” and “graphs” interchangeably.
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problem in electric power network [33], the natural gas nomination problem [52], and 
the water network scheduling problem [9].

In many situations, it is desirable to solve problem (1) in a distributed manner, where 
each node i represents an individual agent that solves a localized problem, while agents 
coordinate with their neighbors to solve the overall problem. Each agent need to handle 
its own set of local constraints hi , gi , and Xi . For example, agents may be geographi-
cally dispersed with local constraints representing the physics of the subsystems, which 
cannot be controlled by other agents; or agents may have private data in their con-
straints, which cannot be shared with other agents; or the sheer amount of data needed 
to describe constraints or objective could be too large to be stored or transmitted in 
distributed computation between agents. These practical considerations pose restric-
tions that each agent in a distributed algorithm has to deal with a set of complicated, 
potentially nonconvex, constraints.

1.2  Necessary structures of distributed formulations

In order to do distributed computation, the centralized formulation (1) first needs to be 
transformed into a formulation to which a distributed algorithm could be applied. We 
call such a formulation a distributed formulation, whose form may depend on specific 
distributed algorithms as well as on the structure of the distributed computation, e.g. 
which variables and constraints are controlled by which agents and in what order com-
putation and communication can be carried out. Despite the great variety of distributed 
formulations, we want to identify some desirable and necessary features for a distrib-
uted formulation.

One desirable feature is the capability of parallel decomposition so that all agents 
can solve their local problems in parallel, rather than in sequence. To realize this, each 
agent needs a local copy of its neighboring agents’ variables. For problem (1), we may 
introduce a local copy xi

j
 of the original variable xj and a global copy x̄j , and enforce 

consensus as

Using this duplication scheme, a distributed formulation of (1) can be written as 

 In problem (3), the optimization variables are x = [{xi}i∈V] ∈ ℝ
n1 and 

x̄ = [{x̄j}j∈V] ∈ ℝ
n2 . Each subvector xi = [xi, {x

i
j
}j∈�(i)] ∈ ℝ

n1i of x denotes all the 
local variables controlled by agent i including the original variable xi and the local 
copies xi

j
 ; each subvector x̄j of x̄ denotes a global copy of xj . The set Xi ⊆ ℝ

n1i is 

(2)xj = x̄j, x
i
j
= x̄j, ∀j ∈ V, i ∈ 𝛿(j).

(3a)min
x,x̄

f (x) =
∑
i∈V

fi(x
i)

(3b)s.t. Ax + Bx̄ = 0,

(3c)xi ∈ Xi, ∀i ∈ V, x̄ ∈ X̄.
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defined as Xi ∶= {v ∶ hi(v) = 0, gi(v) ≤ 0} , so the original constraints (1b)–(1c) are 
decoupled into each agent’s local constraints Xi , which also absorb the constraints 
(1d). Additionally, the global copy x̄ is constrained in some simple convex set 
X̄ ⊆ ℝ

n2 . The only coupling among agents are (3b), which formulate the consensus 
constraint (2) with A ∈ ℝ

m×n1 and B ∈ ℝ
m×n2 . An alternating optimization scheme is 

then natural, as all the agents can solve their subproblems over xi ’s in parallel once x̄ 
is fixed; and once xi ’s are updated and fixed, the subproblems over x̄ can also be 
solved in parallel.

In fact, for any constrained optimization problem, not necessarily a network flow 
type problem, if distributed computation is considered, variables of the centralized 
problem need to be grouped into variables xi in a distributed formulation for agents 
i according to the decision structure, and duplicate variables x̄ need to be introduced 
to decouple the constraints from agents. In this way, problem (3) provides a general 
formulation for distributed computation of constrained optimization problems. Con-
versely, due to the necessity of duplicating variables, any distributed formulation of 
a constrained program necessarily shares some key structures of (3). In particular, 
problem (3) has two simple but crucial properties. Namely,

• Property 1: As the matrices A and B are defined in (2), the image of A strictly 
contains the image of B, i.e. Im(A) ⊋ Im(B).

• Property 2: Each agent i may face local nonconvex constraints Xi.

Property 1 follows from the fact that, for any given value of x̄j in (2), there is always 
a feasible solution (xj, xij) that satisfies the equalities in (2), but if xj ≠ xi

j
 , then there 

does not exist an x̄j that satisfies both equalities in (2). Property 2 follows from our 
desire to decompose the computation for different agents.

In this paper, we will show that the above two properties of distributed con-
strained optimization pose a significant challenge to the theory and practice of exist-
ing distributed optimization algorithms. In particular, existing distributed algorithms 
based on the alternating direction method of multipliers (ADMM) may fail to con-
verge for the general nonconvex constrained problem (3) without further reformula-
tion or relaxation. Before proceeding, we summarize our contributions.

1.3  Summary of contributions

The contributions of the paper can be summarized below.
Firstly, we propose a new reformulation and a two-level distributed algorithm 

for solving nonconvex constrained optimization problem (1)–(2), which embeds a 
specially structured three-block ADMM at the inner level in an augmented Lagran-
gian method (ALM) framework. The proposed algorithm maintains the flexibility of 
ADMM in achieving distributed computation.

Secondly, we prove global and local convergence as well as iteration complex-
ity results for the proposed two-level algorithm, and illustrate that the underlying 
algorithmic framework can be extended to more complicated nonconvex multi-block 
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problems. For the convergence of ADMM, we allow each nonconvex subproblem 
to be solved to a stationary point with certain improvement in the objective func-
tion compared to the previous iterate, which mildly relaxes the global optimality of 
nonconvex subproblems commonly assumed in the ADMM literature. Our conver-
gence analysis builds on the classical and recent works on ADMM and ALM, and 
our results are derived by relating these two methods in an analytical way.

Thirdly, we provide extensive computational tests of our two-level algorithm on 
nonconvex network flow problems, parallel minimization of nonconvex functions 
over compact manifolds, and a robust tensor PCA problem from machine learning. 
Numerical results demonstrate the advantages of the proposed algorithm over exist-
ing ones, including randomized updates, modified ADMM, and centralized solver, 
either in the convergence speed to close optimality gap, or to close feasibility gap, or 
both. Moreover, our test result on the multi-block robust tensor PCA problem sug-
gests that the proposed two-level algorithm not only ensures convergence for a wider 
range of applications where ADMM may fail, but also tends to accelerate ADMM 
on problems where convergence of ADMM is already guaranteed.

1.4  Notation

Throughout this paper, we use ℤ+ (resp. ℤ++ ) to denote the set of nonnegative 
(resp. positive) integers, and ℝn to denote the n-dimensional real Euclidean space. 
For x, y ∈ ℝ

n , the inner product is denoted by x⊤y or ⟨x, y⟩ ; the Euclidean norm is 
denoted by ‖x‖ =

√⟨x, x⟩ . A vector x may consist of J subvectors xj ∈ ℝ
nj with ∑J

j=1
nj = n ; in this case, we will write x = [{xj}j∈[J]] , where [J] = {1,… , J} . Occa-

sionally, we use xi to denote the i-th component of x if there is no confusion to do so. 
For a matrix A, denote its largest singular value by ‖A‖ and image space by Im(A) . 
We use Br(x) to denote the Euclidean ball centered at x with radius r > 0 . For a 
closed set C ⊂ ℝ

n , the interior of C is denoted by Int C , the projection operator onto 
C is denoted by ProjC(x) , and the indicator function of C is denoted by �C(x) , which 
takes value 0 if x ∈ C and +∞ otherwise.

The rest of this paper is organized as follows. In Sect. 2, we review the literature 
and summarize two conditions that are crucial to the convergence of ADMM, which 
are essentially contradicting to Properties 1 and 2. In Sect. 3, we propose our new 
reformulation and a two-level algorithm for solving problem (3) in a distributed way. 
In Sect.  4, we provide the global convergence as well as the iteration complexity 
result, and show our scheme can be applied to more complicated multi-block prob-
lems. Then in Sect. 5, we show the local convergence result under standard second-
order assumptions. Finally, we present computational results in Sect. 6 and conclude 
in Sect. 7.
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2  Related literature

In this section, we review the literature on ADMM and other distributed algorithms, 
and identify some limitations of the standard ADMM approach in solving problem 
(3).

2.1  Earlier works and ADMM for convex problems

ALM and the method of multipliers (MoM) were proposed in the late 1960s by 
Hestenes [27] and Powell [53]. ALM enjoys more robust convergence properties 
than dual decomposition [3, 55], and convergence for partial elimination of con-
straints has been studied [4]. ADMM was proposed by Glowinski and Marrocco 
[18] and Gabay and Mercier [17] in the mid-1970s, and has deep roots in maximal 
monotone operator theory and numerical algorithms for solving partial differential 
equations [12, 14, 51]. ADMM solves the subproblems in ALM by alternately opti-
mizing through blocks of variables and in this way achieves distributed computation. 
The convergence of ADMM with two block variables is proved for convex optimiza-
tion problems [14, 16–18] and the O(1∕k) convergence rate is established [25, 26, 
49]. Some applications in distributed consensus problems include [6, 45, 46, 50, 59, 
68]. More recent convergence results on multi-block convex ADMM can be found in 
[7, 8, 10, 22–24, 29, 37–41].

2.2  ADMM for nonconvex problems

The convergence of ADMM has been observed for many nonconvex problems with 
various applications in matrix completion and factorization [57, 72–74], optimal 
power flow [15, 44, 61], asset allocation [69], and polynomial optimization [32], 
among others. For convergence theory, several conditions have been proposed to 
guarantee convergence on structured nonconvex problems that can be abstracted in 
the following form

We summarize some convergence conditions in Table 1. For instance, Hong et al. 
[30] studied ADMM for nonconvex consensus and sharing problems under cyclic 
or randomized update order. Li and Pong [36] and Guo et al. [21] studied two-block 
ADMM, where one of the blocks is the identity matrix. One of the most general 
frameworks for proving convergence of multi-block ADMM is proposed by Wang 
et al. [67], where the authors showed a global subsequential convergence with a rate 

(4)

min
x1,…,xp,z

p∑
i=1

fi(xi) + h(z) + g(x1,… , xp, z)

s.t.

p∑
i=1

Aixi + Bz = b, xi ∈ Xi ∀i ∈ [p].
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of o(1∕
√
k) . A more recent work by Themelis and Patrinos [62] established a primal 

equivalence of nonconvex ADMM and Douglas-Rachford splitting.
Another line of research explores some variants of ADMM. Wang et  al. [65, 

66] studied the nonconvex Bregman-ADMM, where a Bregman divergence term 
is added to the augmented Lagrangian function during each block update to facili-
tate the descent of certain potential function. Gonçalves, Melo, and Monteiro [19] 
provided an alternative convergence rate proof of proximal ADMM applied to con-
vex problems, which was shown to be an instance of a more general non-Euclidean 
hybrid proximal extragradient framework. The two-block, multi-block, and Jacobi-
type extensions of this framework to nonconvex problems can be found in [20, 47, 
48], where an iteration complexity of O(1∕

√
k) was also established. Jiang et  al. 

[31] proposed two variants of proximal ADMM. Some proximal terms are added to 
the first p block updates; for the last block, either a gradient step is performed, or a 
quadratic approximation of the augmented Lagrangian is minimized.

