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Abstract
In this paper we present general-purpose preconditioners for regularized augmented 
systems, and their corresponding normal equations, arising from optimization prob-
lems. We discuss positive definite preconditioners, suitable for CG and MINRES. 
We consider “sparsifications" which avoid situations in which eigenvalues of the 
preconditioned matrix may become complex. Special attention is given to systems 
arising from the application of regularized interior point methods to linear or non-
linear convex programming problems.

Keywords Preconditioning · Krylov subspace methods · Interior point methods · 
Regularization · Saddle point systems · Convex optimization

1 Introduction

In this paper, we are concerned with applying Krylov-subspace methods for the effi-
cient solution of systems of the following form:
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where A ∈ ℝ
m×n (with m ≤ n ), Q ⪰ 0 ∈ ℝ

n×n , In is the identity matrix of size n, and 
𝛿, 𝜌 > 0 . Such systems arise in a plethora of applications [6], which go far beyond 
optimization. However, in this paper we restrict the discussion to the case of regu-
larized systems arising in Interior Point Methods (IPMs) for optimization [1, 3, 19, 
34, 40, 43, 46]. Due to the potential large dimensions of the systems, they are often 
solved by means of iterative techniques, usually from the family of Krylov-subspace 
methods [21]. To guarantee efficiency of such methods the possibly ill-conditioned 
system (1) often needs to be appropriately preconditioned and, indeed, there exists 
a rich literature which addresses the issue (see the discussions in [4, 6, 8, 9, 14–16], 
and the references therein).

Multiple preconditioning approaches have been developed in the literature, used 
to accelerate the associated iterative methods. These can be divided into positive 
definite (e.g. [6, 10, 20, 30, 32, 33, 45]) and indefinite ones (e.g. [15, 25, 26, 30]). 
The latter are often employed within long-recurrence non-symmetric solvers (such 
as the Generalized Minimal RESidual method [42]), while the former can be used 
within short-recurrence methods (such as the MINimal RESidual method [35]). A 
comprehensive study of saddle point systems and their associated “optimal" precon-
ditioners can be found in [6]. Indefinite preconditioners are significantly more dif-
ficult to analyze and a simple spectral analysis is not sufficient to deduce their effec-
tiveness (see [22]). On the other hand, positive definite preconditioners are often 
easier to analyze, and the eigenvalues of the preconditioned matrices allow one to 
theoretically compare different preconditioning approaches.

In this paper, we are focused on systems arising from the application of regu-
larized interior point methods for the solution of an arbitrary convex programming 
problem. In this case, Q represents the Hessian of the primal barrier problem’s 
objective function (or the Hessian of the Lagrangian in the nonlinear programming 
case), A represents the constraint matrix (or the Jacobian of the constraints in the 
nonlinear programming case), while � and � are the primal and dual regularization 
parameters, respectively. We note that the IPM may contribute a term to the (1, 1) or 
the (2, 2) block of (1), depending on the form of the constraints and non-negativity 
variables. Here we assume that the term is added in the (1,  1) block. For exam-
ple, the matrix Q may be written as Q ∶= H + �−1 , where H is the Hessian of the 
Lagrangian and � ∶= XZ−1 is a diagonal IPM scaling matrix (assuming x, z are the 
primal and dual non-negative variables, respectively, while X, Z denote the diagonal 
matrices with diagonal entries taken from vectors x, z , respectively) which origi-
nates from the use of the logarithmic barrier.

We present positive definite preconditioning approaches that can be used within 
MINRES [35] or the Conjugate Gradient method [23], and we provide some basic 
spectral analysis results for the associated preconditioned systems. More specifi-
cally, we consider preconditioners which are derived by “sparsifications” of system 
(1), that is, by dropping specific entries from sparse matrices Q and A, thus mak-
ing them more sparse and hence easier to factorize. Various such approaches have 
been proposed to date and include: preconditioners which exploit an early guess of 
a basic–nonbasic partition of variables to drop columns from A [33], constraint pre-
conditioners [9, 14–16], inexact constraint preconditioners [8] which drop specific 
entries in the matrices Q and A, and of course a plethora of preconditioners which 
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involve various levels of incomplete Cholesky factorizations of the matrix in (1), see 
for example [10]. The literature on preconditioners is growing rapidly and we refer 
the interested reader to [5, 6, 12, 37, 48] and the references therein, for a detailed 
discussion.

We consider dropping off-diagonal entries of Q, but restrict the elimination of 
entries in A only to the removal of complete columns. Additionally, we consider 
sparsifying parts of rows of the Schur complement corresponding to system (1). 
Such a strategy guarantees that we avoid situations in which eigenvalues of the pre-
conditioned matrix may become complex (such as those employed in [8]), which as 
a consequence would have required us to employ non-symmetric Krylov methods.

In order to construct the preconditioners, by following [7], we take advantage of 
the properties of the logarithmic barrier, that allow us to know in advance which 
columns of the problem matrix are important and which are less influential. In par-
ticular, assuming the aforementioned representation of Q as Q = H + �−1 , the loga-
rithmic barrier indicates which variables of the problem are likely to be inactive in 
the solution. More precisely, the variables are naturally split into “basic"–B (not in 
the simplex sense), “non-basic"–N  , and “undecided”–U . Hence, as IPMs progress 
towards optimality, we expect the following partition of the diagonal barrier matrix 
�−1:

where � is the barrier parameter (and is such that � → 0 ), N  , B , and U are mutually 
disjoint, and N ∪ B ∪ U = {1,… , n} , while �(⋅) denotes that two positive quanti-
ties are of the same order of magnitude (see the notation section at the end of the 
introduction). Given the large magnitude of the diagonal elements of Q for any 
j ∈ N  (assuming � is close to zero), we expect that the corresponding columns of 
A (i.e. A(∶,N) ) will not contribute important information, and thus can be set to zero 
when constructing a preconditioner for (1). In [7], the Hessian was approximated by 
its diagonal. In this paper, we extend this work by allowing the utilization of non-
diagonal Hessian information. More specifically, we showcase how to analyze, con-
struct, and apply the inverse of preconditioners in which we only drop non-diagonal 
elements of Q corresponding to diagonal elements in N  . We should note at this 
point that such a splitting of Q occurs in other second-order optimization methods as 
well, such as those based on augmented Lagrangian strategies (e.g. see [27]).

Furthermore, we discuss some approaches for dealing with problems for which 
the matrix A may contain a subset of dense columns or rows. Any dense column or 
row in A can pose great difficulties when trying to factorize the associated saddle-
point matrix (or a preconditioner approximating it). Thus, it is desirable to alleviate 
the dangers of such columns or rows, by appropriate “sparsifications” of the precon-
ditioner, allowing us to reduce the memory requirements of applying its inverse.

All such “sparsifications” are captured in a general result presented in Sect. 2 
which provides the spectral analysis of an appropriate preconditioned normal 
equations’ matrix. The main theorem sheds light on consequences of sparsifying 

∀j ∈ N ∶
(
� (j,j)

)−1
= �

(
�−1

)
, ∀j ∈ B ∶

(
� (j,j)

)−1
= �(�),

∀j ∈ U ∶
(
� (j,j)

)−1
= �(1),
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rows of the normal equations corresponding to (1), or dropping columns of A, and 
demonstrates that the former might produce a larger number of non-unit eigen-
values. In Sect. 3, these normal equation approximations are utilized to construct 
positive definite block-diagonal preconditioners for the saddle point system in 
(1), and the spectral properties of the resulting preconditioned matrices are also 
discussed. Additionally, an alternative saddle-point preconditioner based on an 
LDL⊤ decomposition is presented.

All of the preconditioning approaches discussed are compared numerically on 
saddle-point systems arising from the application of a regularized IPM for the 
solution of real-life linear and convex quadratic programming problems. In par-
ticular, we present some numerical results on certain test problems taken from the 
Netlib (see [31]) and the Maros–Mészáros (see [29]) collections. Then, we test 
the preconditioners on examples of Partial Differential Equation (PDE) optimal 
control problems. All preconditioning approaches have been implemented within 
an Interior Point-Proximal Method of Multipliers (IP-PMM) framework, which is 
a polynomially convergent primal-dual regularized IPM, based on the develop-
ments in [40, 41]. A robust implementation is provided.

It is worth stressing that the proposed preconditioners are general and do not 
assume the knowledge of special structures which might be present in the matri-
ces Q and A (such as block-diagonal, block-angular, network, PDE-induced, and 
so on). Therefore they may be applied within general-purpose IPM solvers for 
linear and convex quadratic programming problems.

Notation. Throughout this paper we use lowercase Roman and Greek let-
ters to indicate vectors and scalars. Capitalized Roman fonts are used to indi-
cate matrices. Superscripts are used to denote the components of a vector/matrix. 
Sets of indices are denoted by caligraphic capital fonts. For example, given 
M ∈ ℝ

m×n , v ∈ ℝ
n , R ⊆ {1,… ,m} , and C ⊆ {1,… , n} , we set vC ∶= (vi)i∈C and 

M(R,C) ∶= (m(i,j))i∈R,j∈C , where vi is the i-th entry of v and m(i,j) the (i,  j)-th entry 
of M. Additionally, the full set of indices is denoted by a colon. In particular, 
M(∶,C) denotes all columns of M with indices in C . Given a matrix M, we denote 
the diagonal matrix with the same diagonal elements as M by Diag(M) . We use 
�min(B) ( �max(B) , respectively) to denote the minimum (maximum) eigenvalue 
of an arbitrary square matrix B with real eigenvalues. Similarly, �max(B) denotes 
the maximum singular value of an arbitrary rectangular matrix B. We use 0m,n 
to denote a matrix of size m × n with entries equal to 0. Furthermore, we use In 
to indicate the identity matrix of size n. For any finite set A , we denote by |A| 
its cardinality. Finally, given two positive functions T , f ∶ ℝ+ ↦ ℝ+ , we write 
T(x) = �(f (x)) if these functions are of the same order of magnitude, that is, there 
exist constants c1, c2 > 0 and some x0 ≥ 0 such that c1f (x) ≤ T(x) ≤ c2f (x) , for all 
x ≥ x0.

