
Vol.:(0123456789)

Computational Optimization and Applications (2020) 77:597–616
https://doi.org/10.1007/s10589-020-00214-x

1 3

Consistent treatment of incompletely converged iterative 
linear solvers in reverse‑mode algorithmic differentiation

Siamak Akbarzadeh1 · Jan Hückelheim1 · Jens‑Dominik Müller1 

Received: 29 July 2019 / Published online: 3 August 2020 
© The Author(s) 2020

Abstract
Algorithmic differentiation (AD) is a widely-used approach to compute derivatives 
of numerical models. Many numerical models include an iterative process to solve 
non-linear systems of equations. To improve efficiency and numerical stability, AD 
is typically not applied to the linear solvers. Instead, the differentiated linear solver 
call is replaced with hand-produced derivative code that exploits the linearity of 
the original call. In practice, the iterative linear solvers are often stopped prema-
turely to recompute the linearisation of the non-linear outer loop. We show that in 
the reverse-mode of AD, the derivatives obtained with partial convergence become 
inconsistent with the original and the tangent-linear models, resulting in inaccurate 
adjoints. We present a correction term that restores consistency between adjoint and 
tangent-linear gradients if linear systems are only partially converged. We prove 
the consistency of this correction term and show in numerical experiments that the 
accuracy of adjoint gradients of an incompressible flow solver applied to an indus-
trial test case is restored when the correction term is used.

Keywords Algorithmic differentiation · Reverse-mode · Iterative linear solvers · 
Differentiated solver replacement

1 Introduction

The computation of gradients is required for numerous applications, such as 
shape and topology optimisation, error estimation, goal-based mesh adaptation 
and uncertainty quantification. Algorithmic differentiation (AD) to automatically 
produce accurate derivatives for numerical codes [13, 23] is a commonly used 
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technique [3, 5, 8, 16, 32]. In typical numerical models this involves the solution 
of large linear systems of the form

which often represents the most expensive part of a computation. We assume here 
that � ∈ ℝ

n×n is a known non-singular matrix and x, b ∈ ℝ
n are the unknown and 

right hand side (RHS) vectors respectively. Historically, linear solver methods have 
been categorised into two main groups, namely, direct solvers and iterative solvers, 
even though this classification has become increasingly blurred by developments 
that combine solvers from either category. Direct solvers are typically robust and 
widely used in scientific computing packages, but scale poorly with the problem 
size. Because of this, applications that require the solution to large linear systems 
such as CFD flow solvers often use efficient iterative linear solvers [29], commonly 
used methods include CG, BiCG, GMRES, and algebraic or geometric multi-grid 
methods.

When AD is applied to an algorithm that uses a linear solver, the linear solver 
itself is typically differentiated by manually produced replacement derivative 
code rather than applying AD to the solver. This is often the only practical option, 
for example if the linear solver is part of an external library, or if an AD-differ-
entiated solver would be computationally inefficient [6, 9] or numerically unsta-
ble [21]. A manual differentiation can take into account high-level mathematical 
properties of a given function, which may not be exploited by an automated AD 
process.

The most common way of manually differentiating calls to linear solvers 
(direct or iterative) is presented in [9] and hereafter referred to as Differenti-
ated Solver Replacement (DSR). The approach assumes that a linear solver call, 
x=solve(A,b), is equivalent to the expression x = �−1b , which is valid if the 
solver computes the solution to machine precision. In this case, the derivative 
computation can be performed using another call to the same linear solver for a 
modified system, as shown in Sect. 2.

Often a numerical algorithm solves a non-linear problem and converges to a 
steady-state solution within a fixed-point iteration (FPI) loop. An example is the 
typical iterative approach to solving non-linear systems, consisting of a num-
ber of outer, non-linear iterations, each of which performs linearisation and 
contains calls to linear system solves. In the early phase of convergence to the 
non-linear solution, it is not efficient to exactly solve the linear system for a lin-
earisation based on a poor approximation. An example in Computational Fluid 
Dynamics (CFD) is the typical segregated approach to solve the incompressible 
Navier–Stokes equations through a sequence of linear problems for the momen-
tum and pressure correction equations [7]. In a straightforward application of AD 
to such algorithms, the gradients are accumulated from a zero initial solution, 
hence are not in FPI form. Different techniques [31] have been presented to have 
an FPI discrete adjoint of such algorithms. For instance, the reverse accumula-
tion method [4]. More recently some AD tools (e.g. Tapenade [15]) even offer 
this capability as an option for reverse differentiation. However, except for fully 

�x = b
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coupled systems, implementation of fixed-point adjoints for algorithmically dif-
ferentiated codes is complex and accumulation of gradients is most often used.