For general nonconvex and nonsmooth problems, we note that the convergence of 
ADMM relies on the following two conditions.

• Condition 1: Denote A ∶= [A0,… ,Ap] , then Im([A, b]) ⊆ Im(B).
• Condition 2: The last block objective function h(z) is Lipschitz differentiable.

Due to the sequential update order of ADMM, zk is obtained after xk is calculated. If 
Condition 1 on the images of A and B is not satisfied, then it is possible that xk con-
verges to some x∗ such that there is no z∗ satisfying Ax∗ + Bz∗ = b . In addition, Con-
dition 2 provides a way to control dual iterates by primal iterates via the optimal-
ity condition of the z-subproblem. This relation requires unconstrained optimality 
condition of z-update, so the last block variable z cannot be constrained elsewhere. 

Table 1  Comparisons of the nonconvex ADMM literature

l.s.c: lower semi-continuous; smooth: Lipschitz differentiable; full col./row: full column/row rank

p fi’s Xi’s h g Ai’s B

[30] 1 Convex Convex Smooth – – I
≥ 2 Convex Convex Smooth – Full col. I

Smooth nonconvex
[36] 1 l.s.c ∇2h bounded – I Full row
[21] 1 l.s.c Smooth – Full col. I
[66] 1 l.s.c & f1 + h subanalytic Smooth – Full col. Full row
[65] 2 l.s.c & f1 + f2 + h subanalytic Smooth – – Full row
[67] ≥ 2 l.s.c & restricted prox-regular Smooth Im([A, b]) ⊆ Im(B)

�f1 bounded & f>1 ’s p.w. linear Lip. sub-min path
[20, 48] 1, 2 l.s.c ≈smooth – Im([A, b]) ⊆ Im(B)

[47] ≥ 2 l.s.c Smooth – Im([A, b]) ⊆ Im(B)

[31] ≥ 2 Lipschitz continuous Compact Smooth – I or
l.s.c Full row
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See also [67] for some relevant discussions. As indicated from Table 1, these two 
conditions (and their variants) are almost necessary for ADMM to converge in the 
absence of convexity. We also note that, even for convex problems, these two con-
ditions are used to relax the strong convexity assumption in the objective [39] or 
accelerate ADMM with O(1∕k2) iteration complexity [63].

It turns out that the two conditions and the two properties we mentioned in Sect. 1.2 
may conflict each other. By Property 1, the image of A strictly constrains the image of 
B, so by Condition 1, we should update local variables after the global variable in each 
ADMM iteration to ensure feasibility. However, by Property 2, each local variable is 
subject to some local constraints, so Condition 2 cannot be satisfied; technically speak-
ing, we cannot utilize the unconstrained optimality condition of the last block to link 
primal and dual variables, which again makes it difficult to ensure primal feasibility 
of the solution. When ADMM is directly applied to nonconvex problems, divergence 
is indeed observed [44, 61, 67]. As a result, for many applications in the form of (3) 
where the above two conditions are not available, the ADMM framework cannot guar-
antee convergence.

After completing a draft of this paper, we were informed of a ADMM-based 
approach in [31], where the authors proposed to solve the relaxed problem of (3)

Notice first that, as proved in [31], in order to achieve a desired feasibility with 
‖Ax + Bx̄‖ = O(𝜖) , the coefficient �(�) and ADMM penalty need to be as large as 
O(1∕�2) . Such large parameters may lead to slow convergence and large optimality 
gaps. Also notice that, applying ADMM to (5) may produce an approximate station-
ary solution to (3), even when the problem is infeasible to begin with. As we will 
show in Sect. 4, our proposed two-level algorithm is able to achieve the same order 
of iteration complexity as the reformulation (5) and the one-level ADMM approach 
proposed in [31], and meanwhile the proposed two-level algorithm provides infor-
mation on ill conditions and infeasibility; in Sect.  6, we empirically demonstrate 
with computation that the proposed algorithm robustly converges on large-scale 
constrained nonconvex programs with a faster speed and obtains solutions with 
higher qualities.

2.3  Other distributed algorithms

Some other distributed algorithms not based on ADMM are also studied in the litera-
ture. Hong [28] introduced a proximal primal-dual algorithm for distributed optimiza-
tion problems, where a proximal term is added to cancel out cross-product terms in 
the augmented Lagrangian function. Lan and Zhou [35] proposed a randomized incre-
mental gradient algorithm for a class of convex problems over a multi-agent network. 
Lan and Yang [34] proposed accelerated stochastic algorithms for nonconvex finite-
sum and multi-block problems; interestingly, the analysis for the multi-block problem 
also requires the last block variable to be unconstrained with an invertible coefficient 
matrix and a Lipschitz differentiable objective, which further confirms the necessity of 

(5)min
x∈X,x̄∈X̃,z

f (x) +
𝛽(𝜖)

2
‖z‖2 s.t. Ax + Bx̄ + z = 0.
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Conditions 1 and 2. We end this subsection with a recent work by Shi et al. [58]. They 
studied the problem

The variables x and y are divided into n and m subvectors, respectively. f (x, y) , 
h(x, y) , gi(xi) are continuously differentiable, �̃�j(yj) is a composite function, and 
Xi ’s are convex. The authors proposed a doubly-looped penalty dual decomposition 
method (PDD). The overall algorithm used the ALM framework, where the cou-
pling constraint h(x, y) = 0 is relaxed and each ALM subproblem is solved by a ran-
domized block update scheme. We note that randomization is crucial in their con-
vergence analysis, and a deterministic implementation of the inner-level algorithm 
for solving the ALM subproblem may not converge when nonconvex functional con-
straints are present.

3  A key reformulation and a two‑level algorithm

We say (x∗, x̄∗, y∗) ∈ ℝ
n1 ×ℝ

n2 ×ℝ
m is a stationary point of problem (3) if it satis-

fies the following condition 

 or equivalently, 0 ∈ 𝜕L(x∗, x̄∗, y∗) , where

In equations (7) and (8), the notation NX(x) denotes the general normal cone of X  
at x ∈ X  [56, Def 6.3], and �L(⋅) denotes the general subdifferential of L(⋅) [56, Def 
8.3]. Some properties and calculus rules of normal cones and the general subdiffer-
ential can be found in [56, Chap 6, 8, 10].

It can be shown that if (x∗, x̄∗) is a local minimum of (3) and satisfies some mild 
regularity condition, then condition (7) is satisfied [56, Thm 8.15]. If X  and X̄  are 
defined by finitely many continuously differentiable constraints, then condition (7) is 
equivalent to the well-known KKT condition of problem (3) under some constraint 
qualification. Therefore, condition (7) can be viewed as a generalized first-order nec-
essary optimality condition for nonsmooth constrained problems. Our goal is to find 
such a stationary point (x∗, x̄∗, y∗) for problem (3).

(6)min
x,y

f (x, y) +

m∑
j=1

�̃�j(yj) s.t. h(x, y) = 0, gi(xi) ≤ 0, xi ∈ Xi ∀i ∈ [n].

(7a)0 ∈ ∇f (x∗) + A⊤y∗ + NX(x
∗),

(7b)0 ∈ B⊤y∗ + NX̄(x̄
∗),

(7c)0 = Ax∗ + Bx̄∗;

(8)L(x, x̄, y) ∶= f (x) + �X(x) + �X̄(x̄) + ⟨y,Ax + Bx̄⟩.
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3.1  A key reformulation

As analyzed in the previous section, since directly applying ADMM to a distrib-
uted formulation of the general constrained nonconvex problem (3) cannot guaran-
tee convergence without using the relaxation scheme in [31], we want to go beyond 
the standard ADMM framework. We propose two steps for achieving this. The first 
step is taken in this subsection to propose a new reformulation, and the second step 
is taken in the next subsection to propose a new two-level algorithm for the new 
reformulation.

We consider the following reformulation of (3)

The idea of adding a slack variable z ∈ ℝ
m has two consequences. The first conse-

quence is that the linear coupling constraint Ax + Bx̄ + z = 0 now has three blocks, 
and the last block is an identity matrix Im , whose image is the whole space. Given 
any x and x̄ , we can always let z = −Ax − Bx̄ to make the constraint satisfied. The 
second consequence is that the artificial constraint z = 0 can be treated separately 
from the coupling constraint. Notice that a direct application of ADMM to problem 
(9) still does not guarantee convergence since Conditions 1 and 2 are not satisfied 
yet. So it is necessary to separate the linear constraints into two levels. If we ignore 
z = 0 for the moment, existing techniques in ADMM analysis can be applied to the 
rest of the problem. Since we want to utilize the unconstrained optimality condition 
of the last block, we can relax z = 0 . This observation motivates us to choose ALM. 
To be more specific, consider the problem

which is obtained by dualizing constraint z = 0 with �k ∈ ℝ
m and adding a quadratic 

penalty �
k

2
‖z‖2 with 𝛽k > 0 . The augmented Lagrangian term ⟨�k, z⟩ + �k

2
‖z‖2 can be 

viewed as an objective function in variable z, which is not only Lipschitz differenti-
able but also strongly convex. Problem (10) can be solved by a three-block ADMM 
in a distributed fashion when a separable structure is available. Notice that the first-
order optimality condition of problem (10) at a stationary solution (xk, x̄k, zk, yk) is 

 However, such a solution may not satisfy primal feasibility Ax + Bx̄ = 0 , which is 
the only difference from the optimality condition (7) (note that (11c) is analogous 

(9)min
x∈X,x̄∈X̄,z

f (x) s.t. Ax + Bx̄ + z = 0, z = 0.

(10)min
x∈X,x̄∈X̄,z

f (x) + ⟨𝜆k, z⟩ + 𝛽k

2
‖z‖2 s.t. Ax + Bx̄ + z = 0,

(11a)0 ∈ ∇f (xk) + A⊤yk + NX(x
k),

(11b)0 ∈ B⊤yk + NX̄(x̄
k),

(11c)0 = �k + �kzk + yk,

(11d)0 = Axk + Bx̄k + zk.
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to the dual feasibility in variable z in the KKT condition). Fortunately, the ALM 
offers a scheme to drive the slack variable z to zero by updating � and we can expect 
iterates to converge to a stationary point of the original problem (3). In summary, 
reformulation (9) separates the complication of the original problem into two levels, 
where the inner level (10) provides a formulation that simultaneously satisfies Con-
ditions 1 and 2, and the outer level drives z to zero. We propose a two-level algorith-
mic architecture in the next subsection to realize this.

3.2  A two‑level algorithm

The proposed algorithm consists of two levels, both of which are based on the aug-
mented Lagrangian framework. The inner-level algorithm is described in Algorithm  1, 
which uses a three-block ADMM to solve problem (10) and its iterates are indexed by t. 
The outer-level algorithm is described in Algorithm  2 with iterates indexed by k.