Structure of the article. The rest of this paper is organized as follows. In Sect. 2 
we present some preconditioners suitable for the normal equations. Then, in Sect. 3, 
we adapt these preconditioners to regularized saddle point systems. Subsequently, 
in Sect.  4 we focus on saddle point systems arising from the application of regular-
ized IPMs to convex programming problems, and present some numerical results. 
Finally, in Sect. 5, we deliver our conclusions.
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2  Regularized normal equations

We begin by defining the regularized normal equations matrix (or Schur 
complement) M ∶= AGA⊤ + 𝛿Im ∈ ℝ

m×m , corresponding to (1), where 
G ∶= (Q + 𝜌In)

−1 ≻ 0 ∈ ℝ
n×n . In this section, we derive and analyze precondi-

tioning approaches for M. As we have already mentioned in the introduction, we 
achieve a simplification of the preconditioner by setting to zero certain columns of 
the matrix A (and consequently sparsifying the corresponding rows and columns of 
Q), as well as by sparsifying certain rows of the matrix M.

More specifically, we define two integers, kc and kr , such that 0 ≤ kc ≤ n and 
0 ≤ kr ≤ m . The former counts the number of columns of A (and corresponding col-
umns and rows of Q) that are set to zero (that are sparsified, respectively), while the 
latter counts the number of rows of the matrix M that are sparsified. At this point, 
we assume that we have been given these columns or rows, but we later specify how 
these can be chosen (see Remark 1 and Sect. 4). In order to highlight these given 
columns and rows, we assume that we are given two permutation matrices; a column 
permutation Pc ∈ ℝ

n×n , and a row permutation Pr ∈ ℝ
m×m . Applied to the con-

straint matrix A in (1), these permutations bring all the columns and rows which will 
need to be treated specially to the leading positions of columns and rows of PrAPc , 
respectively.

Given the previous permutation matrices, let us firstly define an approximation to 
the matrix Q. In particular, we approximate Q by the following block-diagonal and 
positive semi-definite matrix:

where Q̂1 = Q1 or Q̂1 = Diag(Q1) , and Q̂2 = Q2 or Q̂2 = Diag(Q2) (both cases are 
treated concurrently). The column permutation Pc reorders symmetrically both 
rows and columns of the matrix Q in (1), and places the kc columns and rows which 
will be sparsified at the leading (1, 1) block of the permuted version of the matrix 
Q. Given this approximation of Q, let us define an approximate normal equations’ 
matrix that will be of interest when analyzing the spectral properties of the precon-
ditioned matrices derived in this paper:

In what follows, we derive a preconditioner for the approximate normal equations’ 
matrix M̂ . We should note that system (1) is solved using the normal equations only 
if Q is diagonal (due to obvious numerical considerations), in which case Q ≡ Q̂ , 
and thus M ≡ M̂ . If this is not the case, we would like to derive a preconditioner for 
the approximate normal equations’ matrix M̂ . Later on, and in particular in Sect.  3, 
this is utilized to derive and analyze a preconditioner for the matrix K, defined in (1).

(2)�Q ∶= Pc

[
�Q1 0kc,(n−kc)

0(n−kc),kc
�Q2

]
P

⊤
c
, assuming Q ≡ Pc

[
Q1 Q⊤

3

Q3 Q2

]
P

⊤
c
,

(3)

�M ∶= A�GA⊤ + 𝛿Im, �G ∶=
�
�Q + 𝜌In

�−1

≡ Pc

⎡⎢⎢⎣

�
�Q1 + 𝜌Ikc

�−1

0kc,(n−kc)

0(n−kc),kc

�
�Q2 + 𝜌In−kc

�−1

⎤⎥⎥⎦
P

⊤
c
.
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We proceed by introducing some notation, for convenience of exposition. Given 
the definitions in (2), (3), we can write:

where Pr is a given row-permutation matrix, B11 ∈ ℝ
kr×kc , B12 ∈ ℝ

kr×(n−kc) , 
B21 ∈ ℝ

(m−kr)×kc , and B22 ∈ ℝ
(m−kr)×(n−kc) . Notice that the aim of the row-permuta-

tion matrix Pr , is to bring on top all rows of the matrix M̂ that we are planning to 
sparsify in order to construct the preconditioner. Let us further introduce the follow-
ing notation:

where M̂11 , M̂21 , and M̂22 are defined as:

In what follows, we present two preconditioning strategies for the matrix M̂ . Both 
approaches exploit the sparsification of the matrix M̂ . The first approach relies on a 
Cholesky decomposition of a sparsified matrix, while the second approach is based 
on an LDL⊤ decomposition of a sparsified augmented system matrix, which is used 
to implicitly derive a preconditioner for M̂.

2.1  A Cholesky‑based preconditioner

Our first proposal is to consider preconditioning Pr
�MP

⊤
r
 with the following matrix:

The notation PNE,(kc,kr)
 signifies that this is a preconditioner for the normal equations, 

in which we drop kc columns from the matrix A and sparsify kr rows of the matrix 
M̂ . Notice that if kc = 0 (that is, we only sparsify certain rows of M̂ to construct the 

preconditioner), we can write B ≡ PrAĜ
1

2 =

[
B12

B22

]
 , while B11 , B21 are zero-dimen-

sional, and hence absent. In this case, we have

B ∶= PrAĜ
1

2Pc =

[
B11 B12

B21 B22

]
,

Pr
�MP

⊤
r
≡

[
�M11

�M⊤
21

�M21
�M22

]
,

�M11 ∶= B11B
⊤
11
+ B12B

⊤
12
+ 𝛿Ikr ∈ ℝ

kr×kr ,

�M21 ∶= B21B
⊤
11
+ B22B

⊤
12

∈ ℝ
(m−kr)×kr ,

�M22 ∶= B21B
⊤
21
+ B22B

⊤
22
+ 𝛿Im−kr ∈ ℝ

(m−kr)×(m−kr).

(4)PNE,(kc,kr)
∶=

[
�M11 0kr ,(m−kr)

0(m−kr),kr
�M22

]
, �M22 ∶= �M22 − B21B

⊤
21
.

PNE,(0,kr)
∶=

[
M̂11 0kr ,(m−kr)

0(m−kr),kr M̂22

]
.
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On the other hand, if kr = 0 (that is, we only drop kc columns from A to construct the 
preconditioner), we have B ≡

[
B21 B22

]
 , and B11, B12 are absent. Then, we obtain

Notice that the latter is obtained since Q̂ is block-separable (with respect to the 
permutation Pc ), and thus dropping the respective kc columns of A results in 
dropping B21B

⊤
21

 . For simplicity of notation, for the rest of this subsection we set 
PNE,(kc,kr)

≡ PNE.
In the following theorem, we analyze the spectrum of the preconditioned matrix 

P−1
NE
Pr

�MP
⊤
r
 , with respect to the spectrum of the associated matrices.

Theorem  1 The preconditioned matrix P−1
NE
Pr

�MP
⊤
r
 has at least 

max{m − (2kr + kc), 0} eigenvalues at 1. If kc > 0 and kr > 0 , all remaining eigen-
values lie in the following interval:

If kc > 0 and kr = 0 , the previous interval reduces to

while if kr > 0 and kc = 0 , we obtain

Proof Given an arbitrary eigenvalue � (which must be positive since PNE ≻ 0 and 
�M ≻ 0 ) corresponding to a unit eigenvector v, let us write the generalized eigenprob-
lem as:

We separate the analysis into two cases.
Case 1: Let v2 ∈ Null(�M⊤

21
) . Firstly, we notice that:

Two sub-cases arise here. For the first sub-case, we notice that if v1 ≠ 0 , then 
from positive definiteness of M̂11 , combined with the first block equation of (5), 
we obtain that � = 1 . In turn, we claim that this implies that v2 ∈ Null(B21B

⊤
21
) and 

v1 ∈ Null(M̂21) . To see this, assume that v2 ∉ Null(B21B
⊤
21
) . Then from the second 

block equation of (5) we obtain:

PNE,(kc,0)
= M̃22.

Ikc,kr ∶=

[
𝛿

𝛿 +max
{
𝜆max(B11B

⊤
11
+ B12B

⊤
12
), 𝜆max(B22B

⊤
22
)
} , 2 + 𝜆max(B21B

⊤
21
)

𝛿 + 𝜆min(B22B
⊤
22
)

]
.

Ikc ∶=

[
1, 1 +

𝜆max(B21B
⊤
21
)

𝛿 + 𝜆min(B22B
⊤
22
)

]
,

Ikr ∶=

[
𝛿

𝛿 +max
{
𝜆max(B12B

⊤
12
), 𝜆max(B22B

⊤
22
)
} , 2

]
.

(5)
[
�M11

�M⊤
21

�M21
�M22

] [
v1
v2

]
= 𝜆

[
�M11v1
�M22v2

]
.

dim
(
Null

(
�M⊤
21

))
= (m − kr) − rank

(
�M⊤
21

)
≥ max{m − 2kr, 0}.



734 J. Gondzio et al.

1 3

where we used the definition of M̃22 . If v2 ∉ Null(B21B
⊤
21
) , this implies that 

v⊤
2
B21B

⊤
21
v2 > 0 . The previous equation then yields that

which follows from the base assumption (i.e. v2 ∈ Null(�M⊤
21
) ), and results in a con-

tradiction. Hence, v2 ∈ Null(B21B
⊤
21
) . On the other hand, if v1 ∉ Null(M̂21) then the 

second block equation yields directly a contradiction, since we have shown that 
v2 ∈ Null(B21B

⊤
21
).