It is to be noted that in the original problem, the incomplete linear solves do not 
affect the accuracy of the final solution, the primal solution, provided enough outer 
iterations are conducted. Contrary to what one might expect, incomplete linear 
solves of an accumulated adjoint that uses DSR leads to inaccurate sensitivities, as 
the analysis and the numerical experiments in this paper show.

In this paper, we show that this is caused by neglecting the influence of the ini-
tial guess on the linear system solution, which can be significant if the system is 
not fully converged. The proposed C-DSR correction achieves consistency between 
primal and adjoint gradient computation by correctly modelling the adjoint deriva-
tives of an algorithm that uses truncated iterative solvers with the same convergence 
threshold used for the primal linear systems.

A number of studies have investigated the correction of objective functionals 
using estimated errors and weighting with adjoint sensitivities, e.g. [12] and [33]. 
The approaches perform post-processing and consider error estimates derived from 
the converged steady-state flow solution and weight this with the converged adjoint 
field. This produces a correction to the objective functional computed from the con-
verged primal. The algorithm proposed in this paper is different, in that it corrects 
the errors arising from incomplete linear solves in each accumulation step during the 
computation of the adjoint solution.

The structure of the paper is as follows. In Sect. 2, a brief introduction of AD and 
DSR is presented. The shortcomings of DSR in the context of reverse-mode AD 
of algorithms with incompletely converged linear solvers, as well as the proposed 
correction method C-DSR, are presented in Sect. 3. In Sect. 4 we show numerical 
experiments that demonstrate the effectiveness of C-DSR. Finally, a summary and 
conclusions are presented in Sect. 5.

2  Background

In this section, a brief background of AD is provided. Following this, the DSR in 
both forward and reverse-mode AD is presented.

2.1  Algorithmic differentiation

AD is a technique that evaluates the derivative of the output of a computer program 
with respect to its inputs. AD differentiates a given primal computer program by 
applying the chain rule of calculus to the program’s sequence of elementary opera-
tions (e.g. additions, subtractions, transcendental functions) [13].

AD has two basic modes of operation, namely the forward-mode (resulting in a tan-
gent-linear model of the primal), and the reverse-mode (producing an adjoint model of 
the primal). The tangent-linear model computes the product of the Jacobian matrix of 
the primal program with a given seed vector that has the same number of dimensions as 
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the program input. In contrast, the adjoint model computes the product of the transpose 
Jacobian with a seed vector that has the size of the primal output.

In the application of AD to numerical codes, the derivative of a given scalar objec-
tive function with respect to a scalar primal input variable can be computed at almost 
equal cost in both tangent-linear and adjoint models. However, in many applications 
such as gradient-based shape optimisation with CFD, the number of design parameters 
is much larger than the number of objective functions that are to be computed. As a 
consequence, the use of adjoint models is essential to compute the gradients at a com-
putational cost that is independent of the number of control variables [10, 11, 19, 24].

A variety of AD tools have been developed in the past, which vary in the supported 
languages and the used techniques. Examples include Tapenade [15], ADIFOR [1], 
ADOL-C [14], dco/c++ [18], CoDiPack [30] and ADiMat [2]. The discussion in this 
study is valid to all types of AD tool.

2.2  Model problem

Consider a non-linear system of the form

with � as input and x the solution to the system. The problem can be re-formulated 
as

Applying a linearisation technique, the numerical solution to such a system can be 
gained by an iterative algorithm

where ℙ is the algorithm operator and the system is considered to be fully solved 
when �

m
 is almost zero. In each iteration of this algorithm a linear system needs to 

be solved:

which itself is often solved by an iterative linear solver.
In many numerical models, the objective functional, J, that is going to be differenti-

ated is implicitly dependent on the design variable � through the solution x(�) of a non-
linear system of equations similar to (1). Assuming J = J(x(�), �) , the general form of 
such an algorithm is shown in Algorithm 1.

�(x, �)x(�) = b(x, �)

�(x(�), �) = �(x, �)x(�) − b(x, �) .

(1)x
m
= x

m−1 + ℙ
m
�

m

(2)�
m
x
m
− b

m
= 0 ,
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x0 ← evaluate x 0 (α)
DO m=1:M
IF m==1 THEN

x0
m = x0

ELSE

x0
m = xN

m−1
END IF

Am ← evaluate A (x0
m)

bm ← evaluate b (x0
m)

xN
m ← solve (Am, x0

m, bm, N)
End DO

J ← evaluate J (xN
M , α)

Algorithm 1: Algorithm to solve the non-linear
A(x(α), α )x(α) = b(x, α).system

In Algorithm 1, the subscripts (m, M) denote non-linear (outer) iterations while 
the superscript N denotes the solution after N linear (inner) solver iterations. The 
arrows denote output. � and b are being updated in the non-linear loop and xN

m
 is the 

approximate solution to the linear system after N inner iterations at outer iteration m. 
For each linear solve, solve, x is an input (as the initial guess, x0

m
 ) and an output 

(as the solution, xN
m

 ). The objective functional J is dependent on the final solution of 
the algorithm, xN

M
.