Given �k ∈ ℝ
m and 𝛽k > 0 , the augmented Lagrangian function associated with the 

k-th inner-level problem (10) is defined as

where y ∈ ℝ
m is the dual variable for constraint Ax + Bx̄ + z = 0 and �k is a penalty 

parameter for ADMM. In view of (11), the k-th inner-level ADMM aims to find an 
approximate stationary solution (xk, x̄k, zk, yk) of (10) in the sense that there exist dk

1
 , 

dk
2
 , and dk

3
 such that 

 where �k
i
 ’s are positive tolerances. The optimality conditions of xt in Line 5 and x̄t in 

Line 7 of Algorithm  1 read:

With the dual update in Line 11, we can see that

(12)
L𝜌k (x, x̄, z, y) ∶=f (x) + �X(x) + �X̄(x̄) + ⟨𝜆k, z⟩ + 𝛽k

2
‖z‖2

+ ⟨y,Ax + Bx̄ + z⟩ + 𝜌k

2
‖Ax + Bx̄ + z‖2,

(13a)dk
1
∈ ∇f (xk) + A⊤yk + NX(x

k),

(13b)dk
2
∈ B⊤yk + NX̄(x̄

k),

(13c)0 = �k + �kzk + yk,

(13d)dk
3
= Axk + Bx̄k + zk,

(13e)‖dk
i
‖ ≤ �k

i
, ∀i ∈ [3],

0 ∈∇f (xt) + A⊤yt−1 + 𝜌kA⊤(Axt + Bx̄t−1 + zt−1) + NX(x
t),

0 ∈B⊤yt−1 + 𝜌kB⊤(Axt + Bx̄t + zt−1) + NX̄(x̄
t).
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As a result, Algorithm  1 can be terminated if it finds (xt, x̄t, zt) such that 

 Notice that �k does not appear in (14c), so we can use different tolerances for 
the above three measures. Since (13c) is always maintained by ADMM with 
(yk, zk) = (yt, zt) , a solution satisfying (14) is an approximate stationary solution to 
problem (10) by assigning (xk, x̄k, zk, yk) ∶= (xt, x̄t, zt, yt).

The first block update in Algorithm  1 reads as

so line 5 of Algorithm   1 searches for a stationary solution xt of the constrained 
problem (15). The second and third block updates in lines 7 and 9 admit closed form 
solutions, so in view of the network flow problem (1), the proposed reformulation 
(9) does not introduce additional computational burden. All primal and dual updates 
in Algorithm   1 can be implemented in parallel as f and X  admit separable struc-
tures. In each ADMM iteration, agents solve their own local problems independently 
and only need to communicate with their immediate neighbors. We resolve this by 

−𝜌kA⊤(Bx̄t−1 + zt−1 − Bx̄t − zt) ∈∇f (xt) + A⊤yt + NX(x
t),

−𝜌kB⊤(zt−1 − zt) ∈B⊤yt + NX̄(x̄
t).

(14a)‖𝜌kA⊤(Bx̄t−1 + zt−1 − Bx̄t − zt)‖ ≤ 𝜖k
1
,

(14b)‖𝜌kB⊤(zt−1 − zt)‖ ≤ 𝜖k
2
,

(14c)‖Axt + Bx̄t + zt‖ ≤ 𝜖k
3
.

(15)min
x∈X

f (x) + ⟨yt−1,Ax + Bx̄t−1 + zt−1⟩ + 𝜌k

2
‖Ax + Bx̄t−1 + zt−1‖2,
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updating � and � , which is referred as outer-level iterations indexed by k in Algo-
rithm  2.

In Algorithm  2, we choose some predetermined bounds [�, �] and explicitly pro-
ject the “true” dual variable �k + �kzk onto this hyper-cube to obtain �k+1 used in the 
next outer iteration. Such safeguarding technique is essential to establish the global 
convergence of ALM [1, 42]. We increase the outer-level penalty �k if there is no 
significant improvement in reducing ‖zk‖.

Before proceeding to the next section, we note that the key reformulation (9) is 
inspired by the hope to reconcile the conflict between the two properties and the two 
condition so that ADMM can be applied. The introduction of additional variable z is 
not necessary in the sense that any method that achieves distributed computation for 
the subproblem

can be embedded inside the ALM framework. The aforementioned PDD method 
[58] is such an approach. There are some other update schemes [5, 71] that can han-
dle functional constraints in (16), assuming that the (Euclidean) projection oracle 
onto the nonconvex set X  is available. It would be interesting to compare their per-
formances with ADMM when used in the inner level, and we leave this to future 
work. Meanwhile, as we will demonstrate in Sect. 6, the proposed two-level algo-
rithm preserves the desirable properties of ADMM in practice, such as fast conver-
gence in early stages and scalability to handle large-scale problems.

4  Global convergence

In this section, we prove global convergence and convergence rate of the proposed 
two-level algorithm. Starting from any initial point, iterates generated by the pro-
posed algorithm have a limit point; every limit point is a stationary solution to the 

(16)min
x∈X,x̄∈X̄

f (x) + ⟨𝜆k,Ax + Bx̄⟩ + 𝛽k

2
‖Ax + Bx̄‖2
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original problem under some mild condition. In particular, we make the following 
assumptions.

Assumption 1 Problem (9) is feasible and the set of stationary points satisfying (7) 
is nonempty.

Assumption 2 The objective function f ∶ ℝ
n
→ ℝ is continuously differentiable, 

X ⊆ ℝ
n is a compact set, and X̄  is convex and compact.

Assumption 3 Given �k , �k , and �k , the first block update can find a stationary solu-
tion xt such that 0 ∈ 𝜕xL𝜌k (x

t, x̄t−1, zt−1, yt−1) and

for all t ∈ ℤ++.

We give some comments below. Assumption 1 ensures the feasibility of problem 
(9), which is standard. Though it is desirable to design an algorithm that can guaran-
tee feasibility of the limit point, usually this is too much to ask: the powerful ALM 
may converge to an infeasible limit point even if the original problem is feasible. If 
this situation happens, or problem (9) is infeasible in the first place, our algorithm 
will converge to a limit point that is stationary to some problem, as stated in Theo-
rem 1. The compactness required in Assumption 2 ensures that the sequence gener-
ated by our algorithm stays bounded, and can be dropped if the existence of a limit 
point is directly assumed or derived from elsewhere. We do not make any explicit 
assumptions on matrices A and B in this section, and our analysis does not rely on 
any convenient structures that A and B may process, such as full row or column rank.

For Assumption 3, we note that finding a stationary point usually can be achieved 
at the successful termination of some nonlinear solvers. In addition, the state-of-the-
art nonlinear solver IPOPT [64] will accept a trial point if either the objective or the 
constraint violation is decreased in each iteration. In step 1 of Algorithm  1, since 
xt−1 is already a feasible solution, if we start from xt−1 , it is reasonable to expect a 
new stationary point xt is reached with an improved objective value. Assumption 
3 is slightly weaker and more realistic than assuming that the nonconvex subprob-
lem can be solved globally, which is commonly adopted in the nonconvex ADMM 
literature.

In Sect. 4.1, we show that each inner-level ADMM converges to a solution that 
approximately satisfies the stationary condition (11) of problem (10). This sequence 
of solutions that we obtain at termination of the inner ADMM is referred as outer-
level iterates. Then in Sect.  4.2, we firstly characterize limit points of outer-level 
iterates, whose existence is guaranteed. Then we show that a limit point is stationary 
to problem (3) if some mild constraint qualification is satisfied.

L𝜌k (x
t, x̄t−1, zt−1, yt−1) ≤ L𝜌k (x

t−1, x̄t−1, zt−1, yt−1) < +∞
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4.1  Convergence of inner‑level iterations

In this subsection, we show that, by applying the three-block ADMM to problem 
(10), we will get an approximate stationary point (xk, x̄k, zk, yk) satisfying the approx-
imate stationary condition (13). The convergence of the inner-level ADMM in this 
subsection uses some techniques from the literature, e.g., [67]. We present a self-
contained proof in the appendix and demonstrate that the descent oracle assumed 
in Assumption 3 relaxes the global optimality of subproblems without affecting the 
overall convergence.

Proposition 1 Suppose Assumptions 2–3 hold. The k-th inner-level ADMM of Algo-
rithm  1 terminates, i.e., the stopping criteria (14) is satisfied, in at most

iterations, where Lk ∶= L𝜌k (x
0, x̄0, z0, y0) and L ∈ ℝ is a finite constant independent 

of outer-level index k.

Proof See Appendix “Proof of Proposition 1”.   ◻

In particular, the approximate stationary condition (13) is satisfied with the solu-
tion returned by ADMM.

4.2  Convergence of outer‑level iterations

In this subsection, we prove the convergence of outer-level iterations. In general, 
when the method of multipliers is used as a global method, there is no guarantee that 
the constraint being relaxed can be satisfied at the limit. Due to the special structure 
of our reformulation, we are able to give a characterization of limit points of outer-
level iterates.

Theorem 1 Suppose Assumptions 2–3 hold. Let {(xk, x̄k, zk, yk)}k∈ℤ++
 be the sequence 

of outer-level iterates of Algorithm  2 satisfying condition (13). Then the sequence of 
the primal solutions {(xk, x̄k, zk)}k∈ℤ++

 are bounded, and every limit point (x∗, x̄∗, z∗) 
of this sequence satisfies one of the following: 

1. (x∗, x̄∗) is feasible for problem (3), i.e., z∗ = 0;
2. (x∗, x̄∗) is a stationary point of the problem 

(17)Tk ∶=

�
8max{‖A‖2, ‖B‖2, 1}�k(Lk − L)

min{�k
1
, �k

2
, �k

3
}2

�

(18)min
x∈X,x̄∈X̄

1

2
‖Ax + Bx̄‖2.
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Proof See Appendix “Proof of Theorem 1”.   ◻

Theorem 1 gives a complete characterization of limit points of outer-level iter-
ates. If the limit point is infeasible, i.e. z∗ ≠ 0 , then (x∗, x̄∗) is a stationary point of 
the problem (18). This is also the case if problem (3) is infeasible, i.e. the feasible 
region defined by X  and X̄  does not intersect the affine plane Ax + Bx̄ = 0 , since 
each inner-level problem (10) is always feasible and the first case in Theorem 1 
cannot happen. We also note that even if (x∗, x̄∗) falls into the second case of The-
orem 1, it is still possible that the associated z∗ = 0 , but then (x∗, x̄∗) will be some 
irregular feasible solution. In both cases, we believe (x∗, x̄∗) generated by the two-
level algorithm has its own significance and may provide some useful information 
regarding the problem structure. Since stationarity and optimality are maintained 
in all subproblems, we should expect that any feasible limit point of the outer-
level iterates is stationary for the original problem. As we will prove in the next 
theorem, this is indeed the case if some mild constraint qualification is satisfied.

Theorem  2 Suppose Assumptions 1–3 hold. Let (x∗, x̄∗, z∗) be a limit point of the 
outer-level iterates {(xk, x̄k, zk)}k∈ℤ++

 of Algorithm  2. If {yk}k∈ℤ++
 has a limit point y∗ 

along a subsequence converging to (x∗, x̄∗, z∗) , then (x∗, x̄∗, y∗) is a stationary point 
of problem (3) satisfying stationary condition (7).

