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Abstract We propose an SQP algorithm for mathematical programs with vanishing
constraints which solves at each iteration a quadratic program with linear vanishing
constraints. The algorithm is based on the newly developed concept ofQ-stationarity
(Benko and Gfrerer in Optimization 66(1):61–92, 2017). We demonstrate how QM -
stationary solutions of the quadratic program can be obtained. We show that all limit
points of the sequence of iterates generated by the basic SQP method are at least
M-stationary and by some extension of the method we also guarantee the stronger
property of QM -stationarity of the limit points.
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1 Introduction

Consider the following mathematical program with vanishing constraints (MPVC)
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min
x∈Rn

f (x)

subject to hi (x) = 0 i ∈ E,

gi (x) ≤ 0 i ∈ I,
Hi (x) ≥ 0, Gi (x)Hi (x) ≤ 0 i ∈ V,

(1)

with continuously differentiable functions f, hi , i ∈ E, gi , i ∈ I,Gi , Hi , i ∈ V and
finite index sets E, I and V .

Theoretically, MPVCs can be viewed as standard nonlinear optimization problems,
but due to the vanishing constraints, many of the standard constraint qualifications of
nonlinear programming are violated at any feasible point x̄ with Hi (x̄) = Gi (x̄) = 0
for some i ∈ V . On the other hand, by introducing slack variables, MPVCs may be
reformulated as so-called mathematical programs with complementarity constraints
(MPCCs), see [7]. However, this approach is also not satisfactory as it has turned out
that MPCCs are in fact even more difficult to handle than MPVCs. This makes it nec-
essary, both from a theoretical and numerical point of view, to consider special tailored
algorithms for solvingMPVCs. Recent numerical methods follow different directions.
A smoothing-continuation method and a regularization approach for MPCCs are con-
sidered in [6,10] and a combination of these techniques, a smoothing-regularization
approach for MPVCs is investigated in [2]. In [3,8] the relaxation method has been
suggested in order to deal with the inherent difficulties of MPVCs.

In this paper, we carry over awell known SQPmethod from nonlinear programming
to MPVCs. We proceed in a similar manner as in [4], where an SQP method for
MPCCs was introduced by Benko and Gfrerer. The main task of our method is to
solve in each iteration step a quadratic program with linear vanishing constraints, a
so-called auxiliary problem. Then we compute the next iterate by reducing a certain
merit function along some polygonal line which is given by the solution procedure
for the auxiliary problem. To solve the auxiliary problem we exploit the new concept
of QM -stationarity introduced in the recent paper by Benko and Gfrerer [5]. QM -
stationarity is in general stronger thanM-stationarity and it turns out to be very suitable
for a numerical approach as it allows to handle the program with vanishing constraints
without relying on enumeration techniques. Surprisingly, we compute at least a QM -
stationary solution of the auxiliary problem just by means of quadratic programming
by solving appropriate convex subproblems.

Next we study the convergence of the SQP method. We show that every limit point
of the generated sequence is at leastM-stationary.Moreover, we consider the extended
version of our SQP method, where at each iterate a correction of the iterate is made
to prevent the method from converging to undesired points. Consequently we show
that under some additional assumptions all limit points are at least QM -stationary.
Numerical tests indicate that our method behaves very reliably.

A short outline of this paper is as follows. In Sect. 2 we recall the basic stationarity
concepts for MPVCs as well as the recently developed concepts of Q- and QM -
stationarity. In Sect. 3 we describe an algorithm based on quadratic programming for
solving the auxiliary problem occurring in every iteration of our SQP method. We
prove the finiteness and summarize some other properties of this algorithm. In Sect.
4 we propose the basic SQP method. We describe how the next iterate is computed
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by means of the solution of the auxiliary problem and we consider the convergence
of the overall algorithm. In Sect. 5 we consider the extended version of the overall
algorithm and we discuss its convergence. Section 6 is a summary of numerical results
we obtained by implementing our basic algorithm in MATLAB and by testing it on a
subset of test problems considered in the thesis of Hoheisel [7].

Inwhat followsweuse the following notation.Given a setM wedenote byP(M) :=
{(M1, M2) | M1 ∪ M2 = M, M1 ∩ M2 = ∅} the collection of all partitions of M . Fur-
ther, for a real number a we use the notation (a)+ := max(0, a), (a)− := min(0, a).
For a vector u = (u1, u2, . . . , um)T ∈ R

m we define |u|, (u)+, (u)− componentwise,
i.e. |u| := (|u1|, |u2|, . . . , |um |)T , etc. Moreover, for u ∈ R

m and 1 ≤ p ≤ ∞ we
denote the �p norm of u by ‖u‖p and we use the notation ‖u‖ := ‖u‖2 for the standard
�2 norm. Finally, given a sequence yk ∈ R

m , a point y ∈ R
m and an infinite set K ⊂ N

we write yk
K→ y instead of limk→∞,k∈K yk = y.

2 Stationary points for MPVCs

Given a point x̄ feasible for (1) we define the following index sets

I g(x̄) := {i ∈ I | gi (x̄) = 0},
I 0+(x̄) := {i ∈ V | Hi (x̄) = 0 < Gi (x̄)},
I 0−(x̄) := {i ∈ V | Hi (x̄) = 0 > Gi (x̄)},
I+0(x̄) := {i ∈ V | Hi (x̄) > 0 = Gi (x̄)},
I 00(x̄) := {i ∈ V | Hi (x̄) = 0 = Gi (x̄)},
I+−(x̄) := {i ∈ V | Hi (x̄) > 0 < Gi (x̄)}. (2)

In contrast to nonlinear programming there exist a lot of stationarity concepts for
MPVCs.