In the following, we consider the case that the number of inner iterations N is not 
sufficient to fully converge the linear, inner solver to machine accuracy, xN

m
≈ �−1

m
b
m
 . 

However, we assume that a sufficient number of M outer, non-linear iterations is 
conducted, each containing N inner, linear iterations. In this way, in the final outer 
iterations, the linear system is sufficiently close to the non-linear system, and the 
error in both non-linear and linear system solutions is close to machine precision.

2.3  Differentiated solver replacement: tangent‑linear

The forward differentiation of the gradient of the objective functional J w.r.t. � 
requires the differentiation of the non-linear algorithm which at iteration ‘m’ reads

Knowing that the number of primal outer iteration is enough to drive �
m
 to zero, the 

differentiated system can be simplified as

This requires to compute a solution to the differentiated linear system (2) in each dif-
ferentiated outer iteration as

ẋ
m
= ẋ

m−1 + ℙ̇
m
�

m
+ ℙ

m
�̇

m

ẋ
m
= ẋ

m−1 + ℙ
m
�̇

m
.
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The forward differentiation of the Algorithm 1 is shown in Algorithm 2. The func-
tion appended with the suffix ‘_d’ represents the tangent-linear derivative of that 
function.

x0, ẋ0 ← evaluate x 0 d (α, α̇)
DO m=1:M
IF m==1 THEN

x0
m = x0

ẋ0
m = ẋ0

ELSE

x0
m = xN

m−1
ẋ0
m = ẋN

m−1
END IF

Am, Ȧm ← evaluate A d (x0
m, ẋ0

m)
bm, ḃm ← evaluate b d (x0

m, ẋ0
m)

xN
m, ẋN

m ← solve d (Am, Ȧm, x0
m, ẋ0

m, bm, ḃm, N)
End DO

J, J̇ ← evaluate J d (xN
M , ẋN

M , α, α̇)

Algorithm 2: Forward-mode appl. of AD to Algorithm 1.

The forward-differentiation in Algorithm 2 naturally inherits the fixed-point 
form of the primal, hence the resulting tangent-linear solution and the gradi-
ents computed with it are also impervious to incomplete inner solves, as long 
as the number of outer iterations is sufficient. If the problem to solve is steady, 
then linearisation around the converged solution to (2) is sufficient, making the 
entire problem linear which means that inner and outer iterations solve the same 
problem.

As mentioned in the Introduction, the differentiation of linear solvers is in 
practice often performed using an approach that we refer to as differentiated lin-
ear solver replacement or DSR. A sample pseudo code of DSR in forward-mode 
for the linear solver in Algorithm 1 is illustrated in Algorithm 3.

(3)�
m
ẋ
m
= ḃ

m
− �̇

m
x
m

or ẋ
m
= �−1

m
(ḃ

m
− �̇

m
x
m
) .
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solve d (Am, Ȧm, x0
m, ẋ0

m, bm, ḃm, N)
{

xN
m ← solve (Am, x0

m, bm, N)
ḃm = ḃm − ȦmxN

m

ẋN
m ← solve (Am, ẋ0

m, ḃm, N)
}

Algorithm 3: DSR in forward-mode AD.

2.4  Differentiated solver replacement: adjoint

The objective J is assumed here to depend on the control � and the state x: 
J = J(�, x) . Its derivative is hence

In many applications, the function J(�) can be computed explicitly, without requir-
ing linear solvers. We therefore focus in this work on the term 𝜕J

𝜕x
ẋ which is implicit, 

that is, it involves a linear solve for ẋ . Since x is a function of A and b, the function 
J also depends on A and b, or formally, x = x(�, b) and J = J(�, b) , and we can 
expand and transpose as

By definition, the adjoint of the reverse-differentiated variables is

which simplifies (5) to

where the column vectors are expressed as row matrices and ⟨ , ⟩ denotes an inner 
product between matrices. Substituting ẋ with �−1(ḃ − �̇x) , one can rearrange (6) 
into