Next we consider the second sub-case, i.e. v1 = 0 . Combined with our base 
assumption, the first block equation of (5) becomes redundant. From the second 
block equation of the eigenproblem, and using v1 = 0 , we obtain:

Hence we have that:

All eigenvalues in this case can be bounded by the previous inequality and 
there will be at most rank(B21B

⊤
21
) non-unit eigenvalues. On the other hand, if 

v2 ∈ Null(B21B
⊤
21
) , then trivially � = 1 . This concludes the first case. Notice that this 

case would occur necessarily if kr = 0 , and thus, we obtain the interval Ikc.
Case 2: In this case, we assume that v2 ∉ Null(�M⊤

21
) . In what follows we assume 

� ≠ 1 (noting that � = 1 would only occur if v1 ∈ Null(M̂21) and v2 ∈ Null(B21B
⊤
21
) ), 

and there are at most 2kr such eigenvalues. Given the previous assumption, and 
using the first block equation in (5), we obtain:

Substituting the previous into the second block equation of (5) yields the following 
generalized eigenproblem:

where we used the definitions of M̃22 and M̂22 . Premultiplying (6) by v⊤
2
 and rear-

ranging yields the following quadratic algebraic equation that � must satisfy in this 
case:

�M21v1 + �M22v2 = �M22v2 ⇒ �M21v1 = −B21B
⊤
21
v2,

v⊤
2
�M21v1 = −v⊤

2
B21B

⊤
21
v2 ⇒ 0 = −v⊤

2
B21B

⊤
21
v2 < 0,

v⊤
2
�M22v2 = 𝜆v⊤

2
�M22v2

⇒ v⊤
2

(
�M22 + B21B

⊤
21

)
v2 = 𝜆v⊤

2
�M22v2.

𝜆 = 1 +
v⊤
2
(B21B

⊤
21
)v2

v⊤
2
�M22v2

≤ 1 +
𝜆max(B21B

⊤
21
)

𝛿 + 𝜆min(B22B
⊤
22
)
.

v1 =
1

𝜆 − 1
�M−1
11

�M⊤
21
v2.

(6)
(
�M21

�M−1
11

�M⊤
21
+ (𝜆 − 1)B21B

⊤
21

)
v2 = (𝜆 − 1)2 �M22v2,

(7)�2 + �� + � = 0,
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where

and

Let us notice that the smallest eigenvalue is at least as large as 
𝛿

𝛿+max{𝜆max(B11B
⊤
11
+B12B

⊤
12
),𝜆max(B22B

⊤
22
)}

 . This follows from positive definiteness of PNE and 

M̂ , and the bound can be deduced by noticing that

Still we need to find an upper bound for the largest eigenvalue. To that end, notice 
that:

which follows from the definition of M̃22 . Positive definiteness of M̂ then implies 
that 𝛾 > 0 . From the last relation we also have that:

Furthermore, 𝛽l ∶= −
(
2 +

𝜆max(B21B
⊤
21)

𝛿+𝜆min(B22B
⊤
22)

)
≤ 𝛽 ≤ −2. From the previous inequality, 

one can also observe that 𝛾 < −𝛽 − 1.
Returning to (7), we first consider the following solution:

It is easy to see that �2 − 4� is always larger than 0. Next, we notice that the relation 
for �− is increasing with respect to � . We omit finding a lower bound for �− since 
this was established earlier. For the upper bound, we use the fact that 𝛾 < −𝛽 − 1 , to 
obtain:

𝛽 ∶= −2 −
v⊤
2
B21B

⊤
21
v2

v⊤
2
�M22v2

𝛾 ∶= 1 −
v⊤
2

(
�M21

�M−1
11

�M⊤
21
− B21B

⊤
21

)
v2

v⊤
2
�M22v2

.

𝜆min

(
P−1
NE
Pr

�MP
⊤
r

)
≥

𝜆min(�M)

𝜆max(PNE)
≥

𝛿

𝛿 +max
{
𝜆max(B11B

⊤
11
+ B12B

⊤
12
), 𝜆max(B22B

⊤
22
)
} .

𝛾 =
v⊤
2

(
�M22 − �M21

�M−1
11

�M⊤
21

)
v2

v⊤
2
�M22v2

,

0 < 𝛾 ≤ 1 +
v⊤
2
B21B

⊤
21
v2

v⊤
2
�M22v2

=
v⊤
2
�M22v2

v⊤
2
�M22v2

≤ 1 +
𝜆max(B21B

⊤
21
)

𝛿 + 𝜆min(B22B
⊤
22
)
=∶ 𝛾u.

�− =
1

2

�
−� −

√
�2 − 4�

�
.

𝜆− <
1

2

�
−𝛽 −

√
𝛽2 + 4(𝛽 + 1)

�
=

1

2
(�𝛽� − �𝛽 + 2�) = 1,
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since � ≤ −2 (also, in the beginning of this case, we have treated �− = 1 separately).
Finally, we consider the other solution of (7), which reads:

Firstly, we can easily notice that 𝜆+ > 1 . Subsequently, upon noticing that �+ is 
decreasing with respect to � , we can obtain the following obvious bound:

Now, let us observe that dropping M̂21 and �M⊤
21

 yields at most kr + rank(�M⊤
21
) ≤ 2kr 

eigenvalue outliers. Similarly, dropping B21B
⊤
21

 from the (2,2) block of M yields at 
most rank

(
B21

)
≤ kc eigenvalue outliers. Hence, there will be at least 

max
{
m − (2kr + kc), 0

}
 eigenvalues of the preconditioned matrix at 1.

Finally, the case where kc = 0 and kr > 0 follows by a direct generalization of 
[13, Theorem 4.1], and completes the proof.   ◻

Remark 1 Now that we have presented the spectral properties of the preconditioned 
system, let us discuss the use of such a preconditioning strategy. In practice, we 
solve system (1) using the normal equations only when the matrix Q is diagonal. 
As already mentioned, in this case M̂ = M , and thus PNE is a preconditioner for the 
normal equations’ matrix. In Sect.   3, we discuss how PNE is utilized to construct 
preconditioners for the saddle point matrix in (1), even if Q is not diagonal (in which 
case M̂ is an approximation of the normal equations’ matrix).

Let us now discuss how to choose which columns of A (or rows of M̂ , respec-
tively) to drop (sparsify, respectively).

• Firstly, it often happens in optimization, and especially when solving systems 
arising from the application of an interior point method (as already mentioned 
in the introduction), to have certain diagonal elements of G that are very small. 
In view of this property, and given the bound presented in Theorem 1, we can 
observe that dropping all columns corresponding to small diagonal elements in 
G results in manageable and not too sizeable outliers. Such a preconditioner was 
proposed in [7] for the case where Q̂ = Diag(Q) , and arises as a special case of 
PNE in (4), by choosing kr = 0 and a suitable permutation matrix Pc , traversing 
first the kc indices corresponding to the smallest diagonal elements of G.

• Secondly, it is common in many application areas to have a small number of col-
umns or rows of A that are dense. Such columns (or rows) could pose significant 
difficulties as they produce dense factors when one tries to factorize the normal 
equations (e.g. using a Cholesky decomposition). This is especially the case for 
dense columns. A single dense column of A with p non-zero entries induces a 
dense window of size p × p in the normal equations (we refer the reader to the 
discussion in [2, Sect. 4]). The use of a preconditioner like the one defined in 
(4) serves the purpose of dropping (sparsifying, respectively) such columns of 
A (rows of M̂ , respectively), thus making the Cholesky factors of PNE signifi-

�+ =
1

2

�
−� +

√
�2 − 4�

�
.

�+ ≤ |�| ≤ −�l.
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cantly more sparse. For example, we may find two permutation matrices Pr , Pc 
which sort the rows and columns, respectively, of A in descending order of their 
number of non-zeros, and write Â = PrAPc . Then, the resulting normal equa-
tions read as P⊤

r
BB⊤Pr + 𝛿Im . As long as the number of dropped columns or 

rows is low (which is observed in several applications), the number of outliers 
produced by this dropping strategy is manageable. While some of these outliers 
will be dangerously close to zero (given that the regularization parameter 𝛿 > 0 
is small), they can be dealt with efficiently. We should note, however, that if Q̂ is 
non-diagonal, without a sparse representation of its inverse, this strategy would 
be unattractive to employ, and thus in this work we consider it only when Q̂ is 
diagonal. Indeed, as we discuss in Sect. 2.2, in this case we never explicitly form 
the normal equations. Instead, we appropriately utilize an LDL⊤ decomposition, 
and the fill-in produced by few dense rows or columns of A can be prevented.

Remark 2 As we discuss later, a case of interest would be to only drop certain kc col-
umns of A, which results in introducing at most kc eigenvalue outliers in the precon-
ditioned matrix. Similarly, only sparsifying certain kr rows of M̂ , introduces at most 
2kr non-unit eigenvalues. Notice that dropping columns is expected to be more useful 
in general, resulting in fewer outliers and possibly in greater gains (either in terms of 
processing time or memory requirements). Indeed, notice that, on the one hand, drop-
ping dense columns of A can result in a significant reduction of the fill-in within a 
factorization of the normal equations, while, on the other hand, dropping any column 
of A corresponding to a small diagonal element of G yields a not too sizeable outlier. 
However, in certain special applications one has to resort to sparsifying “problem-
atic” rows. Indeed, we refer the reader to [13, Sect. 4], where such a row-sparsifying 
strategy was key to the efficient solution of fMRI classification problems.