Proof See Appendix “Proof of Theorem 2”.   ◻

In Theorem 2, we assume the dual variable {yk} has a limit point y∗ . Since by 
(38) we have �k + �kzk + yk = 0 , the “true" multiplier �̃�k+1 ∶= 𝜆k + 𝛽kzk also has a 
limit point. We note that the existence of a limit point can be ensured by the exist-
ence of a bounded dual subsequence, which is known as the sequentially bounded 
constraint qualification (SBCQ) [43]. More specifically in the context of smooth 
nonlinear problems, the constant positive linear dependence (CPLD) condition 
proposed by Qi and Wei [54] also guarantees that the sequence of dual variables 
has a bounded subsequence. Therefore, we think our assumption of y∗ is analo-
gous to some constraint qualification in the KKT condition for smooth problems, 
and does not restrict the field where our algorithm is applicable.

We also give some comments regarding the predetermined bound [�, �] on 
outer-level dual variable � . In principle, the bound should be chosen large enough 
at the beginning of the algorithm. Otherwise �k will probably stay at � or � all 
the time; in this case, the outer-level ALM automatically converts to the pen-
alty method, which usually requires �k to go to infinity, because, in general, exact 
penalization does not hold for a quadratic penalty function. In contrast, a proper 
choice of the dual variable can compensate asymptotic exactness even when the 
penalty function is not sharp at the origin. In terms of convergence analysis, one 
may notice that the choice of � is actually not that important: if we set �k = 0 
for all k, the analysis can still go through. This is because in the framework of 
ALM, the dual variable � is closely related to local optimal solutions. While we 
study global convergence, it is not clear which local solution the algorithm will 
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converge to, so the role of � is not significant. It seems difficult to establish the 
uniform boundedness of dual variables without the projection step, especially 
when there are nonconvex constraints

In Sect.  5, we will show our algorithm inherits some nice local convergence 
properties of ALM, where � does play an important role, and in Sect. 6, we will 
demonstrate that keeping � indeed enables the algorithm to converge faster than 
the penalty method.

4.3  Iteration complexity

In this subsection, we provide an iteration complexity analysis of the proposed 
algorithm. In view of (7), our goal is to give a complexity bound on the number 
of ADMM iterations for finding an �-stationary solution (xK , x̄K , yK) in the sense 
that there exist d1, d2, d3 such that 

 In order to illustrate the main result in a concise and clear way, we slightly modify 
the outer-level Algorithm  2 as follows.

In Algorithm  3, we choose some tolerance 𝜖 > 0 and apply the stopping cri-
teria (14) with �k

1
= �k

2
= 2�k

3
= � for the k-th inner-level ADMM. For the ease of 

the analysis, we multiply the outer-level penalty �k by some 𝛾 > 1 in each outer-
iteration, instead of checking the improvement in primal feasibility. Moreover, we 
add the following technical assumption.

Assumption 4 There exists some L ∈ ℝ such that L𝜌k (x0, x̄0, z0, y0) ≤ L for all 
k ∈ ℤ++.

(19a)d1 ∈ ∇f (xK) + A⊤yK + NX(x
K),

(19b)d2 ∈ B⊤yK + NX̄(x̄
K),

(19c)d3 = AxK + Bx̄K ,

(19d)max{‖d1‖, ‖d2‖, ‖d3‖} ≤ �.
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Remark 1 This assumption can be satisfied if ADMM can make significant pro-
gress in reducing ‖zk‖ or equivalently ‖Axk + Bx̄k‖ . Another naive implemen-
tation can be seen as follows: suppose a feasible point (x, x̄) is known a priori, 
i.e., (x, x̄) ∈ X × X̄  , and Ax + Bx̄ = 0 , then the initialization of the k-ADMM 
with (x0, x̄0, z0, y0) = (x, x̄, 0,−𝜆k) guarantees that L𝜌k (x

0, x̄0, z0, y0) ≤ L , where 
L = maxx∈X f (x).

Theorem  3 Under Assumptions 1–4, Algorithm   3 finds an �-stationary solution 
(xK , x̄K , yK) of (3) in the sense of (19) in no more than O

(
1∕�4

)
 inner ADMM itera-

tions. Furthermore, if �̂�k ∶= 𝜆k + 𝛽kzk is bounded, then the iteration complexity can 
be improved to O

(
1∕�3

)
.

Proof See Appendix “Proof of Theorem 3”.   ◻

We acknowledge that {�̂�k}k may not be bounded for some applications. The sec-
ond part of Theorem  3 (as well as Theorem  4 to be presented next) aims to rea-
sonably justify the performance of the proposed algorithm under the boundedness 
condition.

4.4  Extension to multi‑block problems

In this section, we will discuss the extension of the two-level framework to the more 
general class of multi-block problems (4). In particular, we are interested in the case 
where Conditions 1 and 2 are not satisfied. As we mentioned earlier, Jiang et al. [31] 
proposed to solve the following perturbed problem of (4):

for � = 0 , where fi ’s are lower semi-continuous, and fp and g are Lipschitz differ-
entiable. Notice that we change h and B in (4) to fp and Ap for ease of presenta-
tion. The iteration complexity for this one-level workaround is O

(
1∕�4

)
 when the 

dual variable is bounded, and O
(
1∕�6

)
 otherwise. In contrast, we can apply our two-

level framework to the multi-block problem (4) as well: with some initial guess � 
and moderate � , we solve (20) approximately using ADMM, and then we update � 
and � . We define dual residual similarly as in (14a)–(14b) for each block variable, 
and �-stationary solution as a pair of primal-dual points where the primal residual 
( ‖∑p

i=1
Aixi − b‖ ) and dual residuals (with respect to each primal block) are less 

than some 𝜖 > 0 . An extension of the two-level framework is presented in Algo-
rithm  4 below. 

(20)

min
x1,…,xp,z

p�
i=1

fp(xi) + g(x1,… , xp) + 𝜆⊤z +
𝛽

2
‖z‖2

s.t.

p�
i=1

Aixi + z = b, xi ∈ Xi ∀i ∈ [p].
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Theorem  4 Under Assumption 4, Algorithm   4 finds an �-stationary solution of 
(4) in no more than O(1∕�6) ADMM iterations. Furthermore, if �̂�k ∶= 𝜆k + 𝛽kzk is 
bounded, then the iteration complexity can be improved to O

(
1∕�4

)
.

Proof See Appendix “Proof of Theorem 4”.   ◻

Although the proposed algorithm invokes a series of ADMM with varying outer-
level dual variables and penalties, Theorem 4 suggests that its iteration complexity 
for finding a stationary solution is no worse than that of the single-looped ADMM 
variant proposed in [31]. In Sect. 5, local convergence results are presented as an 
alternative perspective to help us understand the behavior of the proposed algorithm.

5  Local convergence

We show in this section that the proposed algorithm inherits some nice local conver-
gence properties of the augmented Lagrangian method. The analysis builds on the 
classic local convergence of ALM [4], and our purpose is to provide some quantita-
tive justification for the fast convergence of the two-level algorithm, which will be 
presented in Sect. 6.

To begin with, we note that the inner-level problem (10) solved by ADMM is 
closely related to the problem

It is straightforward to verify that (xk, x̄k) is a stationary point of (21) in the sense 
that 

(21)min
x∈X,x̄∈X̄

f (x) − ⟨𝜆k,Ax + Bx̄⟩ + 𝛽k

2
‖Ax + Bx̄‖2.

(22a)0 ∈∇f (xk) + A⊤(−𝜆k + 𝛽k(Axk + Bx̄k)) + NX(x
k),

(22b)0 ∈B⊤(−𝜆k + 𝛽k(Axk + Bx̄k)) + NX̄(x̄
k),
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 if and only if (xk, x̄k, zk, yk) is a stationary point of (10) satisfying (11) with 
zk = −Axk − Bx̄k and yk = −𝜆k + 𝛽k(Axk + Bx̄k) . In addition, an approximate station-
ary solution of (10) can be mapped to an approximate solution of (21).

Lemma 1 Let (xk, x̄k, zk, yk) be a (dk
1
, dk

2
, dk

3
)-stationary point of (10) in the sense of 

(13). Then (xk, x̄k) is a (d̃k
i
, d̃k

2
)-stationary point of (21), i.e., 

 where d̃k
1
= dk

1
+ 𝛽kA⊤dk

3
 , and d̃k

2
= dk

2
+ 𝛽kB⊤dk

3
.

Proof By (13c) and (13d), we have yk = −�k + �k(Axk + Bzk − dk
3
) ; plugging this 

equality into (13a)–(13b) yields the result.   ◻

Thus we will mainly focus on problem (21) and its approximate stationarity 
system (1) in this section. We add following assumptions on problem (3).

Assumption 5 The set X = {x ∈ ℝ
n1 ∶ h(x) = 0} is compact with h ∶ ℝ

n1 → ℝ
p 

being second-order continuously differentiable, the objective f is second-order con-
tinuously differentiable over some open set containing X  , and X̄  is a convex set with 
nonempty interior in Rn2 . The matrix B has full column rank.

Remark 2 Any inequality constraint in X  can be converted to the form h(x) = 0 by 
adding the squares of additional slack variables. The second-order continuous dif-
ferentiability of f and h are standard to establish local convergence of the augmented 
Lagrangian method. In addition, we explicitly require B to have full column rank, 
which can be justified by the reformulation (2).

Definition 1 Let x∗ ∈ X = {x|h(x) = 0} and ∇h(x∗) = [∇h1(x
∗),… ,∇hp(x

∗)] ∈ ℝ
n1×p . 

1. The tangent cone of X  at x∗ : 

2. The cone of the first-order feasible variation of X  at x∗ : 

3. We say that x∗ is quasiregular if TX(x∗) = VX(x
∗).

Assumption 6 Problem (3) has a feasible solution (x∗, x̄∗) , where x̄∗ ∈ Int X̄  and all 
equality constraints have linearly independent gradient vectors. In addition, (x∗, x̄∗) , 
together with some dual multipliers �∗ ∈ (�, �) and �∗ ∈ ℝ

p , satisfy 

(23a)d̃k
1
∈∇f (xk) + A⊤(−𝜆k + 𝛽k(Axk + Bx̄k)) + NX(x

k),

(23b)d̃k
2
∈B⊤(−𝜆k + 𝛽k(Axk + Bx̄k)) + NX̄(x̄

k),

TX(x
∗) =

�
d ∈ ℝ

n1 � ∃xk ∈ X, xk → x∗,
xk − x∗

‖xk − x∗‖ →

d

‖d‖
�
.

VX(x
∗) = {d ∈ ℝ

n1 ∶ ∇h(x∗)⊤d = 0}.
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 Moreover, there exists R > 0 such that x is quasiregular for all x ∈ BR(x
∗) ∩ X .

Remark 3 Assumption 6 can be regarded as a second-order sufficient condition at a 
local minimizer (x∗, x̄∗) of problem (3), and B having full column rank is necessary 
for (24b) to hold. The quasiregularity assumption can be satisfied by a wide range of 
constraint qualifications.

The quasiregularity condition bridges the normal cone stationarity condition to 
the well-known KKT condition.