Definition 2.1 Let x̄ be feasible for (1). Then x̄ is called

1. Weakly stationary, if there are multipliers λ
g
i , i ∈ I, λhi , i ∈ E, λG

i , λH
i , i ∈ V

such that

∇ f (x̄)T +
∑

i∈E
λhi ∇hi (x̄)

T +
∑

i∈I
λ
g
i ∇gi (x̄)

T

+
∑

i∈V

(
−λH

i ∇Hi (x̄)
T + λG

i ∇Gi (x̄)
T
)

= 0 (3)

and

λ
g
i gi (x̄) = 0, i ∈ I, λH

i Hi (x̄) = 0, i ∈ V, λG
i Gi (x̄) = 0, i ∈ V,

λ
g
i ≥ 0, i ∈ I, λH

i ≥ 0, i ∈ I 0−(x̄), λG
i ≥ 0, i ∈ I 00(x̄) ∪ I+0(x̄).

(4)

2. M-stationary, if it is weakly stationary and

λH
i λG

i = 0, i ∈ I 00(x̄). (5)
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3. Q-stationarywith respect to (β1, β2), where (β1, β2) is a given partition of I 00(x̄),

if there exist twomultipliersλ = (λ
h
, λ

g
, λ

H
, λ

G
) andλ = (λh, λg, λH , λG), both

fulfilling (3) and (4), such that

λ
G
i = 0, λH

i , λG
i ≥ 0, i ∈ β1; λ

H
i , λ

G
i ≥ 0, λG

i = 0, i ∈ β2. (6)

4. Q-stationary, if there is some partition (β1, β2) ∈ P(I 00(x̄)) such that x̄ is Q-
stationary with respect to (β1, β2).

5. QM -stationary, if it is Q-stationary and at least one of the multipliers λ and λ

fulfills M-stationarity condition (5).
6. S-stationary, if it is weakly stationary and

λH
i ≥ 0, λG

i = 0, i ∈ I 00(x̄).

The concepts of Q-stationarity and QM -stationarity were introduced in the recent
paper by Benko and Gfrerer [5], whereas the other stationarity concepts are very
common in the literature, see e.g. [1,7,8]. The following implications hold:

S-stationarity ⇒ Q-stationarity with respect to every (β1, β2) ∈ P(I 00(x̄)) ⇒
Q-stationarity w.r.t. (∅, I 00(x̄)) ⇒ QM -stationarity ⇒ M-stationarity ⇒ weak stationarity.

The first implication follows from the fact that the multiplier corresponding to S-
stationarity fulfills the requirements for both λ and λ. The third implication holds
because for (β1, β2) = (∅, I 00(x̄)) the multiplier λ fulfills (5) since λG

i = 0 for
i ∈ I 00(x̄).

Note that the S-stationarity conditions are nothing else than the Karush-Kuhn-
Tucker conditions for the problem (1). As we will demonstrate in the next theorems,
a local minimizer is S-stationary only under some comparatively stronger constraint
qualification, while it is QM -stationary under very weak constraint qualifications.
Before stating the theorems we recall some common definitions.

Denoting

Fi (x) := (−Hi (x),Gi (x))
T , i ∈ V, P := {(a, b) ∈ R− × R | ab ≥ 0}, (7)

F(x) := (h(x)T , g(x)T , F(x)T )T , D := {0}|E | × R
|I |
− × P |V |, (8)

we see that problem (1) can be rewritten as

min f (x) subject to x ∈ �V := {x ∈ R
n |F(x) ∈ D}.

Recall that the contingent (also tangent) cone to a closed set � ⊂ R
m at u ∈ � is

defined by

T�(u) := {d ∈ R
m | ∃(dk) → d, ∃(τk) ↓ 0 : u + τkdk ∈ �∀k}.
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The linearized cone to �V at x̄ ∈ �V is then defined as T lin
�V

(x̄) := {d ∈
R
n | ∇F(x̄)d ∈ TD(F(x̄))}.
Further recall that x̄ ∈ �V is called B-stationary if

∇ f (x̄)d ≥ 0 ∀d ∈ T�V (x̄).

Every local minimizer is known to be B-stationary.

Definition 2.2 Let x̄ be feasible for (1), i.e x̄ ∈ �V . We say that the generalized
Guignard constraint qualification (GGCQ) holds at x̄ , if the polar cone of T�V (x̄)
equals the polar cone of T lin

�V
(x̄).

Theorem 2.1 (c.f. [5, Theorem8]) Assume thatGGCQ is fulfilled at the point x̄ ∈ �V .
If x̄ is B-stationary, then x̄ is Q-stationary for (1) with respect to every partition
(β1, β2) ∈ P(I 00(x̄)) and it is also QM-stationary.

Theorem 2.2 (c.f. [5, Theorem 8]) If x̄ is Q-stationary with respect to a partition
(β1, β2) ∈ P(I 00(x̄)), such that for every j ∈ β1 there exists some z j fulfilling

∇h(x̄)z j = 0,
∇gi (x̄)z j = 0, i ∈ I g(x̄),
∇Gi (x̄)z j = 0, i ∈ I+0(x̄),

∇Gi (x̄)z j
{≥ 0, i ∈ β1,

≤ 0, i ∈ β2,

∇Hi (x̄)z j = 0, i ∈ I 0−(x̄) ∪ I 00(x̄) ∪ I 0+(x̄) \ { j},
∇Hj (x̄)z j = −1

(9)

and there is some z̄ such that

∇h(x̄)z̄ = 0,
∇gi (x̄)z̄ = 0, i ∈ I g(x̄),
∇Gi (x̄)z̄ = 0, i ∈ I+0(x̄),

∇Gi (x̄)z̄

{≥ 0, i ∈ β1,

≤ −1, i ∈ β2,

∇Hi (x̄)z̄ = 0, i ∈ I 0−(x̄) ∪ I 00(x̄) ∪ I 0+(x̄),

(10)

then x̄ is S-stationary and consequently also B-stationary.

Note that these two theorems together also imply that a local minimizer x̄ ∈ �V

is S-stationary provided GGCQ is fulfilled at x̄ and there exists a partition (β1, β2) ∈
P(I 00(x̄)), such that for every j ∈ β1 there exists z j fulfilling (9) and z̄ fulfilling (10).