J̇ =
𝜕J

𝜕𝛼
+

𝜕J

𝜕x
ẋ

(4)
𝜕J

𝜕x
ẋ =

𝜕J

𝜕�

𝜕�

𝜕x
ẋ +

𝜕J

𝜕b

𝜕b

𝜕x
ẋ

(5)ẋ
T

(
𝜕J

𝜕x

)T

= ẋ
T

(
𝜕�

𝜕x

)T( 𝜕J

𝜕�

)T

+ ẋ
T

(
𝜕b

𝜕x

)T(𝜕J
𝜕b

)T

x̄ =

(
𝜕J

𝜕x

)T

, �̄ =

(
𝜕J

𝜕�

)T

, b̄ =

(
𝜕J

𝜕b

)T

,

(6)ẋ
T
x̄ = �̇T�̄ + ḃ

T
b̄ or ⟨ẋ, x̄⟩ = ⟨�̇, �̄⟩ + ⟨ḃ, b̄⟩,

(7)
⟨�̇, �̄⟩ + ⟨ḃ, b̄⟩ = ⟨�−1(ḃ − �̇x), x̄⟩

= ⟨�−1
ḃ, x̄⟩ − ⟨�−1�̇x, x̄⟩ .
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Then recalling from linear algebra [20], the inner product between two matrices, �1 
and �2 , reads

Here ‘Tr’ stands for trace of a matrix, i.e., the sum of its diagonal elements. Now we 
can expand and rewrite the inner products in RHS of (7),

Finally, (8) and (9) can be replaced into (7)

 Therefore, b̄ and �̄ at iteration ‘m’ can be expressed as follows [9] 

 In practice, the adjoints are incremented because they may already contain previ-
ously computed sensitivities from elsewhere in the program (see Algorithm 4). One 
can derive the adjoint of � and b and obtain the reverse-DSR as, 

The reverse-mode application of AD to the Algorithm 1 and the hand assembled 
reverse DSR are illustrated in Algorithms 4 and 5. A function appended with the 
suffix ‘_b’ represents the reverse derivative of that function. For brevity, brackets are 
used to show the accumulation of sensitivities for matrices and vectors via reverse-
differentiated functions.

⟨�1,�2⟩ = Tr
�
�T

2
�1

�
.

(8)

⟨�−1
ḃ, x̄⟩ = Tr

�
x̄
T�−1

ḃ
�

= Tr
�
(�−T

x̄)T ḃ
�

= ⟨ḃ,�−T
x̄⟩ ,

(9)

−⟨�−1�̇x, x̄⟩ = − Tr
�
x̄
T�−1�̇x

�

= − Tr
�
(�−T

x̄)T (xT�̇T )T
�

= − Tr
�
(�−T

x̄x
T )T�̇

�

= − ⟨�̇,�−T
x̄x

T⟩ .

(10)⟨�̇, �̄⟩ + ⟨ḃ, b̄⟩ = ⟨�̇,−�−T
x̄x

T⟩ + ⟨ḃ,�−T
x̄⟩ .

(11a)b̄
m
= �−T

m
x̄
m
,

(11b)�̄
m
= −�−T

m
x̄
m
x
T

m
= −b̄

m
x
T

m
.

(12a)b̄
�

m
= �−T

m
x̄
m
,

(12b)b̄
m
= b̄

m
+ b̄

�

m
,

(12c)�̄
m
= �̄

m
− b̄

�

m
x
T

m
,

(12d)x̄
m
= 0 .
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J̄ = 1
{x̄N

M , ᾱ} = {x̄N
M , ᾱ}+ {evaluate J b (xN

M , x̄N
M , α, ᾱ, J̄)}

ĀM = 0
b̄M = 0
DO m=M:1

x̄0
m, Ām, b̄m ← solve b (Am, Ām, x0

m, x̄N
m, bm, b̄m, N)

{x̄0
m, b̄m−1} = {x̄0

m, b̄m}+ {evaluate b b (x0
m, x̄0

m, b̄m)}
{x̄0

m, Ām−1} = {x̄0
m, Ām}+ {evaluate A b (x0

m, x̄0
m, Ām)}

IF m==1 THEN
x̄0 = x̄0

m

ELSE

x̄N
m−1 = x̄0

m

END IF
End DO
{ᾱ} = {ᾱ}+ {evaluate x 0 b (α, ᾱ, x̄0)}

Algorithm 4: Reverse-mode appl. of AD to Alg. 1 in which
the adjoint sensitivities are accumulated.

solve b (Am, Ām, x0
m, x̄N

m, bm, b̄m, N)
{

xN
m ← solve (Am, x0

m, bm, N)
AT

m ← transpose A (Am)
b̄ N
m ← solve (AT

m, b̄m, x̄N
m, N)

b̄m = b̄m + b̄ N
m

Ām = Ām − b̄ N
m (xN

m)T

x̄0
m = 0

}

Algorithm 5: DSR in reverse-mode AD.