Proposition 2 If xk ∈ X  is quasiregular, x̄k ∈ Int X̄  , and (xk, x̄k) satisfies condition 
(1) with some d̃k

1
 and d̃k

2
 , then there exists some �k ∈ ℝ

p such that (xk, x̄k) satisfies the 
approximate KKT condition of problem (21), i.e., h(xk) = 0 , 

Proof The claim uses the fact that the normal cone NX(x) is the polar cone of the 
tangent cone TX(x) , and NX̄(x̄) = {0} for x̄ ∈ Int X̄ . The existence of �k follows from 
the Farkas’ Lemma [2, Prop 4.3.12].   ◻

Proposition 3 Suppose Assumption 5 holds, and let (x∗, x̄∗,𝜇∗, 𝜆∗) be defined as in 
Assumption 6. There exist positive � and � such that for all s = (𝜆, 𝛽, d̃1, d̃2) belong-
ing to the set

there exist unique continuously differentiable mappings x(s), x̄(s) , �(s) , and 
�̃�(s) = 𝜆 − 𝛽[Ax(s) + Bx̄(s)] defined in the interior of S satisfying

(24a)∇f (x∗) − A⊤𝜆∗ + ∇h(x∗)𝜇∗ = 0, B⊤𝜆∗ = 0,

(24b)
u⊤

(
∇2f (x∗) +

p∑
i=1

𝜇∗
i
∇2hi(x

∗)

)
u > 0,

∀(u, v) ≠ 0 s.t. Au + Bv = 0, ∇h(x∗)⊤u = 0.

(25a)d̃k
1
= ∇f (xk) + A⊤(−𝜆k + 𝛽k(Axk + Bx̄k)) + ∇h(xk)𝜇k,

(25b)d̃k
2
= B⊤(−𝜆k + 𝛽k(Axk + Bx̄k)).

S ∶=

�
s = (𝜆, 𝛽, d̃1, d̃2) �

�‖𝜆 − 𝜆∗‖2
𝛽2

+ ‖d̃1‖2 + ‖d̃2‖2
�1∕2

≤ 𝛿, 𝛽 ≥ 𝛽

�
,

(26)∇f [x(s)] − A⊤�̃�(s) + ∇h[x(s)]𝜇(s) = d̃1, B
⊤�̃�(s) = d̃2, h[x(s)] = 0;

(27)
(
x(𝜆∗, 𝛽, 0, 0), x̄(𝜆∗, 𝛽, 0, 0),𝜇(𝜆∗, 𝛽, 0, 0), �̃�(𝜆∗, 𝛽, 0, 0)

)
= (x∗, x̄∗,𝜇∗, 𝜆∗);

(28)x̄(s) ∈ Int X̄, ‖x(s) − x∗‖ ≤ R.
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Moreover, there exists M > 0 such that for any s ∈ S , we have

Proof See Appendix “Proof of Proposition 3”.   ◻

Proposition 4 Suppose Assumptions 5 and 6 hold. Let M and S be defined as in 
Proposition 3. Suppose for some (�k, �k) with �k ≥ M , ADMM finds a (dk

1
, dk

2
, dk

3
)

-stationary solution (xk, x̄k, zk, yk) satisfying (13) such that 

1. sk = (𝜆k, 𝛽k, d̃k
1
, d̃k

2
) ∈ S , where d̃k

1
= dk

1
+ 𝛽kA⊤dk

3
 , and d̃k

2
= dk

2
+ 𝛽kB⊤dk

3
;

2. (xk, x̄k) = (x(sk), x̄(sk));
3. there exists a positive constant 𝜂 < 𝛽k∕M such that 

Denote �̂�k ∶= 𝜆k + 𝛽kzk . Then we have

Proof See Appendix “Proof of Proposition 4”.   ◻

Theorem 5 Suppose Assumptions 5 and 6 hold. Let � , � , M, and S be defined as in 
Proposition 3. Suppose the three conditions in Proposition 4 are satisfied for all 
iterates k ∈ ℤ+ , and the initial penalty 𝛽0 > M

𝜚
(1 + 𝜂 + 𝜚𝜂) for some � ∈ (0, 1) . Then 

the following results hold: 

1. the sequence {�k}k∈ℤ++
 stays inside the interior of [�, �] , i.e., 𝜆k+1 = �̂�k = 𝜆k + 𝛽kzk

;
2. the dual variable �k converges to �∗ with at least a linear rate i.e., 

3. max{‖xk − x∗‖, ‖x̄k − x̄∗‖} ≤ 𝜚‖𝜆k − 𝜆∗‖ ≤ 𝜚k+1‖𝜆0 − 𝜆∗‖.

Proof The coefficient in the right-hand side of (31) is less than � if 
𝛽k >

M

𝜚
(1 + 𝜂 + 𝜚𝜂) , and converges to 0 if �k → +∞ ; thus the first two parts of the 

theorem are proved. Part 3 is due to (29) and the same derivation as in Proposition 
4.   ◻

(29)
max{‖x(s) − x∗‖, ‖x̄(s) − x̄∗‖, ‖�̃�(s) − 𝜆∗‖}

≤M(‖𝜆 − 𝜆∗‖2∕𝛽2 + ‖d̃1‖2 + ‖d̃2‖2)1∕2.

(30)
�
‖A‖ + ‖B‖ + 1

M

�
(‖dk

1
‖ + ‖dk

2
‖ + ‖dk

3
‖) ≤ 𝜂

𝛽k
‖Axk + Bx̄k‖.

(31)‖�̂�k − 𝜆∗‖ ≤

�
M

𝛽k
+

M𝜂(M + 𝛽k)

𝛽k(𝛽k −M𝜂)

�
‖𝜆k − 𝜆∗‖.

lim
k→+∞

‖𝜆k+1 − 𝜆∗‖
‖𝜆k − 𝜆∗‖ ≤ 𝜚 < 1, and lim

k→+∞

‖𝜆k+1 − 𝜆∗‖
‖𝜆k − 𝜆∗‖ = 0 if 𝛽k → +∞;
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Theorem 5 suggests that if we have a good initial point (inside the set S defined 
in Proposition 3) and each inner ADMM locates the approximate stationary solution 
specified by the implicit function theorem (as in Proposition 4), then the two-level algo-
rithm exhibits local linear or super-linear convergence in its outer level. The results are 
consistent with our empirical observations to be presented in Sect.  6, where usually 
only a few outer-level updates are required upon convergence.

6  Examples

We present some applications of the two-level algorithm. All programs are coded 
using the Julia programming language 1.1.0 with JuMP package 0.18 [13] and 
implemented on a 64-bit laptop with one 2.6 GHz Intel Core i7 processor, 6 cores, 
and 16GB RAM. All nonlinear constrained problems are solved by the interior point 
solver IPOPT (version 3.12.8) [64] with linear solver MA27.

6.1  Nonlinear network flow problem

We consider a specific class of network flow problems, which is covered by the 
motivating formulation (1). Suppose a connected graph G(V, E) is given, where some 
nodes have demands of certain commodity and such demands need to be satisfied 
by some supply nodes. Each node i keeps local variables [pi;xi;{xij}j∈�(i);{yij}j∈�(i)] 
∈ ℝ

2|�(i)|+2 . Variable pi is the production variable at node i, and (xi, xij, yij) determine 
the flow from node i to node j: pij = gij(xi, xij, yij) where gij ∶ ℝ

3
→ ℝ . For example, 

in an electric power network or a natural gas network, variables (xi, xij, yij) are usu-
ally related to electric voltages or gas pressures of local utilities. Moreover, for each 
(i, j) ∈ E , nodal variables (xi, xj, xij, yij) are coupled together in a nonlinear fashion: 
hij(xi, xj, xij, yij) = 0 where hij ∶ ℝ

4
→ ℝ . As an analogy, this coupling represents 

some physical laws on nodal potentials. We consider the problem 

(32a)min
∑
i∈V

fi(pi)

(32b)s.t. pi − di =
∑
j∈�(i)

pij ∀i ∈ V,

(32c)pij = gij(xi, xij, yij) ∀(i, j) ∈ E,

(32d)hij(xi, xj, xij, yij) = 0 ∀(i, j) ∈ E,

(32e)xi ∈ [x
i
, xi] ∀i ∈ V.
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 In (32), the generation cost of each node, denoted by fi(⋅) , is a function of its pro-
duction level pi . The goal is to minimize total generation cost over the network. 
Each node is associated with a demand di and has to satisfy the injection balance 
constraint (32b); nodal variable xi is bounded in [x

i
, xi] . Formulation (32) covers a 

wide range of problems and can be categorized into the GNF problem studied in 
[60]. Suppose the network is partitioned into a few subregions, and (i, j) is an edge 
crossing two subregions with i (resp. j) in region 1 (resp. 2). In order to facilitate 
parallel implementation, we replace constraint (32d) by the following constraints 
with additional variables: 

 similarly, we replace pij and pji in (32c) by

Notice that (x1
i
, x1

j
, xij, yij) are controlled by region 1 and (x2

i
, x2

j
, xji, yji) are controlled 

by region 2. After incorporating constraints (33)–(34) for all crossing edges (i,  j) 
into problem (32), the resulting problem is in the form of (3) and ready for our two-
level algorithm. We consider the case where coupling constraints are given by 
pij =

ai

|�(i)|xi + bijxij + cijyij and hij(xi, xj, xij, yij) = x2
ij
+ y2

ij
− xixj . Constraint (32c) is 

linear with parameters (ai, bij, cij) , while the nonconvex constraint (32d) restricts 
(xi, xj, xij, yij) on the surface of a rotated second-order cone.

We use the underlying network topology from [75] to generate our testing net-
works. Each network is partitioned into two, three, or four subregions. The graph 
information and centralized objectives from IPOPT are recorded in the first three 
columns of Table 2. The column “LB” records the objective value by relaxing the 

(33a)hij(x
1
i
, x1

j
, xij, yij) = 0, hji(x

2
j
, x2

i
, xji, yji) = 0,

(33b)x1
i
= x̄i, x

2
i
= x̄i, x

1
j
= x̄j, x

2
j
= x̄j;

(34)pij = gij(x
1
i
, xij, yij), pji = gji(x

2
j
, xji, yji).

Table 2  Network information

|V| |E| Central Obj. LB Idx Partition size # Cross edges

14 20 53.67 53.67 14-2 5 + 9 3
14-3 4 + 5 + 5 5
14-4 2 + 4 + 4 + 4 7

118 179 862.09 862.03 118-2 47 + 71 4
118-3 35 + 35 + 48 7
118-4 20 + 28 + 34 + 36 12

300 409 4751.31 4751.20 300-2 111 + 189 4
300-3 80 + 87 + 133 7
300-4 58 + 64 + 88 + 90 11

1354 1710 740.09 740.02 1354-2 455 + 899 11
1345-3 340 + 455 + 559 18
1354-4 236 + 303 + 386 + 429 25
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constraint (32d) to hij(xi, xj, xij, yij) ≤ 0 . It is clear that this relaxation makes problem 
(32) convex and provides a lower bound to the global optimal value. Partition infor-
mation are given in the last two columns.

We compare our algorithm with PDD in [58] as well as the proximal ADMM-
g proposed in [31] (which solves problem (5) instead). We set an absolute toler-
ance � = 1.0e − 5 , and initialize (xi, xj, xij, yij) with (1, 1, 1, 0) and pi with the ini-
tial value provided in [75]. For our two-level algorithm, we choose � = 0.75 , 
� = 1.5 , and �1 = 1000 . Each component of � is restricted between ±106 . The 
stopping criteria (14) suggests that �k

1
 and �k

2
 should be of the order O(�k�k

3
) . 