Moreover, note that (9) and (10) are fulfilled for every partition (β1, β2) ∈
P(I 00(x̄)) e.g. if the gradients of active constraints are linearly independent. On the
other hand, in the special case of partition (∅, I 00(x̄)) ∈ P(I 00(x̄)), this conditions
read as the requirement that the system
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∇h(x̄)z̄ = 0,

∇gi (x̄)z̄ = 0, i ∈ I g(x̄),

∇Gi (x̄)z̄ = 0, i ∈ I+0(x̄),

∇Gi (x̄)z̄ ≤ −1, i ∈ I 00(x̄),

∇Hi (x̄)z̄ = 0, i ∈ I 0−(x̄) ∪ I 00(x̄) ∪ I 0+(x̄)

has a solution, which resembles the well-known Mangasarian-Fromovitz constraint
qualification (MFCQ) of nonlinear programming and it seems to be a rather weak and
possibly often fulfilled assumption.

Finally, we recall the definitions of normal cones. The regular normal cone to a
closed set � ⊂ R

m at u ∈ � can be defined as the polar cone to the tangent cone by

N̂�(u) := (T�(u))◦ = {z ∈ R
m | (z, d) ≤ 0 ∀d ∈ T�(u)}.

The limiting normal cone to a closed set � ⊂ R
m at u ∈ � is given by

N�(u) := {z ∈ R
m | ∃uk → u, zk → z with uk ∈ �, zk ∈ N̂�(uk)∀k}. (11)

In case when � is a convex set, regular and limiting normal cone coincide with the
classical normal cone of convex analysis, i.e.

N̂�(u) = N�(u) = {z ∈ R
m | (z, u − v) ≤ 0 ∀v ∈ �}. (12)

Well-known is also the following description of the limiting normal cone

N�(u) := {z ∈ R
m | ∃uk → u, zk → z with uk ∈ �, zk ∈ N�(uk)∀k}. (13)

We conclude this section by the following characterization ofM- andQ-stationarity
via limiting normal cone. Straightforward calculations yield that

NP (Fi (x̄)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R+ × {0} if i ∈ I 0−(x̄),
R × {0} ∪ {0} × R+ if i ∈ I 00(x̄),
R × {0} if i ∈ I 0+(x̄),
{0} × R+ if i ∈ I+0(x̄),
{0} × {0} if i ∈ I+−(x̄),

NP1(Fi (x̄)) = R × {0} if i ∈ I 0+(x̄) ∪ I 00(x̄) ∪ I 0−(x̄),

NP2(Fi (x̄)) =
{
R+ × R+ if i ∈ I 00(x̄),
NP (Fi (x̄)) if i ∈ I 0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄)

and hence the M-stationarity conditions (4) and (5) can be replaced by

(λh, λg, λH , λG) ∈ ND(F(x̄)) = R
|E | × {u ∈ R

|I |
+ | (u, g(x̄)) = 0} × NP |V |(F(x̄))

(14)
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and the Q-stationarity conditions (4) and (6) can be replaced by

(λ
h
, λ

g
, λ

H
, λ

G
) ∈ R

|E | × {u ∈ R
|I |
+ | (u, g(x̄)) = 0} ×

∏

i∈V
ν

β1,β2

i (x̄), (15)

(λh, λg, λH , λG) ∈ R
|E | × {u ∈ R

|I |
+ | (u, g(x̄)) = 0} ×

∏

i∈V
ν

β2,β1

i (x̄), (16)

where for (β1, β2) ∈ P(I 00(x̄)) we define

ν
β1,β2

i (x̄) :=
{
NP1(Fi (x̄)) if i ∈ I 0+(x̄) ∪ β1,

NP2(Fi (x̄)) if i ∈ I 0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄) ∪ β2.

Note also that for every i ∈ V we have

ν
I 00(x̄),∅
i (x̄) ⊂ NP (Fi (x̄)). (17)

3 Solving the auxiliary problem

In this section, we describe an algorithm for solving quadratic problemswith vanishing
constraints of the type

QPVC(ρ) min
(s,δ)∈Rn+1

1
2 s

T Bs + ∇ f s + ρ
( 1
2δ

2 + δ
)

subject to (1 − δ)hi + ∇hi s = 0 i ∈ E,

(1 − θ
g
i δ)gi + ∇gi s ≤ 0 i ∈ I,

(1 − θH
i δ)Hi + ∇His ≥ 0,(

(1 − θGi δ)Gi + ∇Gis
) (

(1 − θH
i δ)Hi + ∇His

) ≤ 0 i ∈ V,

−δ ≤ 0.
(18)

here the vector θ = (θ g, θG , θH ) ∈ {0, 1}|I |+2|V | =: B is chosen at the beginning of
the algorithm such that some feasible point is known in advance, e.g. (s, δ) = (0, 1).
The parameter ρ has to be chosen sufficiently large and acts like a penalty parameter
forcing δ to be near zero at the solution. B is a symmetric positive definite n × n
matrix,∇ f,∇hi ,∇gi ,∇Gi ,∇Hi denote row vectors inRn and hi , gi ,Gi , Hi are real
numbers. Note that this problem is a special case of problem (1) and consequently
the definition of Q− and QM− stationarity as well as the definition of index sets (2)
remain valid.

It turns out to be much more convenient to operate with a more general notation.
Let us denote by Fi := (−Hi ,Gi )

T a vector in R
2, by ∇Fi := (−∇HT

i ,∇GT
i )T a

2 × n matrix and by P1 := {0} × R and P2 := R
2− two subsets of R2. Note that for

P given by (7) it holds that P = P1 ∪ P2. The problem (18) can now be equivalently
rewritten in a form
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QPVC(ρ) min
(s,δ)∈Rn+1

1
2 s

T Bs + ∇ f s + ρ
( 1
2δ

2 + δ
)

subject to (1 − δ)hi + ∇hi s = 0 i ∈ E,

(1 − θ
g
i δ)gi + ∇gi s ≤ 0 i ∈ I,

δ(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P i ∈ V,

−δ ≤ 0.