As we will show in Sect. 3, in contrast to the primal and its forward differentia-
tion, if the adjoint linear systems are not fully solved, b̄�

m
≠ �−T

m
x̄
m
 , they introduce 

an error to the system that would not vanish even after a large number of outer itera-
tions. In the next section, this error and its correction will be discussed.
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3  Corrected differentiated solver replacement in reverse‑mode

In this section, the forward and reverse differentiation of the Jacobi solver within 
an outer, non-linear iterative solver is discussed. Furthermore, we discuss the effect 
that the initial guess has on the solution, when the differentiated inner linear solver 
is only partially converged. The C-DSR correction method is then developed, which 
includes a correction term for this error. Finally, we demonstrate the benefit of this 
correction method. We choose the Jacobi solver because it is easy to prove proper-
ties of its differentiation and convergence. However, our C-DSR method also ben-
efits other solvers, as we will show later in this paper.

3.1  Error correction for reverse differentiation of Jacobi solver

The system matrix �
m
 can be decomposed as �

m
= �

m
+�

m
 , where �

m
 and �

m
 hold 

the diagonal and off-diagonals entries of �
m
 , respectively. The iterative relaxation 

scheme can be written as

The error due to incomplete Jacobi convergence can be expressed as

where x
m
 is the exact solution to the linear system at the (m)th outer iteration. There-

fore, after N iterations starting from an initial guess x0
m
 , the approximated solution 

obtained from the linear solver can be written explicitly as

The initial guess of the system is actually the solution to the linear system in the pre-
vious outer iteration. In this context, one can write

in which after a sufficient number iterations

(13)x
n+1

m
= �−1(b −�x

n

m
) .

(14)

x
n+1

m
− x

m
= �xn+1

m
= �−1(b −�x

n

m
) − x

m

= �−1
b − �−1�x

n

m
− x

m

= �−1�x
m
− �−1�x

n

m
− x

m

= (�−1� − �)x
m
− �−1�x

n

m

= (�−1� − �)x
m
− (�−1� − �)xn

m

= (� − �−1�)�xn
m
,

(15)x
N

m
= x

m
+ (� − �−1�)(N)(x0

m
− x

m
) .

(16)x
N

m
= x

m
+ (� − �−1

m
�

m
)(N)(xN

m−1
− x

m
); m = 1,… ,M .

(17)(� − �−1

m
�

m
)(N) = 0 .
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3.1.1  Forward differentiation

The tangent-linear model has the same behaviour as its primal, that is, the initial guess 
for the differentiated solver replacement (DSR) is the solution to the system in the pre-
vious outer iteration (see Algorithm 2):

The tangent-linear model of (16) is given by

where ẋ
m
 is the exact solution to the tangent-linear problem , �1 and �2 are the errors 

due to incomplete solve of the primal and tangent-linear problems, respectively

Even though the linear systems are not solved to machine precision in each outer 
iteration, the errors vanish when the outer loop is iterated sufficiently. Please be 
aware that the number of outer iteration, M, is considered large enough such that 
�

m
= �

m−1 and b
m
= b

m−1 . As a result, the initial guess and final result of the linear 
solver are identical to machine precision in the final outer iteration, or formally,

3.1.2  Reverse differentiation

The reverse-mode application of AD to the model is shown in Algorithm  4, 
where the sensitivities are accumulated over the reverse loop and for better clar-
ity, except in the DSR, the primal expressions are not depicted. The incomplete 
convergence of the adjoint linear system means

with the residual (𝜖
b̄
)
m
 of the system

As a result, the computation of terms �̄ and b̄ are affected in each DSR call such that

x
0

m
= x

N

m−1
,

ẋ
0

m
= ẋ

N

m−1
.

(18)ẋ
N

m
= ẋ

m
+ (𝜖1)m + (𝜖2)m,

(𝜖1)m =(N)(−�̇−1

m
�

m
− �−1

m
�̇

m
)

[
(� − �−1

m
�

m
)(N−1)(xN

m−1
− x

m
)
]
,

(𝜖2)m =(� − �−1

m
�

m
)(N)(ẋN

m−1
− ẋ

m
) .