Motivated by this observation, we terminate the inner-level ADMM when 
‖Axt + Bx̄t + zt‖ ≤ max{𝜖,

√
m∕(k ⋅ 𝜌k)} , where m is the dimension of the vector, 

and �k is the inner ADMM penalty at outer iteration k. For PDD, as suggested in 
[58, Section V.B], we terminate the inner-level of PDD when the relative gap of 
two consecutive augmented Lagrangian values is less than max{�, 100� × (2∕3)k} ; 
at the end of each inner-level rBSUM, the primal feasibility is checked and penalty 
is updated with the same � and � . Notice that the parameters used in the proposed 
algorithm and PDD are matched in our experiments. For proximal ADMM-g, we 
choose � = 1∕�2 and � = 3∕�2 ; additional proximal terms 1

2
‖x − xt‖2

H
 and 1

2
‖x̄ − x̄t‖2

H
 

are added to the subproblem update, where H =
0.01

�
I . All three algorithms termi-

nate if ‖Axk + Bx̄k‖ ≤
√
m × 𝜖 . Test results are presented in Table 3.

The number of outer-level updates (ALM multiplier updates for PDD and the 
two-level algorithm) and the total number of inner-level updates (rBSUM iterations 
for PDD and ADMM iterations for the two-level algorithm) are reported in columns 
“Outer" and “Inner", respectively. We see that both the proposed algorithm and 
PDD converge in all test cases, and both of them take around 10-30 outer-level itera-
tions to drive the constraint violation “ ‖Ax + Bx̄‖ ” close to zero. PDD converges fast 
for three cases of network 300; however, for most cases it requires more total inner 
and outer iterations for convergence than the proposed algorithm. Such performance 
is consistent with the analysis in [58], where the inner-level rBSUM algorithm 
needs to run long enough to guarantee each block variable achieves stationarity. The 
objective values and duality gaps of solutions generated by the three algorithms are 
recorded in “Obj" and “Gap (%)". We can see both the proposed algorithm and PDD 
are able to achieve near global optimality, while the proposed algorithm finds solu-
tions with even higher quality than PDD at termination. The algorithm running time 
(model building time excluded) is recorded in the last column “Time (s)". We would 
like to emphasize that, under similar algorithmic settings, the proposed two-level 
algorithm in general converges faster and shows better scalability than the other two 
algorithms.

Even with sufficiently large penalty on the slack variable z, the proximal ADMM-
g does not achieve the desired primal feasibility for cases 300-4, 1354-3, and 1354-4 
in 1000 iterations; for other cases, it usually takes more time than the proposed 
algorithm. We point out that ADMM-g usually finds sub-optimal solutions, and 
the duality gap can be as large as 42%. We believe this happens because problem 
(5) requires the introduction of large �(�) and �(�) , which affect the structure of the 
original problem (3) and result in solutions with poor quality. Moreover, such large 
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parameters also cause numerical issues for the IPOPT solver and slow down the 
overall convergence, and this is the reason why ADMM-g takes a long time even 
when the number of iterations is relatively small for the first four test cases. We 
also tried a smaller penalty O(1∕�) , in which case the ADMM-g cannot achieve the 
desired feasibility level.

Table 3  Comparison with PDD [58], proximal ADMM-g [31]

Idx Method Outer Inner ‖Ax + Bx̄‖ Obj Gap (%) Time (s)

14-2 ADMM-g – 42 3.35e–05 93.06 42.33 8.30
PDD 21 94 3.65e–05 53.96 0.53 2.01
Proposed 10 54 3.77e–05 53.98 0.58 1.25

14-3 ADMM-g – 247 5.27e–05 72.86 26.34 6.54
PDD 22 188 3.88e–05 53.98 0.57 1.82
Proposed 20 140 1.11e–05 53.99 0.60 1.40

14-4 ADMM-g – 259 5.90e–05 81.67 34.28 7.58
PDD 24 896 5.29e–05 54.72 1.91 9.41
Proposed 19 250 7.69e–05 54.42 1.37 2.43

118-2 ADMM-g – 40 4.43e–05 1283.48 32.84 6.20
PDD 24 85 3.34e–05 870.20 0.94 3.75
Proposed 15 100 3.16e–05 864.71 0.31 3.94

118-3 ADMM-g – 67 6.26e–05 1200.01 28.16 1.91
PDD 25 141 5.80e–05 867.44 0.62 2.95
Proposed 11 86 5.16e–05 866.17 0.48 1.85

118-4 ADMM-g – 59 8.11e–05 1201.82 28.27 4.48
PDD 25 178 6.64e–05 868.68 0.77 3.59
Proposed 14 137 6.50e–05 867.16 0.59 2.86

300-2 ADMM-g – 227 4.80e–05 5054.52 6.00 15.34
PDD 28 93 3.87e–05 4757.06 0.12 5.54
Proposed 20 304 1.74e–05 4751.71 0.01 18.04

300-3 ADMM-g – 400 6.43e–05 5049.16 5.90 20.46
PDD 28 127 6.27e–05 4757.63 0.13 6.27
Proposed 25 517 4.80e–05 4752.52 0.03 23.83

300-4 ADMM-g – 1000 1.67e–04 5041.50 5.76 46.41
PDD 28 243 7.37e–05 4765.06 0.29 10.28
Proposed 20 512 7.26e–05 4752.56 0.03 19.53

1354-2 ADMM-g – 901 7.86e–05 767.44 3.57 672.51
PDD 25 299 6.56e–05 745.50 0.73 212.91
Proposed 19 126 6.39e–05 743.32 0.44 84.61

1354-3 ADMM-g – 1000 1.66e–04 771.52 4.08 342.77
PDD 26 422 8.86e–05 747.90 1.05 174.78
Proposed 18 137 7.04e–05 744.91 0.66 50.77

1354-4 ADMM-g – 1000 4.90e–04 769.55 3.84 265.59
PDD 27 838 1.10e–04 749.61 1.28 523.78
Proposed 18 170 8.15e–05 744.98 0.67 115.71
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6.2  Minimization over compact manifold

We consider the following problem 

 Problem (35) is obtained from the benchmark set COPS 3.0 [11] of nonlinear opti-
mization problems. The same problem is used in [70] to test algorithms that pre-
serve spherical constraints through curvilinear search. We compare solutions and 
computation time of our distributed algorithm with those obtained from the central-
ized IPOPT solver. Each test problem is firstly solved in a centralized way; objec-
tive value and total running time are recorded in the second and third column of 
Table  4. Using additional variables to break couplings in the objective (35a), we 
divide each test problem into three subproblems. Subproblems have the same num-
ber of variables, constraints, and objective terms (as in (35a)). For our two-level 
algorithm, we choose � = 2 , � = 0.5 ; initial value of penalty �1 is set to 100 for 
np ∈ {60, 90} , 200 for np ∈ {120, 180} , and 500 for np ∈ {240, 300} . The initial 
point is set to (xi, yi, zi) = (0.2, 0.3, 0.1) for all i ∈ [np] for IPOPT. We set bounds 
on each component of � to be ±106 . The inner-level ADMM terminates when 
‖Axt + Bx̄t + zt‖ ≤

√
3np∕(2500k) , where k is the current outer-level index; the outer 

level terminates when ‖Axk + Bx̄k‖ ≤
√
3np × 1.0e − 6.

The quality of the centralized solution is slightly better than distributed solutions, 
while our proposed algorithm is able to reduce the running time significantly except 

(35a)min

np−1∑
i=1

np∑
j=i+1

(
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2
)− 1

2

(35b)s.t. x2
i
+ y2

i
+ z2

i
= 1, ∀i ∈ [np].

Table 4  Comparison of centralized and distributed solutions

np Centralized Ipopt Proposed two-level algorithm and penalty method

Obj. Time (s) Method Outer Inner ‖Ax + Bx̄‖ Gap (%) Time (s)

60 1543.83 9.55 Proposed 11 62 1.17e–05 0.79 4.17
Penalty 18 102 1.32e–05 0.54 7.82

90 3579.18 17.34 Proposed 12 98 1.01e–05 0.14 20.42
Penalty 18 136 9.62e–06 0.13 26.97

120 6474.77 56.64 Proposed 12 79 8.77e–06 0.30 45.28
Penalty 17 113 1.75e–05 0.21 60.42

180 14867.41 212.95 Proposed 12 82 1.71e–05 0.10 173.81
Penalty 18 121 1.69e–05 0.09 233.75

240 26747.84 710.68 Proposed 12 79 1.25e–05 0.44 417.62
Penalty 17 111 2.02e–05 0.28 534.59

300 42131.88 1568.64 Proposed 12 80 1.51e–05 0.17 852.19
Penalty 18 115 2.94e–05 0.12 1094.91
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for one case ( np = 90 ) while ensuring feasibility. In addition, as indicated in Table 4, 
numbers of iterations for both inner and outer levels stay stable across all test cases, 
which suggests that the proposed algorithm scales well with the size of the problem. 
In view of the discussion in Sect. 4.2, we compare with the penalty method, where 
�k = 0 for all k, to demonstrate the effect of the outer-level dual variable. Without 
updating � , the penalty method requires more inner/outer updates and substantially 
longer time.

6.3  A multi‑block problem: robust tensor PCA

In this section, we use the robust tensor PCA problem considered in [31] to illustrate 
that the two-level framework can be generalized to multi-block problem (4), and 
when Conditions 1 and 2 are satisfied, the resulting two-level algorithm can poten-
tially accelerate one-level ADMM. In particular, given an estimate R of the CP-rank, 
the problem of interest is casted as

where A ∈ ℝ
I1×R,B ∈ ℝ

I2×R,C ∈ ℝ
I3×R , and [[A,B,C]] denotes the sum of column-

wise outer product of A, B, and C. We denote the mode-i unfolding of tensor Z by 
Z(i) , the Khatri-Rao product of matrices by ⊙ , the Hadamard product by ◦ , and the 
soft shrinkage operator by S . We implement the two-level framework as in Algo-
rithm  5.

 We firstly perform ADMM-g in steps 3-10. We note that there are some modifica-
tions to the ADMM-g described in [31]: since our two-level framework requires the 
introduction of an additional slack variable S , steps 6-8 have an additional term Sk

(1)
 , 

and Sk+1
(1)

 is then updated in step 9 via a gradient step as in ADMM-g; moreover, dur-

(36)min
A,B,C,Z,E,B

‖Z − [[A,B,C]]‖2 + �‖E‖1 + �N‖B‖2F s.t. E + Z + B = T,
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ing the update of B , we also add a proximal term with coefficients �6∕2 . When the 
residual ‖Zk+1 + E

k+1 + B
k+1 + S

k+1 − T‖F is small enough, which can serve as an 
indicator of the convergence of ADMM-g, we multiply the penalty � by some � as 
long as 𝛽 < 1.0e + 6 , and update the outer-level dual variable � as in step 12, where 
the projection step is omitted.