2.2  An LDL⊤‑based preconditioner

Next, we present an alternative to the preconditioner in (4). This approach offers 
a possibility for dealing with a small set of dense columns or rows of the matrix 
A, while remaining efficient when the approximate Hessian Q̂ , given in (2), is non-
diagonal. More specifically, let us divide the columns of the matrix A into two mutu-
ally exclusive sets B and N  , based solely on the magnitude of the respective diago-
nal elements of the matrix G, and not on the density of the columns of A. Then, 
using the column-dropping strategy presented in the previous section (assuming that 
the variables corresponding to N  are such that Q(j,j) ≥ Q(i,i) , for all j ∈ N  and all 
i ∈ B ), we propose approximating the matrix M̂ by the following preconditioner:

which was proposed in [7], for the special case where Ĝ was diagonal. Notice that 
the block-separable structure of Q̂ , given in (2), implies that 
(Ĝ(B,B))−1 = Q̂(B,B) + �I|B| . Given our previous discussion, we would like to avoid 
applying the inverse of this preconditioner by means of a Cholesky decomposition, 

(8)PNE,(|N|,0) = A(∶,B)�G(B,B)
(
A(∶,B)

)⊤
+ 𝛿Im,
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as a single dense column of A in B could result in dense Cholesky factors, while the 
potential non-diagonal nature of Q̂(B,B) might prevent us from even efficiently form-
ing it. Instead, we form an appropriate saddle point system to compute the action of 
the approximated normal equations. More specifically, given an arbitrary vector 
y ∈ ℝ

m , instead of computing P−1
NE,(|N|,0)y using a Cholesky decomposition, we can 

compute

by means of an LDL⊤ decomposition of the previous saddle point matrix. Then, we 
notice that returning w2 is equivalent to computing P−1

NE,(|N|,0)y.
Following the discussion in [2, Sect. 4], we know that using an LDL⊤ structure to 

factorize the matrix in (9) can result in significant memory savings compared to the 
Cholesky decomposition of PNE,(|N|,0) . Notice that in view of the regularized nature of 
the systems under consideration (indeed, we have assumed that G is positive definite), 
we can use the result in [46], stating that matrices like the one in (9) are quasi-def-
inite; any symmetric permutation of such matrices admits an LDL⊤ decomposition.

While this approach might seem expensive, it can provide significant time and mem-
ory savings, especially in cases where A(∶,B) contains dense columns. In the previous sec-
tion we discussed a strategy for alleviating this issue, noting however that such a strategy 
can only be used to deal with a small number of dense columns. On the contrary, if we 
have a sizeable subset of the columns of A(∶,B) that are dense, we could delay their pivot 
order within the LDL⊤ , thus significantly reducing the overall fill-in of the decomposi-
tion factors, without introducing any eigenvalue outliers in the preconditioned system. 
Of course, finding the optimal permutation for the LDL⊤ decomposition is an NP-hard 
problem, however, several permutation heuristics have been developed which are tai-
lored to such symmetric decompositions. Moreover, in the LDL⊤ factorization, the pivots 
are computed dynamically to ensure both stability and sparsity. In view of the previous, 
the preconditioner based on solving (9) is expected to be more stable than its counterpart 
based on the Cholesky decomposition. Finally, difficulties arising from dense rows or in 
general “problematic" rows can also be alleviated using a heuristic proposed in [28].

On the other hand, by using this approach we avoid explicitly forming the precondi-
tioner PNE,(|N|,0) . This is especially important in cases where Q̂ is non-diagonal, and thus 
forming PNE can be extremely expensive. Hence, the approach presented in this subsec-
tion allows us to utilize non-diagonal information in a practical way when constructing 
an approximation for the matrix Q.

3  Regularized saddle point matrices

Let us now consider the regularized saddle point system in (1). In what follows, we 
discuss two families of preconditioning strategies, noting their advantages and dis-
advantages. All presented preconditioners are positive definite in order to be usable 
within the MINRES method, which is a short-recurrence iterative solver, suitable for 

(9)

[
−
(
Q(B,B) + 𝜌I|B|

) (
A(∶,B)

)⊤
A(∶,B) 𝛿Im

]

�����������������������������������������
�PNE

[
w1

w2

]
=

[
0|B|
y

]
,
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solving symmetric indefinite or quasi-definite systems. This allows us to avoid non-
symmetric long-recurrence solvers like the GMRES method.

3.1  Block‑diagonal preconditioners

The most common approach is to employ a block-diagonal preconditioner (see [6, 7, 
32, 45]). To construct such a preconditioner we need approximations for the (1, 1) 
block F ∶= Q + �In of the coefficient matrix in (1), and for its associated Schur 
complement M = A

(
Q + 𝜌In

)−1
A⊤ + 𝛿Im.

In this section we assume that Q is approximated as shown in (2), and thus can 
potentially contain non-diagonal blocks. Concerning the approximation of the Schur 
complement matrix M, we can employ the preconditioner PNE,(kc,kr) given in (4). 
Then, we can define the following preconditioner for the coefficient matrix K in (1):

For the rest of this subsection, let PAS,(kc,kr)
≡ PAS and PNE,(kc,kr) ≡ PNE.

In order to analyze the spectrum of the preconditioned matrix P−1
AS
K , we intro-

duce some notation for simplicity of exposition. We work with positive definite sim-
ilarity transformations of the associated matrices, defined as

where �M ∶= A�F−1A⊤ + 𝛿Im . Then, we set

From the definition of Q̂ given in (2), we can observe that �F ≤ 1 ≤ �F as

On the other hand, notice that �NE and �NE can be bounded directly using Theo-
rem  1. Indeed, from (11), we observe that we need to bound the spectrum of an 
approximate preconditioned Schur complement matrix, since M has been substituted 
by M̂ . This is exactly what the analysis in Sect. 2.1 does. Below we provide a theo-
rem analyzing the spectral properties of the matrix P−1

AS
K.

Theorem 2 The eigenvalues of P−1
AS
K lie in the union of the following intervals:

(10)PAS,(kc,kr)
∶=

[
Q̂ + �In 0n,m
0m,n PNE,(kc,kr)

]
≡

[
F̂ 0n,m
0m,n PNE,(kc,kr)

]
.

(11)F̃ = F̂−1∕2FF̂−1∕2, M̃NE = P
−1∕2

NE
M̂P

−1∕2

NE
,

�NE = �min

(
M̃NE

)
, �NE = �max

(
M̃NE

)
, �NE =

�NE
�NE

,

�F = �min

(
F̃
)
, �F = �max

(
F̃
)
, �F =

�F
�F

.

1

n

n∑
i=1

�i

(
F̂−1F

)
=

1

n
Tr
(
F̂−1F

)
= 1.
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Proof The proof, which follows by trivially extending [7, Theorem 3], is summa-
rized in the Appendix for completeness.   ◻

The authors of [7] make use of the approximation Q̂ = Diag(Q) , and 
PNE = PNE,(|N|,0) (where the latter is defined in (8), with Ĝ = (Q̂ + �In)

−1 ). Approxi-
mating Q by its diagonal allows one to form the normal equations’ preconditioner 
(i.e. PNE,(|N|,0) ), thus enabling the efficient use of a Cholesky factorization. How-
ever, there might exist problems for which a better approximation of the matrix Q is 
required. In this case, one could consider a sparsified version of Q like the one given 
in (2). While this could lead to reasonable approximations, the problem of fill-in 
introduced by (Q̂ + �In)

−1 in the Schur complement approximation, PNE,(|N|,0) , would 
(in general) remain.

In order to address the previous issue, we make use of the LDL⊤-based precon-
ditioner defined in Sect.  2.2. As in Sect.  2.2, we divide the columns of A using the 
sets B and N  , where N  contains all indices corresponding to the largest diagonal 
elements of Q. Assume that Q is approximated by Q̂ as given in (2), where the per-
mutation matrix Pc traverses first the column indices in N  . Then, for example, a 
reasonable approximation would be the following

The effect of this approximation in the context of regularized IPMs has been ana-
lyzed in detail in [39]. We notice that (Q(B,B) + �I|B|)−1 does not introduce significant 
fill-in in the (2, 2) block of the preconditioner in (10), as we implicitly invert this 
block using the methodology presented in Sect.  2.2.

Remark 3 Notice that further approximations can be employed here. In particular, 
we could define a banded approximation of Q and then employ the approxima-
tion proposed earlier. The implicit inversion of the Schur complement, outlined in 
Sect. 2.2, gives us complete freedom on how to approximate Q, and hence we no 
longer rely on diagonal approximations. We return to this point in the numerical 
experiments.

3.2  Factorization‑based preconditioners

Finally, given the regularized nature of the systems under consideration, we can 
construct factorization-based preconditioners for MINRES. In particular, we 
can compute K = LDL⊤ (with K in (1)), where D is a diagonal matrix (since K is 

I− =
�
−�F −

√
�NE,−�F

�
; I+ =

�
1

2

�
−�F +

�
�2
F
+ 4�NE

�
, 1 +

√
�NE − 1

�
.

(12)P
⊤
c
�QPc =

[
Diag

(
Q(N,N)

)
0|N|,|B|

0|B|,|N| Q(B,B)

]
.
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quasi-definite [46]) with n negative and m positive elements on its diagonal. Then, 
by defining PK ∶= L|D| 1

2 , the preconditioned saddle point matrix reads:

and hence contains only two distinct eigenvalues: −1 and 1 [20, 34]. As before, 
let us assume that we have available a splitting of the columns of A such that 
APc = [AB AN] , where B contains indices corresponding to the smallest diagonal 
elements of Q. Then, we can precondition K, left and right, by P̂K ∶= L̂|D̂| 1

2 , where 
�K = �L�D�L⊤ and:

with �A ∶= [AB 0m,|N|]P
⊤
c
 , and Q̂ defined as in (12). Notice that by setting several 

columns of A to zero, as well as by sparsifying the respective rows and columns of 
Q, the cost of applying the inverse of K̂ is significantly reduced when compared to 
that required to apply the inverse of K.

Further limited-memory versions of this preconditioner can be employed, e.g. by 
using the methodologies presented in [34, 44]. Other approximations of the blocks 
of K̂ , based on the structure of the problem at hand, could also be possible, as 
already mentioned in the previous subsection.

We should note, however, that this approach is less stable than the approach pre-
sented in Sect.  3.1. This is because we are required to use only diagonal pivots dur-
ing the LDL⊤ decomposition for this methodology to work (indeed, notice that the 
presence of a non-diagonal matrix D in the factorization of K would not allow the 
use of such a preconditioning strategy). If the regularization parameters � or � have 
very small values, the stability of the factorization could be compromised (since we 
enforce the use of only diagonal 1 × 1 pivots), and we would have to heavily rely on 
stability introduced by means of uniform [43] or weighted regularization [1]. On 
the other hand, the methodology presented in Sect. 3.1 would not be affected by the 
occasional use of 2 × 2 pivots within the LDL⊤ factorization for the implicit inver-
sion of the approximate Schur complement. Of course the latter is not the case if 
the “Analyze" phase of the factorization (used to determine the pivot order) is per-
formed separately, however, the subset of columns in B may change significantly 
from one iteration to the next, making this strategy less attractive. Nevertheless, this 
factorization-based approach can be more efficient than the approach presented in 
Sect. 3.1, when solving certain non-separable convex programming problems. This 
is because the approach in Sect. 3.1 requires the computation of an LDL⊤ decompo-
sition of the coefficient matrix P̃NE in (9) (with potential 2 × 2 pivots) as well as a 
Cholesky decomposition of Q̂ + �In (or some iterative scheme which could be appli-
cation-dependent, as in [38]).