x
N

M
= x

0

M
= x

N

M−1

ẋ
N

M
= ẋ

0

M
= ẋ

N

M−1

(19)b̄
�N

m
≠ �−T

m
x̄
N

m

(20)(𝜖
b̄
)
m
= �−T

m
x̄
N

m
− b̄

�N

m
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It is not difficult to derive the derivative of J w.r.t. � in the reverse-mode from (4, 5),

which leads to an accumulated error given by

The source of the error is the residual of the adjoint systems, and this error is accu-
mulated over the outer iterations. It is important to realise that running more outer 
iterations does not remove the error, contrary to what might be extrapolated from the 
behaviour of the primal. Due to the accumulative nature of the adjoint differentia-
tion, with standard DSR any incomplete convergence of the adjoint systems imparts 
an error on the gradients, which remains even if the number of outer iterations is 
enough for the primal algorithm to converge. To correct this error, the state of the 
art is to converge the inner adjoint system solves to machine precision, which makes 
the adjoint computation significantly more expensive than the primal. This paper 
proposes an alternative approach, namely an effective way to compute a correction 
for this error.

3.2  Reverse‑DSR correction

Equation (18) can be rewritten as

where the term � is the influence of the initial guess on the approximated tangent-
linear derivative in the (m)th outer iteration of the algorithm after N Jacobi steps 
(linear solver iterations),

To derive the reverse differentiation of expression (25) we first rewrite it as addition 
of three vectors:

(21)b̄
m
= b̄

m
+ b̄

�N

m
+ (𝜖

b̄
)
m
,

(22)
�̄

m
= �̄

m
− (b̄�N

m
+ (𝜖

b̄
)
m
)(xN

m
)T ,

= �̄
m
− b̄

�N

m
(xN

m
)T − (𝜖

b̄
)
m
(xN

m
)T .

(23)�̄� = ẋ
T

(
𝜕�

𝜕x

)T
1∑

M

�̄
m
+ ẋ

T

(
𝜕b

𝜕x

)T
1∑

M

b̄
m
,

(24)𝜖�̄� = ẋ
T

(
−

(
𝜕�

𝜕x

)T
1∑

M

(
(𝜖

b̄
)
m
(xN

m
)T
)
+

(
𝜕b

𝜕x

)T
1∑

M

(𝜖
b̄
)
m

)

(25)

ẋ
N

m
=
[
� − (� − �−1

m
�

m
)(N)

]
ẋ
m

+ (� − �−1

m
�

m
)(N)ẋN

m−1
�������������������������

(𝛾)m

+ (𝜖1)m ,

(26)𝛾
m
= (� − �−1

m
�

m
)(N)ẋN

m−1
= (� − �−1

m
�

m
)(N)ẋ0

m
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As shown in the section 2.2.1 of [9], for such an equation the following expression 
holds in the reverse-mode:

Moreover, from section  2.2.2 of [9], the adjoint of a multiplication expression, 
l̇2 = (� − �−1

m
�

m
)(N)ẋN

m−1
 , gives

From (28, 29) the influence of initial guess in the reverse-mode can be shown to be

The vector x̄0
m
 in (30) is one of the outputs of the differentiated solver (see Algo-

rithm 4). On the other hand, DSR is based on the assumption that the linear systems 
are fully converged; meaning N is large enough such that

However, the incomplete convergence causes this assumption to be violated. If the 
adjoint linear system is not fully solved the term x̄0

m
 is not zero. Consequently, the 

sensitivity computation is inaccurate by the error shown in (24).
N matrix-vector products are required to compute (30), which is essentially as 

expensive as the primal linear solver. However, it can be computed much cheaper 
as a by-product of a computation that is already part of the DSR.

In order to solve �T

m
b̄�
m
= x̄N

m
 in DSR, one Jacobi iteration is performed as

If the same number of iterations N are used for (32) as for the primal system and 
using an initial guess of zero, from (15) one obtains

Using (33) it can be shown that computing the residual after N iterations can be done 
with a single matrix-vector product which yields exactly the same result as (30):

(27)ẋ
N

m
= l̇1 + l̇2 + l̇3 .

(28)l̄1 = l̄2 = l̄3 = x̄
N

m
.

(29)x̄
N

m
=

[
(� − �−1

m
�

m
)(N)

]T
l̄2 .

(30)x̄
0

m
= x̄

N

m−1
= (� − �T

m
�−1

m
)(N)x̄N

m
.

x̄0
m =

0 [if N is large enough]

(I−AT
mD−1

m )(N)x̄N
m = 0 . (31)

(32)b̄
�n+1

m
= �−1

m
(x̄N

m
− �T

m
b̄
�n

m
).
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�

m
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)(N)(0 − b̄

�

m
)
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Hence, if the adjoint system of DSR in reverse-mode is not fully solved, the output 
variable x̄0

m
 can be defined as the residual of the system. We call this C-DSR, as in 

corrected DSR. The DSR and C-DSR approaches are compared in Algorithms 6, 7 
and 8.