We experiment on tensors with dimensions I1 = 30 , I2 = 50 , and I3 = 70 , 
which match the largest instances tested by [31]; the initial estimation R is 
given by RCP + ⌈0.2 ∗ RCP⌉ . In our implementation, we set � = 1.5 , c = 3 , 
and the initial � is set to 2; the inner-level ADMM-g terminates if the residual 
‖Zk+1 + E

k+1 + B
k+1 + S

k+1 − T‖F is less than max{1e − 5, 1e − 3∕Kout} , where 
Kout is the current outer-level iteration count. All other parameters, generation of 
problem data, and initialization follow the description in [31, Section 5]. For each 
value of the CP rank, we generate 10 cases and let ADMM-g and the proposed 
two-level Algorithm perform 2000 (inner) iterations. We calculate the geometric 
mean rGeo

k
 of the primal residuals rk = ‖Zk + E

k + B
k − T‖F over 10 cases, and plot 

lg rGeo
k

 as a function of iteration count k in Fig. 1. We also calculate the geomet-
ric mean eGeo

k
 of relative errors ‖Zk − Ztrue‖F∕‖Ztrue‖F over 10 cases, where Ztrue 

is the generated true low-rank tensor, and plot eGeo
k

 in Fig.  2. For our two-level 
algorithm, the primal residual decreases relatively slow during the first few inner 
ADMM-g; however, as we update the outer-level dual variable � and penalty � , 
rGeo
k

 drops significantly faster than that of ADMM-g, and achieves feasibility with 

Fig. 1  Comparison of infeasibility lg rGeo
k
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high precision in around 500 inner iterations. The relative error rGeo
k

 of the two-
level algorithm converges slightly slower than ADMM-g, while it is able to catch 
up and obtain the same level of optimality. The result suggests that our proposed 
two-level algorithm not only ensures convergence for a wider range of applica-
tions where ADMM may fail, but also accelerates ADMM on problems where 
convergence is already guaranteed.

7  Conclusion

This paper proposes a two-level distributed algorithm to solve the nonconvex con-
strained optimization problem (3). We identify some limitation of the standard 
ADMM algorithm, which in general cannot guarantee convergence when paralleli-
zation of constrained subproblems is considered. In order to overcome such diffi-
culties, we propose a novel while concise distributed reformulation, which enables 
us to separate the underlying complication into two levels. The inner level utilizes 
multi-block ADMM to facilitate parallel implementation while the outer level 
uses the classic ALM to guarantee convergence to feasible solutions. Global con-
vergence, local convergence, and iteration complexity of the proposed two-level 
algorithm are established, and we certify the possibility to extend the underlying 
algorithmic framework to solve more complicated nonconvex multi-block problems 
(4). In comparison to the other existing algorithms that are capable of solving the 
same class of nonconvex constrained programs, the proposed algorithm exhibits its 

Fig. 2  Comparison of relative errors eGeo
k
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advantages in terms of speed, scalability, and robustness. Thus for general noncon-
vex constrained multi-block problems, the two-level algorithm can serve an alterna-
tive to the workaround proposed in [31] when Condition 1 or 2 fails, and potentially 
accelerate ADMM on problems where slow convergence is frequently encountered.

Appendix 1: Additional Proofs in Section 4

Proof of Proposition 1

We omit the index k in (�k, �k, �k, Tk) occasionally. We first prove two lemmas.

Lemma 2 For all t ∈ ℤ++ , we have

Proof The claim follows from the optimality conditions of the x̄ and z updates.   ◻

Lemma 3 Suppose Assumptions 2–3 hold, and we set � = 2� , then

for all t ∈ ℤ++ ; in addition, there exists L ∈ ℝ independent of k such that for all 
t ∈ ℤ+,

Proof We firstly show descent over x and x̄ updates. By Assumption 3, we have

In addition, notice that

the second equality is due to ‖a + b‖2 − ‖a + c‖2 = 2(a + c)⊤(b − c) + ‖b − c‖2 
with a = Axt + zt−1 , b = Bx̄t−1 , and c = Bx̄t , and the last inequality is due to (37) of 
Lemma 2. Now we will show descent over z and y updates. Notice that if we define 

(37)⟨B⊤yt−1 + 𝜌B⊤(Axt + Bx̄t + zt−1), x̂ − x̄t⟩ ≥ 0 ∀x̂ ∈ X̄,

(38)� + �zt + yt = 0.

(39)
L𝜌(x

t−1, x̄t−1, zt−1, yt−1) − L𝜌(x
t, x̄t, zt, yt) ≥ 𝛽‖Bx̄t−1 − Bx̄t‖2 + 𝛽‖zt−1 − zt‖2

(40)L𝜌(x
t, x̄t, zt, yt) ≥ L > −∞.

(41)L𝜌(x
t−1, x̄t−1, zt−1, yt−1) ≥ L𝜌(x

t, x̄t−1, zt−1, yt−1).

(42)

L𝜌(x
t, x̄t−1, zt−1, yt−1) − L𝜌(x

t, x̄t, zt−1, yt−1)

=⟨yt−1,Bx̄t−1 − Bx̄t⟩ + 𝜌

2
‖Axt + Bx̄t−1 + zt−1‖2 − 𝜌

2
‖Axt + Bx̄t + zt−1‖2

=⟨B⊤yt−1 + 𝜌B⊤(Axt + Bx̄t + zt−1), x̄t−1 − x̄t⟩ + 𝜌

2
‖Bx̄t−1 − Bx̄t‖2

≥
𝜌

2
‖Bx̄t−1 − Bx̄t‖2,
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h(z) = 𝜆⊤z +
𝛽

2
‖z‖2 , then by Lemma 2, we have ∇h(zt) = � + �zt = −yt ; since h(⋅) is 

convex, it follows h(zt−1) − h(zt) + (yt)⊤(zt−1 − zt) ≥ 0 . Notice that

The equality is due to the update of dual variable in Algo-
rithm   1, the optimality condition (38), and the fact that 
−𝜌(a + b)⊤(a + c) +

𝜌

2
‖a + c‖2 − 𝜌

2
‖a + b‖2 = 𝜌

2
‖c − b‖2 − 𝜌‖a + b‖2 with 

a = Axt + Bx̄t , b = zt , and c = zt−1 ; the inequality is due to h(z) being �-strongly con-
vex and (38) of Lemma 2. Since � = 2� , adding (41)–(43) proves (39).

To see L𝜌(xt, x̄t, zt, yt) is bounded from below, we note that the function 
h(z) defined above is also Lipschitz differentiable with constant � , so define 
st ∶= −(Axt + Bx̄t) , we have h(zt) − (yt)⊤(st − zt) ≥ h(st) −

𝛽

2
‖st − zt‖2 . As a result, 

for all t ∈ ℤ+,

where the last inequality is due to h(st) = �

2
‖st + �

�
‖2 − ‖�‖2

2�
 . Since � is bounded, 

there exists M ∈ ℝ such that ‖�‖2 ≤ M ; since the outer-level penalty �k is nonde-
creasing, we can define L ∶= f ∗ −M∕�1, where f ∗ = minx∈X f (x) . The minimum is 
achievable due to Assumption 2.   ◻

Now we are ready to prove Proposition 1.

Proof By Lemma 3, for any T ∈ ℤ++ we have

which implies the existence of a particular index t ∈ [T] such that

Using the fact that ‖Axt + Bx̄t + zt‖ =
𝛽

𝜌
‖zt−1 − zt‖ =

1

2
‖zt−1 − zt‖ , the KKT errors 

can be bounded by

(43)

L𝜌(x
t, x̄t, zt−1, yt−1) − L𝜌(x

t, x̄t, zt, yt)

=h(zt−1) − h(zt) + (yt)⊤(zt−1 − zt) +
𝜌

2
‖zt−1 − zt‖2 − 𝜌‖Axt + Bx̄t + zt‖2

≥(
𝜌+𝛽

2
−

𝛽2

𝜌
)‖zt−1 − zt‖2.

(44)

L𝜌(x
t, x̄t, zt, yt) =f (xt) + h(zt) + (yt)⊤(Axt + Bx̄t + zt) +

𝜌

2
‖Axt + Bx̄t + zt‖2

≥f (xt) + h(st) −
𝛽

2
‖st − zt‖2 + 𝜌

2
‖Axt + Bx̄t + zt‖2

≥f (xt) + h(st) ≥ f (xt) −
‖𝜆‖2
2𝛽

,

𝛽

T�
t=1

‖Bx̄t−1 − Bx̄t‖2 + ‖zt−1 − zt‖2 ≤ Lk − L,

(45)‖Bx̄t−1 − Bx̄t‖2 + ‖zt−1 − zt‖2 ≤ Lk − L

𝛽T
.
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where the first inequality is due to the triangle inequality, the second inequality is 
due to the Cauchy-Schwarz inequality and � = �k = 2�k ≥ 2�0 ≥ 1∕2 , the third ine-
quality is due to (45), and the last inequality is due to the claimed upper bound on T.  
 ◻

Proof of Theorem 1

Proof Since xk ∈ X  , x̄k ∈ X̄  and X  , X̄  are bounded, we know ‖Axk + Bx̄k‖ 
is bounded; since ‖Axk + Bx̄k + zk‖ ≤ 𝜖k

3
 and �k

3
→ 0 , {zk} is also bounded. 

We conclude that {(xk, x̄k, zk)} is bounded and therefore has at least one limit 
point, denoted by (x∗, x̄∗, z∗) . We use kr to denote a subsequence converging to 
(x∗, x̄∗, z∗) . Since X  , X̄  are also closed, we have x∗ ∈ X  and x̄∗ ∈ X̄  . Moreover, 
Ax∗ + Bx̄∗ + z∗ = limr→∞ Axkr + Bx̄kr + zkr = 0 . Therefore (x∗, x̄∗) is feasible for 
problem (3) if and only if z∗ = 0 . If �k is bounded, then according to the update 
scheme, we have zk → 0 , so z∗ = 0 . Now suppose �k is unbounded. Since �k is non-
decreasing, any subsequence is also unbounded. By (13c), we have

Since {�kr} is bounded, we may assume �kr → �∗ . Again we consider two cases. In 
the first case, suppose {ykr} has a bounded subsequence, and therefore has a limit 
point y∗ . Then taking limit on both sides of (46) along the subsequence converging 
to y∗ , we have z∗ = 0 , so (x∗, x̄∗) is feasible. Otherwise in the second case, 
limr→∞ ‖ykr‖ = +∞ . Denote ỹkr ∶= ykr

𝛽kr
 . We know the sequence {ỹkr} converges to 

−z∗ , because

By (13a) and (13b), we have

Since NX(x
kr ) and NX̄(x̄

kr ) are cones and 𝛽kr > 0 , we have

max{‖𝜌A⊤(Bx̄t−1 + zt−1 − Bx̄t − zt)‖, ‖𝜌B⊤(zt−1 − zt)‖, ‖Axt + Bx̄t + zt‖}
≤𝜌max{‖A‖, ‖B‖, 1∕(2𝜌)}�‖Bx̄t−1 − Bx̄t‖ + ‖zt−1 − zt‖�

≤2
√
2𝛽max{‖A‖, ‖B‖, 1}�‖Bx̄t−1 − Bx̄t‖2 + ‖zt−1 − zt‖2�1∕2

≤2
√
2𝛽max{‖A‖, ‖B‖, 1}

�
Lk − L

𝛽T

�1∕2

≤ min{𝜖k
1
, 𝜖k

2
, 𝜖k

3
},

(46)�kr

�kr
+ zkr +

ykr

�kr
= 0.