(19)

For a given feasible point (s, δ) for the problem QPVC(ρ) we define the following
index sets

I 1(s, δ) := {i ∈ V | δ(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P1 \ P2} = I 0+(s, δ),

I 2(s, δ) := {i ∈ V | δ(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P2 \ P1}
= I+0(s, δ) ∪ I+−(s, δ),

I 0(s, δ) := {i ∈ V | δ(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P1 ∩ P2}
= I 0−(s, δ) ∪ I 00(s, δ),

where the index sets I 0+(s, δ), I+0(s, δ), I+−(s, δ), I 0−(s, δ), I 00(s, δ) are given by
(2).

Further, consider the distance function d defined by

d(x, A) := inf
y∈A

‖x − y‖1,

for x ∈ R
2 and A ⊂ R

2. The following proposition summarizes some well-known
properties of d.

Proposition 3.1 Let x ∈ R
2 and A ⊂ R

2.

1. Let B ⊂ R
2, then

d(x, A ∪ B) = min{d(x, A), d(x, B)}. (20)

In particular,

d(x, P1) = (x1)
+ + (−x1)

+, d(x, P2) = (x1)
+ + (x2)

+,

d(x, P) = (x1)
+ + (min{−x1, x2})+. (21)

2. d(·, A) : R2 → R
+ is Lipschitz continuous with Lipschitz modulus L = 1 and

consequently
d(x, A) ≤ d(x + y, A) + ‖y‖1. (22)

3. d(·, A) : R2 → R
+ is convex, provided A is convex.

Due to the disjunctive structure of the auxiliary problem we can subdivide it into
severalQP-pieces. For every partition (V1, V2) ∈ P(V )wedefine the convex quadratic
problem
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QP(ρ, V1) min
(s,δ)∈Rn+1

1
2 s

T Bs + ∇ f s + ρ
( 1
2δ

2 + δ
)

subject to (1 − δ)hi + ∇hi s = 0 i ∈ E,

(1 − θ
g
i δ)gi + ∇gi s ≤ 0 i ∈ I,

δ(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P1 i ∈ V1,
δ(θH

i Hi ,−θGi Gi )
T + Fi + ∇Fi s ∈ P2 i ∈ V2,

−δ ≤ 0.

(23)

Since (V1, V2) form a partition of V it is sufficient to define V1 since V2 is given by
V2 = V \ V1.

At the solution (s, δ) of QP(ρ, V1) there is a corresponding multiplier λ(ρ, V1) =
(λh, λg, λH , λG) and a number λδ ≥ 0 with λδδ = 0 fulfilling the KKT conditions:

Bs + ∇ f T +
∑

i∈E
λhi ∇hTi +

∑

i∈I
λ
g
i ∇gTi +

∑

i∈V
∇FT

i λF
i = 0, (24)

ρ(δ + 1) − λδ −
∑

i∈E
λhi hi −

∑

i∈I
λ
g
i θ

g
i gi +

∑

i∈V
(θH

i Hi ,−θGi Gi )λ
F
i = 0, (25)

λ
g
i ((1 − θ

g
i δ)gi + ∇gi s) = 0, λ

g
i ≥ 0, i ∈ I, (26)

λF
i ∈ NP1(δ(θH

i Hi ,−θGi Gi )
T + Fi + ∇Fi s), i ∈ V1, (27)

λF
i ∈ NP2(δ(θH

i Hi ,−θGi Gi )
T + Fi + ∇Fi s), i ∈ V2, (28)

where λF
i := (λH

i , λG
i )T for i ∈ V . Since P1 and P2 are convex sets, the above

normal cones are given by (12).
The definition of the problem QP(ρ, V1) allows the following interpretation of

Q-stationarity, which is a direct consequence of (15) and (16).

Lemma 3.1 A point (s, δ) isQ-stationary with respect to (β1, β2) ∈ P(I 00(s, δ)) for
(19) if and only if it is the solution of the convex problems QP(ρ, I 1(s, δ) ∪ β1) and
QP(ρ, I 1(s, δ) ∪ β2).

Moreover, since for V1 = I 1(s, δ) ∪ I 00(s, δ) the conditions (27),(28) read as

λF
i ∈ ν

I 00(s,δ),∅
i (s, δ), it follows from (17) that if a point (s, δ) is the solution of

QP(ρ, I 1(s, δ) ∪ I 00(s, δ)) then it is M-stationary for (19).
Finally, let us denote by δ̄(V1) the objective value at a solution of the problem

min
(s,δ)∈Rn+1

δ subject to the constraints of (23). (29)

An outline of the algorithm for solving QPVC(ρ) is as follows.

Algorithm 3.1 (Solving the QPVC) Let ζ ∈ (0, 1), ρ̄ > 1 and ρ > 0 be given.

1: Initialize:
Set the starting point (s0, δ0) := (0, 1), define the vector θ by

θ
g
i :=

{
1 if gi > 0,
0 if gi ≤ 0,

(θHi , θGi ) :=
⎧
⎨

⎩

(0, 0) if d(Fi , P) = 0,
(1, 0) if 0 < d(Fi , P

1) ≤ d(Fi , P
2),

(0, 1) if 0 < d(Fi , P
2) < d(Fi , P

1)

(30)
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and set the partition V 1
1 := I 1(s0, δ0) and the counter of pieces t := 0.

Compute (s1, δ1) as the solution and λ1 as the corresponding multiplier of the
convex problem QP(ρ, V 1

1 ) and set t := 1.
If δ1 > δ0, perform a restart: set ρ := ρρ̄ and go to step 1.