AmxN
m ≈ bm

ḃm = ḃm − ȦmxN
m

AmẋN
m ≈ ḃm

;

Algorithm 6: Forward DSR.






AmxN
m ≈ bm

AT b̄ N
m ≈ x̄N

m

b̄m = b̄m + b̄ N
m

Ām = Ām − b̄m(xN
m)T

x̄0
m = 0

;

Algorithm 7: Reverse DSR.






AmxN
m ≈ bm

AT b̄ N
m ≈ x̄N

m

b̄m = b̄m + b̄ N
m

Ām = Ām − b̄m(xN
m)T

x̄0
m = x̄N

m −AT
mb̄ N

m

;

Algorithm 8: Reverse C-DSR.

rm = x̄N
m −AT

mb̄ N
m

= x̄N
m −AT

m (I− (I−D−1
m AT

m)(N))b̄m

=
0

x̄N
m −AT

mb̄m +AT
m (I−D−1

m AT
m)(N)b̄m

= (I−AT
mD−1

m )(N)AT
mb̄m

= (I−AT
mD−1

m )(N)x̄N
m

= x̄0
m .

(34)
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3.3  Application of C‑DSR to other solvers

In the previous section we presented a correctness proof for C-DSR with Jacobi 
solvers. A similar proof can be established for any other linear solver using linear 
operators. Linear solvers with non-linear operators,

such as GMRES or CG, do not yield to this type of analysis. However, the test 
cases shown in the remainder of this paper demonstrates that C-DSR also leads to 
improved consistency for other solvers, when incomplete convergence is set at levels 
typical for the primal algorithm.

4  Test cases

In this section we first demonstrate the effectiveness of C-DSR using a one-dimen-
sional heat equation solver that uses Jacobi iterations to solve the linear systems. 
Then with a three-dimensional CFD solver we show that the application of C-DSR 
to Krylov-type linear solvers also improves the gradient accuracy.

Fig. 1  1D non-linear steady-
state heat transfer

Table 1  1D heat transfer: Jacobi 
solver set up

Maximum iterations Convergence 
(absolute toler-
ance)

Settings 1 1000 1e−14
Settings 2 1000 1e−4

Table 2  1D heat transfer: comparison of derivative calculation accuracy

AD-forward AD-adjoint

Settings 1
Differentiation of solver 0.14308617311652 0.14308617311652
DSR 0.14308617311652 0.14308617311652
C-DSR – 0.14308617311652
FD: 0.14308617551322
Settings 2
Differentiation of solver 0.14308617311652 0.14308617311652
DSR 0.14308617311652 0.13289602339787
C-DSR – 0.14308617311652
FD: 0.14308617551322
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4.1  One‑dimensional (1D) non‑linear heat equation

The first validation study is the finite-difference (central differences in space, back-
ward Euler in time) solution to a non-linear 1D steady-state heat conduction prob-
lem in a uniform rod lying on the x-axis from x

L
= 0 to x

R
= 1

where the heat conduction coefficient k is a simple linear function of temperature T, 
k = c1 + c2T  , where c1 = 1.1 and c2 = 0.2 .

The domain (see Fig. 1) has 12 nodes and is discretised by central finite difference 
in space and backward Euler in time. Dirichlet boundary conditions are imposed on 
both ends. The temperature at the right boundary T

R
 is defined as the control vari-

able and the objective function is evaluated as a function of the temperature at one 
of the internal nodes, J = 100 × (T(i=1))

2 . The primal outer loop is iterated enough 
that in the final outer iterations the error of the linear system is close to machine 
zero. The Tapenade source-transformation AD tool[15] is used to differentiate the 
code with checkpointing of all outer iterations in the reverse-mode.

It is worth noting that this is a steady-state problem that does not require time 
marching; hence the adjoint solution can be computed by linearising only around 
the final steady state solution, without checkpointing. We solve the primal and its 
adjoint in this way so that it can serve as a model problem that can be extended to 
more complex problems such as unsteady or segregated (decoupled) solvers later in 
the paper.

Two different settings are considered for Jacobi solver (see Table  1). The 
results are compared in Table 2. The results confirm that when the Jacobi solver 
is solved to machine precision, the sensitivity ( dJ

dTR

 ) obtained by DSR (in both 
AD-forward and adjoint) and the second order finite difference computation are 
in good agreement. However, when the solver is not fully solved, the computed 
sensitivity with DSR in reverse-mode shows a relative error of 6%. C-DSR 
improves the accuracy of gradient and reduces the error to machine precision. 