P−1
K
KP−⊤

K
= |D|−1D,

�K ∶=

[
−�Q �A⊤

�A 𝛿Im,

]
,
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4  Regularized IPMs: numerical results

Let us now focus on the case of the regularized saddle point systems (and their 
respective normal equations) arising from the application of regularized IPMs on 
convex programming problems. The MATLAB code, which is based on the IP-
PMM presented in [40, 41], can be found on GitHub.1

In all the presented experiments a 6-digit accurate solution is requested. The reader 
is referred to [7, Sect. 4] and [40, Sect. 5] for the implementation details of the algo-
rithm (such as termination criteria, the employed predictor–corrector scheme for the 
solution of the Newton system, as well as the tuning of the algorithmic regularization 
parameters). The associated iterative methods (i.e. the Preconditioned Conjugate Gra-
dient method (PCG) or MINRES) are adaptively terminated if the following accuracy 
is reached: min{10−3,max{10−1⋅�k ,���}}

max{1,‖���‖}  , where ��� = 10−6 , �k is the barrier parameter at 
iteration k, and ��� is the right hand side of the system being solved. This adaptive 
stopping criterion is based on the developments in [11]. When PCG is employed we 
allow at most 100 iterations per linear system solved, while for MINRES up to 200 
iterations are allowed. If the maximum number of Krylov iterations is reached, an inex-
act Newton direction is accepted if it is at least 3-digit accurate. Any Cholesky decom-
position is computed via the chol function of MATLAB. When an LDL⊤ decomposi-
tion is employed, we utilize the ldl function of MATLAB. In this case, the minimum 
pivot threshold is adaptively set to pivotthr = 0.1 ⋅min{�, �, 10−4} . This is done to 
ensure that no 2 × 2 pivots are used during the factorization, ensuring that the factoriza-
tion remains efficient. However, in the context of the preconditioner in Sect. 2.2, where 
2 × 2 pivots can safely be used (unlike the preconditioner presented in Sect.  3.2, which 
requires the use of 1 × 1 pivots), this mechanism is turned off when min{�, �} ≤ 10−8 , 
and we set pivotthr = 10−6 to ensure stability. All the presented experiments were run 
on a PC with a 2.2GHz Intel Core i7-8750 H processor (hexa-core), 16GB RAM, run 
under the Windows 10 operating system. The MATLAB version used was 2019a.

4.1  Linear programming

Let us initially focus on Linear Programming (LP) problems of the following form:

where A ∈ ℝ
m×n , I ∩ F = � , and I ∪ F = {1,… , n} . Applying regularized IPMs to 

problems like (LP), one often solves a regularized normal equations system at every 
iteration. Such systems have a coefficient matrix of the following form:

(LP)min
x∈ℝn

c⊤x, s.t. Ax = b, xI ≥ 0, xF free,

M = AGA⊤ + 𝛿Im, G(i,i) =

{
1

𝜌
if i ∈ F,

1

𝜌+zi∕xi
if i ∈ I,

1 https:// github. com/ spoug kakio tis/ IP- PMM_ QP_ Solver.

https://github.com/spougkakiotis/IP-PMM_QP_Solver
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where 𝛿, 𝜌 > 0 and z ∈ ℝ
n (where zI ≥ 0 , zF = 0 ) are the dual slack variables. 

Notice that the IPM penalty parameter � is often tuned as 𝜇 =
(xI)⊤zI

n
 and we expect 

that � → 0 . As already mentioned in the introduction, the variables are naturally 
split into “basic"–B , “non-basic"–N  , and “undecided"–U . Hence, as IPMs progress 
towards optimality, we expect the following partition of the quotient x

I

zI
:

where N  , B , and U are mutually disjoint, and N ∪ B ∪ U = I  . For the rest of this 
section, we assume that � = �(�) = �(�) . This assumption is based on the devel-
opments in [40, 41], where a polynomially convergent regularized IPM is derived 
for convex quadratic and linear positive semi-definite programming problems, 
respectively. Following [7], we could precondition the matrix M using the following 
matrix:

where R ∶= F ∪ B ∪ U . Then, by [7, Theorem 1] (or by applying Theorem 1), we 
obtain:

The preconditioner in (13) is a special case of the preconditioner defined in Sect. 2. 
Indeed, as already indicated by its notation, it can be derived by setting kr = 0 and 
then by dropping all columns belonging to N  , i.e. we set kc = |N| and we drop the 
kc columns of A corresponding to the smallest diagonal elements of G. Notice that in 
the linear programming case, the matrix M̂ that is analyzed in Sect. 2 coincides with 
M, since G is diagonal.

From our previous remarks, we notice that

implies that the spectrum of the preconditioned matrix remains bounded and is 
asymptotically independent of � (assuming that � = �(�) ). While this precondi-
tioner performs very well in practice (see [7, Sect. 4]), it can be expensive to com-
pute in certain cases, as its inverse needs to be applied by means of a Cholesky 
decomposition. To that end, we propose to further approximate this matrix as indi-
cated in Sect.  2. This idea is based on the fact that the PCG method is expected to 
converge in a small number of iterations, if the preconditioned system matrix can be 
written as:

∀j ∈ N ∶ xj → 0, zj → �zj > 0 ⇒
xj

zj
=

xjzj

(zj)2
= �(𝜇),

∀j ∈ B ∶ xj → �xj > 0, zj → 0 ⇒
xj

zj
=

(xj)2

xjzj
= �(𝜇−1),

∀j ∈ U ∶ xj = �(1), zj = �(1) ⇒
xj

zj
= �(1),

(13)PNE,(|N|,0) = A(∶,R)G(R,R)
(
A(∶,R)

)⊤
+ 𝛿Im,

�max

(
P−1
NE,(|N|,0)M

)
≤ 1 +

max
j∈N

(
G(j,j)

)

�
�2
max

(A), �min

(
P−1
NE,(|N|,0)M

)
≥ 1.

max
j∈N

(
G(j,j)

)
= �(�) = �(�)
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where P is the preconditioner, M is the normal equations matrix, U is a low-rank 
matrix, and V is a matrix with small norm. In our case, dropping the part of the 
normal equations corresponding to N  contributes the small-norm term (that is, 
V = A(∶,N)G(N,N)(A(∶,N))⊤ , the norm of which is of the order of magnitude of � ), and 
furthermore dropping a few dense columns (or sparsifying certain rows) contributes 
the low-rank term (indeed, as already shown in Theorem 1, dropping kc dense col-
umns of A and sparsifying kr dense rows of M yields at most 2kr + kc outliers, and 
thus rank(U) ≤ 2kr + kc , where, in this case, kc does not account for columns corre-
sponding to the index set N ).

To construct such a preconditioner, we first need to note that R will change at 
every IPM iteration. However, we can heuristically choose which columns to drop 
(and/or rows to sparsify) based on the sparsity pattern of A. To that end, at the 
beginning of the optimization procedure, we count the number of non-zeros of each 
column and row of A, respectively. These can then be used to sort the columns and 
rows of A in descending order of their number of non-zero entries. These sorted col-
umns and rows can easily be represented by means of two permutation matrices Pc 
and Pr . We note that this is a heuristic, and it is not guaranteed to identify the most 
“problematic” columns or rows (which can be sources of difficulty for IPMs). For a 
discussion on such heuristics, and alternatives, the reader is referred to [2, Sect. 4], 
and the references therein.

4.1.1  Numerical results

Initially, we present some results to show the effect of dropping dense columns of A 
and then of sparsifying dense rows of M using the strategy outlined in Sect. 2. Then, 
we present a comparison between the preconditioner in (4) (that is, PNE,(kc,kr)

 ), the 
preconditioner given in (8) or (13) (denoted as PNE,(|N|,0) ), noting that (8) and (13) 
are equivalent, and the one in (9) (that is, P̃NE ). Notice that in the linear program-
ming case employing P̃NE and PNE,(|N|,0) should yield identical results in exact arith-
metic. The difference between these preconditioning strategies is that in the latter 
case (i.e. P̃NE ) the action of the former preconditioner (i.e. PNE,(|N|,0) ) is computed 
implicitly by means of an LDL⊤ factorization of P̃NE , as indicated in Sect. 2.2.

Dropping dense columns versus factorizing directly. We run IP-PMM on all prob-
lems from the Netlib collection that have some dense columns, where dense is 
defined in this case to be a column with at least 15% non-zero elements. We note 
that these were the only problems within the Netlib collection having any columns 
with such a density of non-zero elements. We compare an IP-PMM using Cholesky 
factorization for the solution of the associated Newton system (Chol.), with an IP-
PMM that uses the preconditioner PNE,(kc,0) presented in Sect. 2 alongside PCG. The 
latter method is only allowed to drop dense columns (at most 30) to create the pre-
conditioner (and thus kc ≤ 30 ). The results are collected in Table 1, where kc denotes 
the number of dense columns that are dropped to create the preconditioner, 
nnz denotes the number of non-zero elements present in the Cholesky factor, Avg. 

P−1M = Im + U + V ,
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Krylov It. denotes the average number of Krylov iterations performed from the inex-
act approach, while Krylov Last denotes the number of Krylov iterates performed in 
the last IPM iteration of the inexact approach. In what follows, when comparing dif-
ferent strategies, we report the best performing metrics achieved in bold.