2: Improvement step:
while (st , δt ) is not a solution of the following four convex problems:

QP(ρ, I 1(st , δt ) ∪ (I 00(st , δt ) ∩ V t
1 )),

QP(ρ, I 1(st , δt ) ∪ (I 00(st , δt ) \ V t
1 )), (31)

QP(ρ, I 1(st , δt )), QP(ρ, I 1(st , δt ) ∪ I 00(st , δt )). (32)

Compute (st+1, δt+1) as the solution and λt+1 as the corresponding multiplier
of the first problem with (st+1, δt+1) �= (st , δt ), set V t+1

1 to the corresponding
index set and increase the counter t of pieces by 1.
If δt > δt−1, perform a restart: set ρ := ρρ̄ and go to step 1.

3: Check for successful termination:
If δt < ζ set N := t , stop the algorithm and return.

4: Check the degeneracy:
If the non-degeneracy condition

min{δ̄(I 1(st , δt )), δ̄(I 1(st , δt ) ∪ I 00(st , δt ))} < ζ (33)

is fulfilled, perform a restart: set ρ := ρρ̄ and go to step 1.
Else stop the algorithm because of degeneracy.

The selection of the index sets in step 2 is motivated by Lemma 3.1, since if (s, δ)
is the solution of convex problems (31), then it isQ-stationary and if (s, δ) is also the
solution of convex problems (32), then it is even QM -stationary for problem (19).

We first summarize some consequences of the Initialization step.

Proposition 3.2 1. Vector θ is chosen in a way that for all i ∈ V it holds that

‖(θH
i Hi ,−θGi Gi )

T ‖1 = d(Fi , P). (34)

2. Partition (V 1
1 , V 1

2 ) is chosen in a way that for j = 1, 2 it holds that

i ∈ V 1
j implies d(Fi , P) = d(Fi , P

j ). (35)

Proof 1. If d(Fi , P) = 0 we have (θH
i , θGi ) = (0, 0) and (34) obviously holds. If

0 < d(Fi , P1) ≤ d(Fi , P2) we have (θH
i , θGi ) = (1, 0) and we obtain

‖(θH
i Hi ,−θGi Gi )

T ‖1 = |Hi | = d(Fi , P
1) = d(Fi , P)
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by (21) and (20). Finally, if 0 < d(Fi , P2) < d(Fi , P1) we have Hi < 0 <

Gi , (θ
H
i , θGi ) = (0, 1) and thus

‖(θH
i Hi ,−θGi Gi )

T ‖1 = |Gi | = (Hi )
+ + (Gi )

+ = d(Fi , P
2) = d(Fi , P)

follows again by (21) and (20).
2. If (θH

i Hi ,−θGi Gi )
T + Fi ∈ P j for some i ∈ V and j = 1, 2, by (22) and (34)

we obtain

d(Fi , P
j ) ≤ ‖(θH

i Hi ,−θGi Gi )
T ‖1 = d(Fi , P)

and consequently d(Fi , P j ) = d(Fi , P), because of (20). Hence we conclude that i ∈
(I j (s0, δ0)∪ I 0(s0, δ0)) implies d(Fi , P j ) = d(Fi , P) for j = 1, 2 and the statement
now follows from the fact that V 1

1 = I 1(s0, δ0) and V 1
2 = I 2(s0, δ0) ∪ I 0(s0, δ0). ��

The following lemma plays a crucial part in proving the finiteness of the Algo-
rithm 3.1.

Lemma 3.2 For each partition (V1, V2) ∈ P(V ) there exists a positive constant
Cρ(V1) such that for every ρ ≥ Cρ(V1) the solution (s, δ) of QP(ρ, V1) fulfills
δ = δ̄(V1).

Proof Let (s(V1), δ(V1)) denote a solution of (29). Since δ(V1) = δ̄(V1), it follows
that the problem

min
s∈Rn

1
2 s

T Bs + ∇ f s

subject to (1 − δ̄(V1))hi + ∇hi s = 0 i ∈ E,

(1 − θ
g
i δ̄(V1))gi + ∇gi s ≤ 0 i ∈ I,

δ̄(V1)(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P1 i ∈ V1,

δ̄(V1)(θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s ∈ P2 i ∈ V2

(36)

is feasible and by s̄(V1) we denote the solution of this problem and by λ̄(V1) the
corresponding multiplier. Further, (s̄(V1), δ̄(V1)) is a solution of (29) and by λ(V1)
we denote the corresponding multiplier.

Then, triple (s̄(V1), δ̄(V1)) and λ̄(V1) fulfills (24) and (26)–(28). Moreover, triple
(s̄(V1), δ̄(V1)) and λ(V1) fulfills (26)-(28) and

∑

i∈E
λ(V1)

h
i ∇hTi +

∑

i∈I
λ(V1)

g
i ∇gTi +

∑

i∈V
∇FT

i λ(V1)
F
i = 0, (37)

1 − λδ −
∑

i∈E
λ(V1)

h
i hi −

∑

i∈I
λ(V1)

g
i θ

g
i gi +

∑

i∈V
(θH

i Hi ,−θGi Gi )λ(V1)
F
i = 0

(38)

for some λδ ≥ 0 with λδδ̄(V1) = 0.
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Let Cρ(V1) be a positive constant such that for all ρ ≥ Cρ(V1) we have

α := ρ(δ̄(V1) + 1) −
∑

i∈E
λ̄(V1)

h
i hi −

∑

i∈I
λ̄(V1)

g
i θ

g
i gi

+
∑

i∈V
(θH

i Hi ,−θGi Gi )λ̄(V1)
F
i ≥ 0

and set λ̃δ := αλδ ≥ 0 and λ̃ := λ̄(V1) + αλ(V1). We will now show that for such ρ

it holds that (s̄(V1), δ̄(V1)) is the solution of QP(ρ, V1).
Clearly, λ̃δ δ̄(V1) = αλδδ̄(V1) = 0 and the triple (s̄(V1), δ̄(V1)) and λ̃ also fulfills

(24) due to (37) and it fulfills (26)-(28) due to the convexity of the normal cones.
Moreover, taking into account the definitions of α, λ̃δ and λ̃ together with (38), we
obtain

ρ(δ̄(V1) + 1) − λ̃δ −
∑

i∈E
λ̃hi hi −

∑

i∈I
λ̃
g
i θ

g
i gi +

∑

i∈V
(θH

i Hi ,−θGi Gi )λ̃
F
i

= α − αλδ − α(1 − λδ) = 0,

showing also (25). Hence (s̄(V1), δ̄(V1)) is the solution of QP(ρ, V1) and the proof
is complete. ��

We now formulate the main theorem of this section.