4.2  Three‑dimensional (3D) S‑Bend Duct

The second validation study is an adjoint CFD computation of a VW Golf air 
climate duct [34], a benchmark case of the About Flow project [26] provided by 
Volkswagen AG. The flow is steady, laminar and incompressible with a Reyn-
olds number of 300 at the inlet relative to the height of the duct, the domain is 
discretised with 40,000 hexahedral mesh cells.

The objective function is mass averaged pressure drop between inlet and out-
let. To solve the flow, the in-house incompressible flow solver gpde [17] is used, 
which is based on the finite volume segregated SIMPLE pressure-correction 
method [25]. The arising linear systems for momentum and pressure correction 
are solved using bi-conjugate gradient stabilised (Bi-CGSTAB) and conjugate 

(35)
�

�x
(k(T)

�T

�x
) = 0,
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gradient (CG) linear solvers, respectively, from the SPARSKIT library [28]. The 
spring analogy method [27] is implemented in gpde to deform the volume mesh 
following a design change. The gpde solver is written in FORTRAN 90 and dif-
ferentiated by the AD tool Tapenade [15] and without checkpointing all outer 
iterations.

Fig. 2  3D duct flow with perturbed inward bump

Table 3  Linear solvers set up for 
the primal, adjoint and forward 
AD

Momentum eqn. Pressure eqn.

Linear solver Bi-CGSTAB CG
Maximum number of iterations 1000 1000
Convergence (relative tolerance) 1e−3 1e−5

Table 4  3D duct flow: 
comparison of derivative 
calculation accuracy

Method AD-forward AD-adjoint

DSR 1.364812242779 1.365269308207
C-DSR – 1.364812240069
FD: 1.364812241599

Table 5  The effect of iterative 
linear solver accuracy on DSR 
in reverse-mode

Bi-CGSTAB CG Max. iter. DSR in AD-adjoint

Settings 1 1e−3 1e−5 1000 1.365269308207
Settings 2 1e−6 1e−8 2000 1.364813964852
Settings 3 1e−8 1e−10 2000 1.364812307219
Settings 4 1e−12 1e−12 10,000 1.364812297209
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To compare sensitivities, the surface mesh coordinates of the middle S-sec-
tion of the duct, �

i
 , are perturbed by a cosine function,

where �0 and �0 are the bump centre and the surface normal, respectively. The per-
turbation is designed to create an inward bump in the duct (see Fig. 2) and the bump 
height is controlled by the variable �.

The differentiated code computes the derivative of the objective function at 
fully converged flow state w.r.t. the design variable, in this case the height of the 
perturbed bump.

In practice, the convergence criteria of linear solvers in non-linear numeri-
cal methods such as CFD solvers are determined from experience [7, 22]. The 
solver settings for this duct flow using the gpde solver is shown in Table 3.

In addition, using several convergence criteria, different accuracies of itera-
tive linear solver are tested for DSR in reverse-mode to determine when the pre-
cision of gradients, J̇ , computed with DSR matches that of C-DSR. The settings 
and the results are shown in Table 5.

The gradient computation comparison in Table  4 demonstrates the validity 
and significance of the correction for a practical application using Krylov solv-
ers. Table 5 shows that tightening the convergence level improves the accuracy 
of gradients with DSR, but C-DSR still achieves a higher accuracy at a much 
smaller computational effort.

5  Summary and conclusions

The correct treatment of iterative linear solvers in forward and reverse-mode AD 
has been studied. The most commonly used previous method to differentiate linear 
solvers is based on the assumption that linear systems are fully converged, which in 
practice is often not the case. The analysis presented in our paper identifies the exact 
source of errors arising from incompletely converged linear systems used in inner 
iterations of the solution of non-linear unsteady or segregated problems. We show 
how this error is linked to the initial guess provided to the linear solver, and how the 
error accumulates to severely affect adjoint gradients of non-linear solvers. This is 
also demonstrated in two test cases.

The C-DSR correction term proposed in this paper is shown in our work to be 
exact for relaxation-type solvers such as Jacobi iterations and other iterative linear 
solvers. A test case with Jacobi solvers demonstrates the validity of the approach. 
The C-DSR correction is then applied to a test case from Computational Fluid 
Dynamics which uses Krylov type solvers for the inner systems. Comparing to DSR, 
the proposed correction shows significant improvement in the gradient accuracy 
with much smaller computational cost.

Because the correction formula consists of only a single matrix-vector product 
and a vector subtraction, the computational cost of computing the correction is 

(36)�
i
= �

i
− � cos(

�d
i

2
) �0; d

i
= min(‖�

i
− �0‖, 1.0)
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small, which makes our method affordable and beneficial for widespread practical 
application.
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