From Table  1 we can immediately see that certain dense columns present in 
the constraint matrix A can have a significant impact on the sparsity pattern of the 
Cholesky factors. This is a well-known fact (see for example the discussion in [2, 
Sect.  4]). Notice that the Netlib collection contains only small- to medium-scale 
instances. For such problems, memory is not an issue, and hence direct methods 
tend to be faster than their iterative alternatives (like PCG). Despite the small size 
of the presented problems, we can see tremendous memory savings (and even a 
decrease in CPU time) for problems FIT1P, FIT2P, and SEBA, by eliminating only a 
small number of dense columns. On the other hand, for problems where we observe 
an increase in CPU time (e.g. see ISRAEL), the memory savings can be significant, 
making this acceptable.

Sparsifying dense rows versus factorizing directly. Next, we consider the case 
where the inexact version of IP-PMM is only allowed to sparsify dense rows, where 
dense is defined in this case to be a row with at least 25% non-zero elements.

Before moving to the numerical results, let us note some differences between 
sparsifying rows of M and dropping columns of A. Firstly, as we have shown in 
Sect. 2, sparsifying k rows can potentially introduce twice as many outliers, while 
dropping k columns introduces at most k eigenvalue outliers. Furthermore, the 
potential density induced in the Cholesky factors by a single dense column is usu-
ally more significant than that introduced by a single dense row. However, we cannot 
know in advance how effective the dropping of a column will be. On the other hand, 
sparsifying dense rows of M introduces a certain separability in the approximate 
normal equations matrix, allowing us to estimate very well the memory savings.

In Table 2 we compare the direct IP-PMM, to its inexact version, the precondi-
tioner of which is only allowed to sparsify at most 30 dense rows of M. Any problem 
with at least one dense row from the Netlib collection is considered.

From Table 2 we can observe that the required memory to form the Cholesky fac-
tors is consistently decreased but CPU time is often increased by the row-dropping 

Table 1  The effect of dropping dense ( > 15% ) columns of A (Netlib collection)

Bold numbers denote the best performance for a given metric

Name k
c

nnz Time (s) Avg. Krylov It. Krylov Last

Chol. P
NE,(kc ,0) Chol. P

NE,(kc ,0)

BLEND 5 1006 736 0.05 0.05 14.50 14
FIT1P 20 197,676 26, 706 1.16 0.32 18.67 35
FIT2P 16 4,516,500 1, 962, 616 27.17 16.21 17.33 33
FORPLAN 8 3810 2, 918 0.11 0.11 2.81 3
ISRAEL 30 12,261 1, 744 0.14 0.30 53.50 100
SEBA 14 55,937 2, 238 0.35 0.18 13.83 15
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strategy. We should note that an increase in CPU time usually relates to the size of 
the problems under consideration, and CPU time as well as memory advantages can 
be observed if the problem is sufficiently large with sufficiently many dense rows. 
In particular, this row sparsifying strategy was successfully used within IP-PMM 
in [13, Sect. 4] in order to tackle fMRI sparse approximation problems (in which 
the constraint matrix contains thousands of dense rows). Memory requirements were 
significantly lowered, allowing this inexact version to outperform its exact counter-
part, while being competitive with standard state-of-the-art first-order methods used 
to solve such problems.

The Cholesky versus the LDL⊤ approach. Let us now provide some numerical 
evidence for the potential benefits and drawbacks of the approach presented in Sect.  
2.2 over that presented in Sect. 2.1. To that end, we run three inexact versions of IP-
PMM, on some of the most challenging instances within the Netlib collection. The 
first approach uses the preconditioner given in (4) (denoted as PNE,(kc,kr)

 , allowing at 
most 15 dense columns/rows to be dropped/sparsified), the second uses the precon-
ditioner given in (8) (denoted as PNE,(|N|,0) ; notice that this is the same as the former 
preconditioner, without employing the strategy of dropping/sparsifying dense col-
umns/rows), while the third version uses the preconditioner in (9), denoted as P̃NE . 
In all three cases the set B , used to decide which columns are dropped irrespectively 
of their density, is determined as indicated at the beginning of this section.

From Table  3 we can observe that the LDL⊤-based preconditioner can provide 
substantial (memory and/or CPU time) benefits for certain problems (e.g. see 
problems FIT1P, FIT2P, QAP12, QAP15). Nevertheless, we should note that this 
approach is usually slower, albeit more stable (as a pivot re-ordering is computed 
at every iteration, and the pivots of the LDL⊤ factorization are chosen to ensure sta-
bility as well as efficiency). We observe that instances AGG, DFL001, PILOT did 
not benefit from the use of this strategy, neither in terms of efficiency nor mem-
ory requirements, despite a comparable number of Krylov iterations. This comes in 
line with our observations in Sect. 2.2, since none of the aforementioned instances 
contains any dense rows or columns. Notice that the stability and efficiency of the 

Table 2  The effect of dropping dense ( > 25% ) rows of M (Netlib collection)

Bold numbers denote the best performance for a given metric

Name k
r

nnz Time (s) Avg. Krylov It. Krylov Last

Chol. P
NE,(0,kr) Chol. P

NE,(0,kr)

BEACONFD 17 2903 1, 475 0.07 0.09 13.59 23
BLEND 1 1006 959 0.05 0.04 2.88 3
D6CUBE 6 55,179 52, 757 0.27 0.44 12.73 18
FIT1D 11 14,726 4, 973 0.22 0.38 23.50 46
FIT2D 12 139,843 49, 513 1.51 2.47 21.30 44
ISRAEL 3 12,261 11, 758 0.14 0.14 6.96 8
STANDATA 1 3416 3, 168 0.07 0.07 2.94 3
STANDGUB 1 3418 3, 170 0.08 0.08 2.98 3
STANDMPS 1 5529 5, 185 0.09 0.09 2.91 3
WOOD1P 27 19,088 13, 879 0.34 0.44 14.95 13
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preconditioner P̃NE depends heavily on the choice for the threshold for the ��� func-
tion of MATLAB. Larger values imply better stability, however at the cost of effi-
ciency, since more 2 × 2 pivots will be chosen during the LDL⊤ factorization. The 
stability of this approach can be guaranteed by using a large-enough pivot thresh-
old. Additionally, there are instances without dense rows or columns (see QAP12, 
QAP15), in which the LDL⊤-based preconditioner (i.e. P̃NE ) provides significant 
advantages in terms of memory requirements. Finally, we note that for problems 
AGG, PILOT, QAP12, and QAP15, the two Cholesky-based variants are exactly the 
same, as no dense columns or rows were present.

There is a long-standing discussion on the comparison between the Cholesky and 
the LDL⊤ decompositions. The former tend to be faster and usually easier to imple-
ment, while the latter tend to be slower, more stable, and more general. For more on 
this subject, the reader is referred to [2, Sect. 4] and the references therein.

4.2  Convex quadratic programming

Next, we consider problems of the following form:

where H ∈ ℝ
n×n is the positive semi-definite Hessian matrix. Let us notice that a 

similar partitioning of the variables as that presented in Sect. 4.1 also holds in this 
case. Hence, the index set N  guides us on which columns of A to drop. In the case 
where H is either diagonal, or can be well-approximated by a diagonal, the discus-
sion of Sect. 4.1, about dropping dense columns of A (or sparsifying dense rows of 
the approximate Schur complement M̂ given in (3)), also applies here.

In what follows we make use of three different preconditioners. We compare the 
two block-diagonal preconditioners given in Sect. 3.1. The first is called PC

AS,(kc,kr)
 

(where the superscript C stands for Cholesky, which is used to invert the (2, 2) block 

(QP)min
x∈ℝn

c⊤x +
1

2
x⊤Hx, s.t. Ax = b, xI ≥ 0, xF free,

Table 3  Cholesky-based versus the LDL⊤-based preconditioner (Netlib collection)

Bold numbers denote the best performance for a given metric

Name max nnz Time (s) Krylov Its.

P
NE,(k

c
,k
r
) P

NE,(|N|,0) P̃
NE

P
NE,(k

c
,k
r
) P

NE,(|N|,0) P̃
NE

P
NE,(k

c
,k
r
) P

NE,(|N|,0) P̃
NE

AGG 1.60 ⋅ 104 1.60 ⋅ 104 1.40 ⋅ 104 0.42 0.42 0.58 2966 2966 2, 268

DFL001 1.55 ⋅ 106 1.55 ⋅ 106 1.54 ⋅ 106 8.40 8.40 31.51 4, 778 4, 778 4969
FIT1P 1.20 ⋅ 105 2.00 ⋅ 105 1.36 ⋅ 104 0.58 1.56 0.51 1166 636 491

FIT2P 4.19 ⋅ 106 4.60 ⋅ 106 9.4 ⋅ 104 29.45 43.10 15.95 2555 1880 1, 867

PILOT 1.99 ⋅ 105 1.99 ⋅ 105 4.02 ⋅ 105 3.79 3.79 9.16 3558 3558 3, 530

QAP12 2.48 ⋅ 106 2.48 ⋅ 106 1.61 ⋅ 106 2.09 2.09 5.24 1, 583 1, 583 1591
QAP15 8.83 ⋅ 106 8.83 ⋅ 106 5.28 ⋅ 106 20.56 20.56 25.42 1, 704 1, 704 1708
SEBA 2.18 ⋅ 103 5.54 ⋅ 104 7.5 ⋅ 103 0.33 0.80 0.84 2678 2396 2, 313
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of this preconditioner), and employs a diagonal approximation for Q, allowing one 
to drop dense columns and/or sparsify dense rows as shown in Sect. 2.1, and the sec-
ond is called PL

AS,(|N|,0) (where the superscript L stands for LDL⊤ ), and employs a 
block-diagonal approximation of Q, using the implicit inversion of the Schur com-
plement proposed in Sect.  2.2. The block-diagonal preconditioners are also com-
pared against the factorization-based preconditioner presented in Sect. 3.2, termed 
as P̂K.

4.2.1  Numerical results

In the following experiments we employ MINRES to solve the associated Newton 
systems. Initially, we present the comparison of the three preconditioning strategies 
over some problems from the Maros–Mészáros collection of convex quadratic pro-
gramming problems. Then, the two block-diagonal preconditioning approaches are 
compared over some Partial Differential Equation (PDE) optimization problems.