Theorem 3.1 1. Algorithm 3.1 is finite.
2. If the Algorithm 3.1 is not terminated because of degeneracy, then (sN , δN ) is

QM-stationary for the problem (19) and δN < ζ .

Proof 1. The algorithm is obviously finite unless we perform a restart and hence
increase ρ. Thus we can assume that ρ is sufficiently large, say

ρ ≥ Cρ := max
(V1,V2)∈P(V )

Cρ(V1),

with Cρ(V1) given by the previous lemma. However this means, taking into account
also Proposition 3.3 (1.), that (st−1, δt−1) is feasible for the problem QP(ρ, V t

1 )

for all t , hence δt−1 ≥ δ̄(V t
1 ) and (st , δt ) is the solution of QP(ρ, V t

1 ), implying
δt = δ̄(V t

1 ) and consequently δt ≤ δt−1. Therefore we do not perform a restart in step
1 or step 2. On the other hand, since we enter steps 3 and 4 with δt = δ̄(I 1(st , δt )) =
δ̄(I 1(st , δt ) ∪ I 00(st , δt )), we either terminate the algorithm in step 3 with δt < ζ if
the non-degeneracy condition (33) is fulfilled or we terminate the algorithm because
of degeneracy in step 4. This finishes the proof.

2. The statement regarding stationarity follows easily from the fact that we enter
step 3 of the algorithm only when (s, δ) is a solution of problems (32) and this means
that it is also Q-stationary with respect to (∅, I 00(sN , δN )) by Lemma 3.1. Thus,
(s, δ) is also QM -stationary for problem (19). The claim about δ follows from the
assumption that the Algorithm 3.1 is not terminated because of degeneracy. ��
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We conclude this section with the following proposition that brings together the
basic properties of the Algorithm 3.1.

Proposition 3.3 If the Algorithm 3.1 is not terminated because of degeneracy, then
the following properties hold:

1. For all t = 1, . . . , N the points (st−1, δt−1) and (st , δt ) are feasible for the
problem QP(ρ, V t

1 ) and the point (st , δt ) is also the solution of the convex problem
QP(ρ, V t

1 ).
2. For all t = 1, . . . , N it holds that

0 ≤ δt ≤ δt−1 ≤ 1. (39)

3. There exists a constant Ct , dependent only on the number of constraints, such that

N ≤ Ct . (40)

Proof 1. By definitions of the problems QPVC(ρ) and QP(ρ, V1) it follows that a
point (s, δ), feasible for QPVC(ρ), is feasible for QP(ρ, V1) if and only if

I 1(s, δ) ⊂ V1 ⊂ I 1(s, δ) ∪ I 0(s, δ). (41)

The point (s0, δ0) is clearly feasible for QP(ρ, V 1
1 ) and similarly the point (st , δt )

is feasible for QP(ρ, V t+1
1 ) for all t = 1, . . . , N − 1, since the partition V t+1

1 is
defined by one of the index sets of (31)-(32) and thus fulfills (41). However, feasibility
of (st+1, δt+1) for QP(ρ, V t+1

1 ), together with (st+1, δt+1) being the solution of
QP(ρ, V t+1

1 ), then follows from its definition.
2. Statement follows from δ0 = 1, from the fact that we perform a restart whenever

δt > δt−1 occurs and from the constraint −δ ≤ 0.
3. Since whenever the parameter ρ is increased the algorithm goes to the step 1

and thus the counter t of the pieces is reset to 0, it follows that after the last time the
algorithm enters step 1 we keep ρ constant. It is obvious that all the index sets V t

1 are
pairwise different implying that the maximum of switches to a new piece is 2|V |. ��

4 The basic SQP algorithm for MPVC

An outline of the basic algorithm is as follows.

Algorithm 4.1 (Solving the MPVC)

1: Initialization:
Select a starting point x0 ∈ R

n together with a positive definite n × n matrix
B0, a parameter ρ0 > 0 and constants ζ ∈ (0, 1) and ρ̄ > 1.
Select positive penalty parameters σ−1 = (σ h−1, σ

g
−1, σ

F−1).
Set the iteration counter k := 0.

2: Solve the Auxiliary problem:
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Run Algorithm 3.1 with data ζ, ρ̄, ρ := ρk, B := Bk,∇ f := ∇ f (xk), hi :=
hi (xk),∇hi := ∇hi (xk), i ∈ E, etc.
If the Algorithm 3.1 stops because of degeneracy, stop the Algorithm 4.1 with
an error message.
If the final iterate sN is zero, stop the Algorithm 4.1 and return xk as a solution.

3: Next iterate:
Compute new penalty parameters σk .
Set xk+1 := xk + sk where sk is a point on the polygonal line connecting the
points s0, s1, . . . , sN such that an appropriate merit function depending on σk
is decreased.
Set ρk+1 := ρ, the final value of ρ in Algorithm 3.1.
Update Bk to get positive definite matrix Bk+1.
Set k := k + 1 and go to step 2.