(47)lim
r→∞

ỹkr = lim
r→∞

ykr

𝛽kr
= lim

r→∞
−zkr −

𝜆kr

𝛽kr
= −z∗.

d
kr
1
− ∇f (xkr ) − A⊤ykr ∈ NX(x

kr ), d
kr
2
− B⊤ykr ∈ NX̄(x̄

kr ).
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where ỹkr ∶= ykr

𝛽kr
 . Due to the closedness of normal cones, we can take limit on (48), 

then (46) and (13d) implies (x∗, x̄∗) is a stationary point of the problem (18).   ◻

Proof of Theorem 2

Proof We assume the subsequence {(xkr , x̄kr , zkr , ykr )} converges to the limit point (x∗ , 
x̄∗ , z∗ , y∗) . Using a similar argument in the proof of Theorem 1, we have x∗ ∈ X  , 
x̄∗ ∈ X̄  , and Ax∗ + Bx̄∗ + z∗ = 0 . It remains to show z∗ = 0 to complete primal fea-
sibility. If �k is bounded, then we have zk → 0 so z∗ = 0 ; if �k is unbounded, by 
taking limits on both sides of (46), we also have z∗ = 0 , since �k is bounded and ykr 
converges to y∗ . Therefore (x∗, x̄∗) satisfies (7c). Taking limits on (13a) and (13b) as 
k → ∞ , we get (7a) and (7b), respectively. This completes the proof.   ◻

Proof of Theorem 3

Proof We use k to index outer-level iterations of Algorithm  1 and t to index inner-
level iterations of Algorithm  1. By Proposition 1, Assumption 4, and the fact that 
�k = �0�k , the number of iterations Tk of the k-th inner ADMM, defined in (17), 
satisfies

Summing Tk over k ∈ [K] , we obtain the following bound on the total number of 
ADMM iterations:

Since conditions (19a) and (19b) are maintained at the termination of each inner-
level ADMM, the total number of outer-level ALM iterations, K, depends on the rate 
at which (19c) is satisfied. By inequality (44) and Assumption 4, at the termination 
of each ADMM, we have

The Assumption 2, the fact that ‖�k‖ is bounded, and the above inequality imply that

(48)
d
kr
1

𝛽kr
−

∇f (xkr )

𝛽kr
− A⊤ỹkr ∈ NX(x

kr ),
d
kr
2

𝛽kr
− B⊤ỹkr ∈ NX̄(x̄

kr ),

(49)Tk = O

(
�k

�2

)
= O

(
�k

�2

)
.

(50)
K∑
k=1

Tk = O

(
1

�2

�(�K − 1)

� − 1

)
= O

(
�K

�2

)
.

(51)L ≥ L𝜌k (x
0, x̄0, z0, y0) ≥ f (xk) − ⟨𝜆k,Axk + Bx̄k⟩ + 𝛽k

2
‖Axk + Bx̄k‖2.
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As a result, there exists an index K such that ‖AxK + Bx̄K‖ ≤ 𝜖 and �K = O
(
1∕�2

)
 . 

Plugging �K = O
(
1∕�2

)
 into (50) gives the claimed O(1∕�4) complexity upper 

bound.
For the second claim, consider the K-th inner ADMM, at the ter-

mination of which we have ‖AxK + Bx̄K + zK‖ ≤
𝜖

2
 . Since 

‖AxK + Bx̄K‖ ≤ ‖AxK + Bx̄K + zK‖ + ‖zK‖ ≤
𝜖

2
+ ‖zK‖ . It suffices to find 

an index K such that ‖zK‖ ≤
�

2
 . Since �̂�k and �k are bounded, we have 

‖zk‖ = ‖�̂�k − 𝜆k‖∕𝛽k = O
�
1∕𝛾k

�
 . As a result, we can choose K such that 

�K = O(1∕�) . Plugging �K = O(1∕�) into (50) gives the claimed O(1∕�3) complex-
ity upper bound.   ◻

Proof of Theorem 4

Proof According to [31, Theorem 4.2], given the inner ADMM penalty �k , which is 
a constant multiple of �k , it is sufficient to let the k-th ADMM run Tk = O((�k)2∕�2) 
iterations in order to have some t ∈ [Tk] such that the primal and dual residuals of 
ADMM at iteration t are less than �∕2 . Denote this solution by xk = (xk

1
,… , xk

p
) . 

Since we update penalties in each outer iteration as �k = �0�k , the total number of 
inner-level iterations is bounded by

where K is the total number of outer-level iterations. It remains to choose K such 
that ‖AxK − b‖ ≤ � , and we consider two cases. 

1. Suppose the “true" dual variable �̂�k = 𝜆k + 𝛽kzk  stays bounded. It 
immediately follows that ‖zk‖ = O(1∕�k) . To get ‖zK‖ ≤

�

2
 so that 

‖Axk − b‖ ≤ ‖Axk + zk − b‖ + ‖zk‖ ≤ � , it suffices to choose some K with 
�K = O(1∕�) , which follows �K = O(1∕�).

2. Otherwise, similar as in Theorem 3, since there is a uniform upper bound on the 
values of augmented Lagrangians, it suffices to let �K = O(1∕�2) , which follows 
�K = O(1∕�2).

Finally, plugging �K = O(1∕�) and �K = O(1∕�2) into (52) will give O(1∕�4) and 
O(1∕�6) respectively. This completes the proof.   ◻

‖Axk + Bx̄k‖2 = O

�
1

𝛽k

�
= O

�
1

𝛾k

�
.

(52)
K∑
k=1

Tk = O

(
K∑
k=1

(�k)2

�2

)
= O

(
1

�2

�2(�2K − 1)

�2 − 1

)
= O

(
�2K

�2

)
,
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Appendix 2: Additional Proofs in Section 5

Proof of Proposition 3

Proof Denote L = ∇2f (x∗) +
∑p

i=1
�∗
i
∇2hi(x

∗) . We firstly show under Assumption 
6, there exists 𝛽 > 0 such that for all � ≥ � , we have u⊤Lu + 𝛽

2
‖Au + Bv‖2 > 0 for 

all (u, v) ≠ 0 and ∇h(x∗)⊤u = 0 . Suppose for any k ∈ ℤ++ , there exists (uk, vk) on 
the unit sphere such that ∇h(x∗)⊤uk = 0 and (uk)⊤Luk + k

2
‖Auk + Bvk‖2 ≤ 0 . With-

out loss of generality, assume (uk, vk) converges to some (ū, v̄) , which is located 
on the unit sphere as well. Then we have ū⊤Lū + lim supk→∞

k

2
‖Auk + Bvk‖2 ≤ 0, 

and it follows Aū + Bv̄ = 0 and ū⊤Lū ≤ 0 , which is a desired contradiction since 
∇h(x∗)⊤ū = 0 and (ū, v̄) ≠ 0.

Since x̄∗ ∈ Int X̄  , we temporarily ignore the constraint x̄ ∈ X̄  and consider the 
system in variables (x, x̄, �̃�,𝜇, t, 𝛾 , d̃1, d̃2):

which has a solution (x, x̄, �̃�,𝜇) = (x∗, x̄∗, 𝜆∗,𝜇∗) for (t, d̃1, d̃2) = (0, 0, 0) and any 
� ∈ ℝ . We claim that for any � ∈ [0, 1∕�] , the Jacobian of the above system evalu-
ated at (x∗, x̄∗, 𝜆∗,𝜇∗, 0, 𝛾 , 0, 0) with respect to (x, x̄, �̃�,𝜇) , namely, the matrix

is invertible. To see this, consider the linear system in (u,  v,  w,  z) of proper 
dimensions, 

 For 𝛾 > 0 , notice that u⊤(54a) + v⊤ (54b), together with (54c) and (54d), yields 
u⊤Lu +

1

𝛾
‖Au + Bv‖2 = 0 . By the first claim we know (u, v) = 0 ; thus, w = 0 by 

(54c), and z = 0 by (54a) and the fact that ∇h(x∗) has full column rank. For � = 0 , 
using the same technique as above and (24b), we can show (u, v) = 0 ; since we also 
assume gradients of all equality constraints are linearly independent, we have 
(w, z) = 0 as well.

∇f (x) − A⊤�̃� + ∇h(x)𝜇 = d̃1, − B⊤�̃� = d̃2,

−Ax − Bx̄ + t + 𝛾𝜆∗ − 𝛾�̃� = 0, h(x) = 0,

(53)

⎡⎢⎢⎢⎣

L 0 − A⊤ ∇h(x∗)

0 0 − B⊤ 0

−A − B − 𝛾I 0

∇h(x∗)⊤ 0 0 0

⎤⎥⎥⎥⎦
,

(54a)Lu − A⊤w + ∇h(x∗)z = 0,

(54b)−B⊤w = 0,

(54c)Au + Bv + �w = 0,

(54d)∇h(x∗)⊤u = 0.
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Now the Implicit Function Theorem [4, Chapter  1.2], together with a change 
of variable with t = (� − �∗)∕� and � = 1∕� , proves the existence and uniqueness 
of the continuous differentiable mappings x(⋅) , x̄(⋅) , �(⋅) , and �̃�(⋅) over S as well 
as (26)–(27); in addition, the � defining S can be chosen small enough so that (28) 
holds. Finally, (29) follows from the Mean Value Theorem for Integrals [4, Proposi-
tion 2.14].   ◻

Proof of Proposition 4

Proof Notice that

which implies for 𝛽k > M𝜂,

Similarly, we have

This completes the proof.   ◻
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𝛽k‖Axk + Bx̄k‖ = ‖�̃�(sk) − 𝜆k‖ ≤ ‖�̃�(sk) − 𝜆∗‖ + ‖𝜆k − 𝜆∗‖
(29)

≤M(‖𝜆k − 𝜆∗‖2∕(𝛽k)2 + ‖d̃k
1
‖2 + ‖d̃k

2
‖2)1∕2 + ‖𝜆k − 𝜆∗‖

≤
M + 𝛽k

𝛽k
‖𝜆k − 𝜆∗‖ +M(‖dk

1
‖ + 𝛽k‖A‖‖dk

3
‖) +M(‖dk

2
‖ + 𝛽k‖B‖‖dk

3
‖)

(30)

≤
M + 𝛽k

𝛽k
‖𝜆k − 𝜆∗‖ +M𝜂‖Axk + Bx̄k‖,

(55)‖Axk + Bx̄k‖ ≤
M + 𝛽k

𝛽k(𝛽k −M𝜂)
‖𝜆k − 𝜆∗‖.

‖�̂�k − 𝜆∗‖ ≤ ‖�̃�(sk) − 𝜆∗‖ + ‖�̂�k − �̃�(sk)‖
(29)

≤
M

𝛽k
‖𝜆k − 𝜆∗‖ +M(‖dk

1
‖ + 𝛽k‖A‖‖dk

3
‖) +M(‖dk

2
‖ + 𝛽k‖B‖‖dk

3
‖) + 𝛽k‖dk

3
‖

(30)

≤
M

𝛽k
‖𝜆k − 𝜆∗‖ +M𝜂‖Axk + Bx̄k‖(55)≤

�
M

𝛽k
+

M𝜂(M + 𝛽k)

𝛽k(𝛽k −M𝜂)

�
‖𝜆k − 𝜆∗‖.
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