Maros–Mészáros collection. In Table 4, we report on the runs of the three meth-
ods on a diverse set of non-separable instances within the Maros–Mészáros test set.

From Table 4, one can observe that most of the time PC

AS,(kc,kr)
 is rather inexpen-

sive, and naturally requires some additional Krylov iterations. On the other hand, 
PL
AS,(|N|,0) delivers faster convergence of the Krylov solver, at the cost of additional 

memory (since we utilize non-diagonal Hessian information). However, while the 
same is true for most problems when employing P̂K , the latter can be prone to 
numerical inaccuracy (since we do not allow the use of 2 × 2 pivots in the LDL⊤ 

Table 4  Comparison of QP preconditioners (Maros–Mészáros collection)

Bold numbers denote the best performance for a given metric

Name max nnz Time (s) Krylov Its.

P
C

AS,(kc ,kr)
P
L

AS,(|N|,0) P̂
K

P
C

AS,(kc ,kr)
P
L

AS,(|N|,0) P̂
K

P
C

AS,(kc ,kr)
P
L

AS,(|N|,0) P̂
K

CVXQP2_L 5.06 ⋅ 104 2.35 ⋅ 106 1.47 ⋅ 106 9.01 29.74 33.52 3241 2, 057 3078

CVXQP2_M 5.04 ⋅ 103 1.15 ⋅ 105 6.15 ⋅ 104 1.02 1.54 1.44 3019 2, 588 3128

DUAL3 1.12 ⋅ 102 6.77 ⋅ 103 6.77 ⋅ 103 0.15 0.11 0.14 911 543 992

GOULDQP3 4.89 ⋅ 103 1.05 ⋅ 104 1.05 ⋅ 104 0.31 0.37 0.27 1236 1039 814

MOSARQP2 1.71 ⋅ 104 2.18 ⋅ 104 2.25 ⋅ 104 0.12 0.16 0.18 752 730 803

POWELL20 2.10 ⋅ 104 6.20 ⋅ 104 6.20 ⋅ 104 1.64 2.41 5.24 1, 531 1537 1538

Q25FV47 2.13 ⋅ 104 6.68 ⋅ 104 1.14 ⋅ 105 2.12 3.75 4.61 6213 5, 994 8117

QETA-
MACRO

1.13 ⋅ 104 2.62 ⋅ 104 2.46 ⋅ 104 0.71 1.40 1.60 4901 4, 661 6378

QISRAEL 2.17 ⋅ 102 4.60 ⋅ 103 4.84 ⋅ 103 0.49 0.61 0.80 4516 3, 367 5920

QSHIP12L 1.09 ⋅ 104 2.06 ⋅ 105 2.10 ⋅ 105 3.01 4.92 5.69 5664 5, 070 5803

STCQP1 7.00 ⋅ 105 1.25 ⋅ 105 1.26 ⋅ 105 7.48 5.49 5.21 3410 2, 543 2691

STCQP2 5.44 ⋅ 104 2.13 ⋅ 105 2.13 ⋅ 105 4.30 6.40 3.96 3074 2704 1, 918

UBH1 8.40 ⋅ 104 2.13 ⋅ 105 2.13 ⋅ 105 1.97 3.78 4.17 681 679 700
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factorization). Whether the use of non-diagonal Hessian information is beneficial 
should depend on the problem under consideration. In the above experiments, this 
proved to be beneficial for only 4 out of the 13 instances tested (that is DUAL3, 
GOULDQP3, STCQP1, STCQP2). Nevertheless, we can observe that all three 
approaches are competitive, while PC

AS,(kc,kr)
 and PL

AS,(|N|,0) are both very stable.
PDE-constrained optimization instances. Next, we compare the precondition-

ing approaches on some PDE optimization problems. In particular, we consider the 
L1∕L2-regularized Poisson control problem, as well as the L1∕L2-regularized con-
vection–diffusion control problem with control bounds. We should emphasize at 
this point that while bespoke preconditioners have been created for PDE problems 
of this form, here we treat the discretized problems as if we hardly know anything 
about their structure, to demonstrate the generality of the approaches presented in 
this paper.

We consider problems of the following form:

where (y, u) ∈ H1(�) × L2(�) , D denotes some linear differential operator asso-
ciated with the differential equation, x is a 2-dimensional spatial variable, and 
�1, �2 ≥ 0 denote the regularization parameters of the control variable. We note that 
other variants for J(y, u) are possible, including measuring the state misfit and/or 
the control variable in other norms, as well as alternative weightings within the cost 
functionals. In particular, the methods tested here also work well for L2-norm prob-
lems (e.g. see [36]). We consider problems of the form of (14) to create an extra 
level of difficulty for our solvers.

The problem is considered on a given compact spatial domain � , where 𝛺 ⊂ ℝ
2 

has boundary �� , and is equipped with Dirichlet boundary conditions. The alge-
braic inequality constraints are assumed to hold a.e. on � . We further note that ua 
and ub may take the form of constants, or functions in spatial variables, however we 
restrict our attention to the case where these represent constants.

Problems in the form of (14) are often solved numerically, by means of a discrete 
approximation. In the following experiments we employ the Q1 finite element discretiza-
tion implemented in IFISS2 (see [17, 18]). Applying the latter yields a sequence of non-
smooth convex programming problems, which can be transformed to the smooth form of 
(QP), by introducing some auxiliary variables to deal with the �1 terms appearing in the 
objective (see [38, Sect.  2]). In order to restrict the memory requirements of the 
approach, we consider an additional approximation of H in the preconditioner PL

AS,(|N|,0) . 
In the cases under consideration, the resulting Hessian matrix takes the following form:

(14)

min
y,u

J(y(x), u(x)) ∶=
1

2
‖y − ȳ‖2

L2(𝛺)
+

𝛼1
2
‖u‖L1(𝛺) +

𝛼2
2
‖u‖2

L2(𝛺)
,

s.t. Dy(x) = u(x) + g(x),

ua(x) ≤ u(x) ≤ ub(x),

2 https:// perso nalpa ges. manch ester. ac. uk/ staff/ david. silve ster/ ifiss/ defau lt. htm.

https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.htm
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where JM is the mass matrix of size d. When non-diagonal Hessian information is 
utilized within the preconditioner, we approximate each block of H by its diagonal 
(i.e. J̃M = Diag(JM) ; an approximation which is known to be optimal [47]). The 
resulting matrix is then further approximated as discussed in Sect. 3. From now on, 
the LDL⊤ preconditioner, which is based on an approximation of PL

AS,(|N|,0) , is 
referred to as P̂L

AS,(|N|,0) , in order to stress the additional level of approximation 
employed within the Hessian matrix. For these examples, the preconditioning strat-
egy based on P̂K (given in Sect.  3.2) behaved significantly worse, and hence was not 
included in the numerical results. The preconditioner P̂L

AS,(|N|,0) can be useful in that 
it allows us to employ block-diagonal preconditioners within which the Schur com-
plement approximation takes into account non-diagonal information of the Hessian 
matrix H. In certain cases, this can result in a faster convergence of IP-PMM, as 
compared to PC

AS,(kc,kr)
 (see Table 6).

The first problem that we consider is the two-dimensional L1∕L2-regularized Pois-
son optimal control problem, with bound constraints on the control and free state, 
posed on the domain � = (0, 1)2 . Following [38, Sect.  5.1], we consider the con-
stant control bounds ua = −2 , ub = 1.5 , and the desired state ȳ = sin(𝜋x1) sin(𝜋x2) . 
In Table  5, we fix �2 = 10−2 (which we find to be the most numerically interest-
ing case), and we present the runs of the method using the different preconditioning 
approaches, with increasing problem size, and varying L1 regularization parameter 

H =

⎡⎢⎢⎣

JM 0d,d 0d,d
0d,d �2JM − �2JM
0d,d − �2JM �2JM

⎤⎥⎥⎦
,

Table 5  Comparison of QP preconditioners (Poisson Control: problem size and varying regularization)

Bold numbers denote the best performance for a given metric

n �1 max nnz Time (s) Krylov (IPM) Its.

P
C

AS,(kc ,kr)
P̂
L

AS,(|N|,0) P
C

AS,(kc ,kr)
P̂
L

AS,(|N|,0) P
C

AS,(kc ,kr)
P̂
L

AS,(|N|,0)

2.11 ⋅ 104 10−2 3.88 ⋅ 105 4.65 ⋅ 105 5.81 5.91 1353 (13) 868(13)

10−4 3.88 ⋅ 105 4.65 ⋅ 105 6.53 6.58 1586 (14) 1, 015(14)

10−6 3.88 ⋅ 105 4.65 ⋅ 105 6.75 6.61 1586 (14) 1, 013(14)

8.32 ⋅ 104 10−2 2.12 ⋅ 106 2.21 ⋅ 106 22.67 39.60 1327 (14) 887(14)

10−4 2.12 ⋅ 106 2.21 ⋅ 106 27.58 44.14 1759 (15) 1, 054(15)

10−6 2.12 ⋅ 106 2.21 ⋅ 106 24.83 40.23 1575 (14) 934(14)

3.30 ⋅ 105 10−2 1.06 ⋅ 107 1.09 ⋅ 107 27.52 75.89 246 (8) 203(8)

10−4 1.06 ⋅ 107 1.09 ⋅ 107 27.20 76.73 246 (8) 204(8)

10−6 1.06 ⋅ 107 1.09 ⋅ 107 27.38 77.15 246 (8) 204(8)

1.32 ⋅ 106 10−2 5.51 ⋅ 107 5.38 ⋅ 107 99.14 308.79 193 (7) 158(7)

10−4 5.51 ⋅ 107 5.38 ⋅ 107 101.78 318.35 193 (7) 158(7)

10−6 5.51 ⋅ 107 5.38 ⋅ 107 99.71 318.01 193 (7) 158(7)
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(that is �1 ). To reflect the change in the grid size, we report the number of vari-
ables of the optimization problem after transforming it to the IP-PMM format. We 
also report the overall number of Krylov iterations required for IP-PMM to converge 
(and the number of IP-PMM iterations in brackets), the maximum number of non-
zeros stored in order to apply the inverses of the associated preconditioners, as well 
as the required CPU time.