Remark 4.1 We terminate the Algorithm 4.1 only in the following two cases. In the
first case no sufficient reduction of the violation of the constraints can be achieved.
The second case will be satisfied only by chance when the current iterate is a QM -
stationary solution. Normally, this algorithm produces an infinite sequence of iterates
and we must include a stopping criterion for convergence. Such a criterion could be
that the violation of the constraints at some iterate is sufficiently small,

max

{
max
i∈E |hi (xk)|,max

i∈I (gi (xk))
+,max

i∈V d(Fi (xk), P)

}
≤ εC ,

where Fi is given by (7) and the expected decrease in our merit function is sufficiently
small,

(
sNk
k

)T
Bks

Nk
k ≤ ε1,

see Proposition 4.1 below.

4.1 The next iterate

Denote the outcome of Algorithm 3.1 at the k−th iterate by

(stk, δ
t
k), λ

t
k, (V

t
1,k, V

t
2,k) for t = 0, . . . , Nk and θk, λ

Nk
k , λ

Nk
k .

The new penalty parameters are computed by

σ h
i,k =

{
ξ2λ̃

h
i,k if σ h

i,k−1 < ξ1λ̃
h
i,k,

σ h
i,k−1 else,

σ
g
i,k =

{
ξ2λ̃

g
i,k if σ

g
i,k−1 < ξ1λ̃

g
i,k,

σ
g
i,k−1 else,

σ F
i,k =

{
ξ2λ̃

F
i,k if σ F

i,k−1 < ξ1λ̃
F
i,k−1,

σ F
i,k−1 else,

(42)
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where
λ̃hi,k = max |λh,t

i,k |, λ̃
g
i,k = max |λg,t

i,k |, λ̃F
i,k = max ‖λF,t

i,k ‖∞, (43)

with maximum being taken over t ∈ {1, . . . , Nk} and 1 < ξ1 < ξ2. Note that this
choice of σk ensures

σ h
k ≥ λ̃hk , σ

g
k ≥ λ̃

g
k , σ F

k ≥ λ̃F
k . (44)

4.1.1 The merit function

We are looking for the next iterate at the polygonal line connecting the points
s0k , s

1
k , . . . , s

Nk
k . For each line segment [st−1

k , stk] := {(1 − α)st−1
k + αstk | α ∈

[0, 1]}, t = 1, . . . , Nk we consider the functions

φt
k(α) := f (xk + s) +

∑

i∈E
σ h
i,k |hi (xk + s)| +

∑

i∈I
σ
g
i,k(gi (xk + s))+

+
∑

i∈V t
1,k

σ F
i,kd(Fi (xk + s), P1) +

∑

i∈V t
2,k

σ F
i,kd(Fi (xk + s), P2),

φ̂t
k(α) := f + ∇ f s + 1

2
sT Bks +

∑

i∈E
σ h
i,k |hi + ∇hi s| +

∑

i∈I
σ
g
i,k(gi + ∇gi s)

+

+
∑

i∈V t
1,k

σ F
i,kd(Fi + ∇Fi s, P

1) +
∑

i∈V t
2,k

σ F
i,kd(Fi + ∇Fi s, P

2),

where s = (1 − α)st−1
k + αstk and f = f (xk),∇ f = ∇ f (xk), hi = hi (xk),∇hi =

∇hi (xk), i ∈ E, etc. and we further denote

r tk,0 := φ̂t
k(0) − φ̂1

k (0), r tk,1 := φ̂t
k(1) − φ̂1

k (0). (45)

Lemma 4.1 1. For every t ∈ {1, . . . , Nk} the function φ̂t
k is convex.

2. For every t ∈ {1, . . . , Nk} the function φ̂t
k is a first order approximation of φ

t
k , that

is

|φt
k(α) − φ̂t

k(α)| = o(‖s‖),

where s = (1 − α)st−1
k + αstk .

Proof 1. By convexity of P1 and P2, φ̂t
k is convex because it is sum of convex func-

tions.
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2. By Lipschitz continuity of distance function with Lipschitz modulus L = 1 we
conclude

∣∣∣φt
k(α) − φ̂t

k(α)

∣∣∣ ≤ | f (xk + s) − f − ∇ f s − 1

2
sT Bks|

+
∑

i∈E
σ h
i,k |hi (xk + s) − hi − ∇hi s|

+
∑

i∈I
σ
g
i,k |gi (xk + s) − gi − ∇gi s|

+
∑

i∈V
σ F
i,k‖Fi (xk + s) − Fi − ∇Fi s‖1

and hence the assertion follows. ��
We state now the main result of this subsection. For the sake of simplicity we omit

the iteration index k in this part.

Proposition 4.1 For every t ∈ {1, . . . , Nk}

φ̂t (0) − φ̂1(0) ≤ −
t−1∑

τ=1

1

2
(sτ − sτ−1)T B(sτ − sτ−1) ≤ 0, (46)

φ̂t (1) − φ̂1(0) ≤ −
t∑

τ=1

1

2
(sτ − sτ−1)T B(sτ − sτ−1) ≤ 0. (47)

Proof Fix t ∈ {1, . . . , Nk} and note that

1/2(st )T Bst + ∇ f st = 1/2(st )T Bst + ∇ f st − 1/2(s0)T Bs0 − ∇ f s0

=
t∑

τ=1

1/2(sτ )T Bsτ − 1/2(sτ−1)T Bsτ−1 + ∇ f (sτ − sτ−1),

because of s0 = 0. For j = 0, 1 consider r t+ j
1− j defined by (45). We obtain

r t+ j
1− j =

t∑

τ=1

(
1

2
(sτ )T Bsτ − 1

2
(sτ−1)T Bsτ−1 + ∇ f (sτ − sτ−1)

)

+
∑

i∈E
σ h
i

(|hi + ∇hi s
t | − |hi |

) +
∑

i∈I
σ
g
i

(
(gi + ∇gi s

t )+ − (gi )
+)

+
∑

i∈V t+ j
1

σ F
i d(Fi + ∇Fi s

t , P1) +
∑

i∈V t+ j
2

σ F
i d(Fi + ∇Fi s

t , P2)

−
∑

i∈V 1
1

σ F
i d(Fi , P

1) −
∑

i∈V 1
2

σ F
i d(Fi , P

2). (48)
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Using that (sτ , δτ ) is the solution of QP(ρ, V τ
1 ) and multiplying the first order

optimality condition (24) by (sτ − sτ−1)T yields

(sτ − sτ−1)T

(
Bsτ + ∇ f T +

∑

i∈E
λ
h,τ
i ∇hTi +

∑

i∈I
λ
g,τ
i ∇gTi +

∑

i∈V
∇FT

i λ
F,τ
i

)
= 0.