We can draw several observations from the results in Table  5. Firstly, one can 
observe that in this case, a diagonal approximation of H is sufficiently good to 
deliver very fast convergence of MINRES. The block-diagonal preconditioner using 
non-diagonal Hessian information (i.e. P̂L

AS,(|N|,0) ) required consistently fewer MIN-
RES iterations (and not necessarily more memory; see the three largest experi-
ments), however, this did not result in a reduction in CPU time. There are several 
reasons for this. Firstly, the Hessian of the problem becomes “no less" diagonally 
dominant as the problem size is increased. As a result, the diagonal approximation 
of it remains robust with respect to the problem size for the problem under consider-
ation. On the other hand, the algorithm uses the built-in MATLAB function ��� to 
factorize the preconditioner P̂L

AS,(|N|,0) . While this implementation is very stable, it 
employs a dynamic permutation at each IP-PMM iteration, which slows down the 
algorithm. In this case, a specialized method using preconditioner P̂L

AS,(|N|,0) should 
employ a separate symbolic factorization step, that could be used in subsequent IP-
PMM iterations, thus significantly reducing the CPU time. This is not done here, 
however, as we treat these PDE optimization problems as black-box (notice that the 
implementation allows the user to feed an approximation of the Hessian, but does 
not allow the user to use a different LDL⊤ decomposition). In all the previous runs, 

Table 6  Comparison of QP preconditioners (Convection–Diffusion Control: problem size and varying 
regularization)

Bold numbers denote the best performance for a given metric

n �1 max nnz Time (s) Krylov (IPM) Its.

P
C

AS,(kc ,kr)
P̂
L

AS,(|N|,0) P
C

AS,(kc ,kr)
P̂
L

AS,(|N|,0) P
C

AS,(kc ,kr)
P̂
L

AS,(|N|,0)

2.11 ⋅ 104 10−2 3.88 ⋅ 105 4.65 ⋅ 105 15.94 11.67 3947 (21) 1, 903(19)

10−4 3.88 ⋅ 105 4.65 ⋅ 105 31.24 15.31 7546 (25) 2, 721(22)

10−6 3.88 ⋅ 105 4.65 ⋅ 105 31.29 16.42 7489 (25) 2, 962(23)

8.32 ⋅ 104 10−2 2.12 ⋅ 106 2.21 ⋅ 106 49.05 65.98 3464 (19) 1, 937(19)

10−4 2.12 ⋅ 106 2.21 ⋅ 106 99.49 93.19 7198 (25) 2, 976(23)

10−6 2.12 ⋅ 106 2.21 ⋅ 106 98.82 98.90 7150 (25) 3, 178(24)

3.30 ⋅ 105 10−2 1.07 ⋅ 107 1.09 ⋅ 107 297.96 285.77 4037 (21) 1, 667(18)

10−4 1.07 ⋅ 107 1.09 ⋅ 107 357.43 334.89 4971 (22) 2, 542(22)

10−6 1.07 ⋅ 107 1.09 ⋅ 107 372.40 354.23 5418 (23) 2, 530(22)

1.32 ⋅ 106 10−2 5.51 ⋅ 107 5.38 ⋅ 107 158.17 436.49 384 (9) 284(9)

10−4 5.51 ⋅ 107 5.38 ⋅ 107 161.12 438.44 385 (9) 286(9)

10−6 5.51 ⋅ 107 5.38 ⋅ 107 165.57 443.67 385 (9) 286(9)
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the reported Krylov iterations include both the predictor and the corrector steps of 
IP-PMM. Thus, the systems solved in each case are twice the number of IPM itera-
tions. We should note that for the problem under consideration employing a predic-
tor–corrector scheme is not necessary, however, we wanted to keep the implementa-
tion as general and robust as possible, without tailoring it to specific applications. 
For this problem, we can also observe that IP-PMM was robust with respect to the 
problem size (i.e. IP-PMM convergence was not significantly affected by the size of 
the problem). This is often observed when employing an IPM for the solution of 
PDE optimization problems (e.g. see [36]), however, in general one should expect 
dependence of the IPM on the problem size.

Next we consider the optimal control of the convection–diffusion equation, 
i.e. −��y + w ⋅ ∇y = u , on the domain � = (0, 1)2 , where w is the wind vec-
tor given by w = [2x2(1 − x2

1
),−2x1(1 − x2

2
)]⊤ , with control bounds ua = −2 , 

ub = 1.5 and free state (e.g. see [38, Sect.  5.2]). Once again, the problem is dis-
cretized using Q1 finite elements, employing the Streamline Upwind Petrov–Galer-
kin (SUPG) upwinding scheme implemented in [24]. We define the desired state 
as ȳ = exp(−64((x1 − 0.5)2 + (x2 − 0.5)2)) with zero boundary conditions. The dif-
fusion coefficient � is set as � = 0.02 . The L2 regularization parameter �2 is set as 
�2 = 10−2 . We run IP-PMM with the two different preconditioning approaches on 
the aforementioned problem, with different L1 regularization values (i.e. �1 ) and with 
increasing problem size. The results are collected in Table 6.

In Table 6 we can observe that the IP-PMM convergence is improved when the 
problem size is increased, which relates to the good conditioning of the Hessian. On 
the other hand, IP-PMM convergence is affected by the L1 regularization parameter 
�1 . Unlike in the Poisson control problem, we can see clear advantages of using 
P̂L
AS,(|N|,0) instead of PC

AS,(kc,kr)
 in this case. We can observe that in this problem using 

non-diagonal Hessian information within the preconditioner is significantly more 
important, and the reduced number of Krylov iterations often translates into a reduc-
tion of the CPU time. As before, we should mention that the reported number of 
Krylov iterations includes the solution of both the predictor and the corrector steps 
for each IP-PMM iteration.

Overall, we observe that each of the presented approaches can be very successful 
on a wide range of problems, including those of very large scale. Although we have 
treated every problem as if we knew nothing about its structure for these numerical 
tests, our a priori knowledge of the preconditioners and of the problem’s structure 
could in principle aid us in selecting a preconditioner without compromising their 
“general purpose" nature.

5  Conclusions

In this paper we have presented several general-purpose preconditioning methodologies 
suitable for primal-dual regularized interior point methods, applied to convex optimiza-
tion problems. All presented preconditioners are positive definite and hence can be used 
within symmetric solvers such as PCG or MINRES. After analyzing and discussing the 
different preconditioning approaches, we have presented extensive numerical results, 
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showcasing their use and potential benefits for different types of practical applications of 
convex optimization. A robust and general IP-PMM implementation, using the proposed 
preconditioners, has been provided for the solution of convex quadratic programming 
problems, and one can readily observe its ability of reliably and efficiently solving general 
large-scale problems, with minimal input from the user.

As a future research direction, we would like to include certain matrix-free 
preconditioning methodologies that could be used as alternatives for huge-scale 
instances that cannot be solved by means of factorization-based preconditioners, due 
to memory requirements.

Appendix: Proof of Theorem 2

For simplicity of notation, let PAS,(kc,kr)
≡ PAS . In order to provide an outline of 

the proof of Theorem 2, which follows trivially by extending the result in [7, The-
orem  2], we need to introduce the notion of the Rayleigh quotient for symmetric 
matrices. The numerical range of a symmetric matrix U ∈ ℝ

n×n , denoted as q(U), is 
defined as

Given the notation of Sect. 3.1, an element of the Rayleigh quotient of these matri-
ces is represented as:

Similarly, an arbitrary element of q(PNE) is denoted by

The eigenvalues of P−1
AS
K are the same as those of

where F̃ is defined in (11) and R ∶= P
−1∕2

NE
AF̂−1∕2. Any eigenvalue � of the precondi-

tioned matrix P−1∕2

AS
KP

−1∕2

AS
 must therefore satisfy

First, note that

q(U) ∶=

{
z ∈ ℝ, s.t. z =

x⊤Ux

x⊤x
, for some x ∈ ℝ

n, x ≠ 0

}
.

�NE ∈ q
(
M̃NE

)
= [�NE, �NE], �F ∈ q

(
F̃
)
= [�F, �F].

�
p
∈
[
�min(PNE

), �max(PNE
)
]
, �min(PNE

) ≥ �.

P
−1∕2

AS
KP

−1∕2

AS
=

[
�F−1∕2 0n,m
0m,n P

−1∕2

NE

][
−F A⊤

A 𝛿Im

][
�F−1∕2 0n,m
0m,n P

−1∕2

NE

]
=

[
−�F R⊤

R 𝛿P−1
NE

]
,

(15)−�Fw1 + R
⊤
w2 = 𝜆w1,

(16)Rw1 + �P−1
NE
w2 = �w2.

RR⊤ = P
−1∕2

NE
A�F−1A⊤P

−1∕2

NE
= P

−1∕2

NE

(
�M − 𝛿Im

)
P
−1∕2

NE
= �MNE − 𝛿P−1

NE
.
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If � ∉ [−�F,−�F] then F̃ + �In is symmetric positive (or negative) definite; moreo-
ver R⊤w2 ≠ 0n . Then from (15) we obtain

which, after substituting in (16), yields

Premultiplying by w⊤
2
 and dividing by ‖w2‖2 , we obtain the following equation, 

where we have set z = R⊤w2:

Hence, � must satisfy the following second-order algebraic equation:

where we have set � =
�
�p

 satisfying � ≤ 1 . Notice that �NE − � ≥ 0 by 

construction.
All bounds, except for the lower bound of I+ , follow directly by following the develop-

ments in [7, Theorem 3]. Thus, we only derive the lower bound for the positive eigenvalues 
of the preconditioned matrix, which can be obtained by computing a lower bound for the 
positive eigenvalue solution of the previous algebraic equation. In particular, we have

We notice that �+ is a decreasing function with respect to the variable �F and increas-
ing with respect to �NE . Hence, we have that:

where the last inequality follows because the penultimate expression is increasing 
with respect to �.
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(
�F + 𝜆In
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R⊤w2,

R
(
�F + 𝜆In

)−1
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