(49)
Summing up the expression on the left hand side from τ = 1 to t , subtracting it from
the right hand side of (48) and taking into account the identity

1/2(sτ )T Bsτ − 1/2(sτ−1)T Bsτ−1 − (sτ − sτ−1)T Bsτ

= −1/2(sτ − sτ−1)T B(sτ − sτ−1)

we obtain for j = 0, 1

r t+ j
1− j = −

t∑

τ=1

1

2
(sτ − sτ−1)T B(sτ − sτ−1)

+
∑

i∈E

(
σ h
i (|hi + ∇hi s

t | − |hi |) −
t∑

τ=1

λ
h,τ
i ∇hi (s

τ − sτ−1)

)

+
∑

i∈I

(
σ
g
i ((gi + ∇gi s

t )+ − (gi )
+) −

t∑

τ=1

λ
g,τ
i ∇gi (s

τ − sτ−1)

)

+
∑

i∈V t+ j
1

σ F
i d(Fi + ∇Fi s

t , P1) +
∑

i∈V t+ j
2

σ F
i d(Fi + ∇Fi s

t , P2)

−
∑

i∈V 1
1

σ F
i d(Fi , P

1) −
∑

i∈V 1
2

σ F
i d(Fi , P

2) −
∑

i∈V

t∑

τ=1

(λ
F,τ
i )T∇Fi (s

τ − sτ−1).

(50)

First, we claim that

−
∑

i∈V

t∑

τ=1

(λ
F,τ
i )T∇Fi (s

τ − sτ−1) ≤
∑

i∈V
λ̃F
i (1 − δt )d(Fi , P). (51)

Consider i ∈ V and τ ∈ {1, . . . , t} with i ∈ V τ
1 . By the feasibility of (sτ , δτ ) and

(sτ−1, δτ−1) for QP(ρ, V τ
1 ) it follows that

δτ (θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s
τ ∈ P1, δτ−1(θH

i Hi ,−θGi Gi )
T

+Fi + ∇Fi s
τ−1 ∈ P1
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and hence from (27) and (12) we conclude

−(λ
F,τ
i )T

(
∇Fi (s

τ − sτ−1) + (δτ − δτ−1)(θH
i Hi ,−θGi Gi )

T
)

≤ 0

and consequently

− (λ
F,τ
i )T∇Fi (s

τ − sτ−1) ≤ (λ
F,τ
i )T (δτ − δτ−1)(θH

i Hi ,−θGi Gi )
T

≤ λ̃F
i (δτ−1 − δτ )d(Fi , P) (52)

follows by the Hölder inequality and (34).
Analogous argumentation yields (52) also for i, τ with i ∈ V τ

2 and since V τ
1 , V τ

2
form a partition of V , the claimed inequality (51) follows.

Further, we claim that for j = 0, 1 it holds that

∑

i∈V t+ j
1

σ F
i d(Fi + ∇Fi s

t , P1) +
∑

i∈V t+ j
2

σ F
i d(Fi + ∇Fi s

t , P2) ≤
∑

i∈V
σ F
i δt d(Fi , P).

(53)
From feasibility of (st , δt ) for either QP(ρ, V t

1 ) or QP(ρ, V t+1
1 ) for i ∈ V t

1 ∪ V t+1
1

it follows that

δt (θH
i Hi ,−θGi Gi )

T + Fi + ∇Fi s
t ∈ P1

and hence, using (34) and (22),

σ F
i d(Fi + ∇Fi s

t , P1) ≤ σ F
i ‖δt (θH

i Hi ,−θGi Gi )
T ‖1 = σ F

i δt d(Fi , P). (54)

Again, for i ∈ V t
2 or i ∈ V t+1

2 it holds that σ F
i d(Fi +∇Fi st , P2) ≤ σ F

i δt d(Fi , P)

by analogous argumentation and since V t
1 , V

t
2 and V t+1

1 , V t+1
2 form a partition of V ,

the claimed inequality (53) follows.
Finally, we have

−
∑

i∈V 1
1

σ F
i d(Fi , P

1) −
∑

i∈V 1
2

σ F
i d(Fi , P

2) = −
∑

i∈V
σ F
i d(Fi , P), (55)

due to the fact that V 1
1 , V 1

2 form a partition of V and (35).
Similar arguments as above show

σ h
i (|hi + ∇hi s

t | − |hi |) −
t∑

τ=1

λ
h,τ
i ∇hi (s

τ − sτ−1)

≤ (σ h
i − λ̃hi )(δ

t − 1)|hi |, i ∈ E,

σ
g
i ((gi + ∇gi s

t )+ − (gi )
+) −

t∑

τ=1

λ
g,τ
i ∇gi (s

τ − sτ−1)

≤ (σ
g
i − λ̃

g
i )(δ

t − 1)(gi )
+, i ∈ I.
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Taking this into account and putting together (50), (51), (53) and (55) we obtain for
j = 0, 1

r t+ j
1− j ≤ −

t∑

τ=1

1

2
(sτ − sτ−1)T B(sτ − sτ−1)

−
∑

i∈V
(σ F

i − λ̃F
i )(1 − δt )d(Fi , P) −

∑

i∈E
(σ h

i − λ̃hi )(1 − δt )|hi |

−
∑

i∈I
(σ

g
i − λ̃

g
i )(1 − δt )(gi )

+

and hence (46) and (47) follow by monotonicity of δ and (44). This completes the
proof. ��

4.1.2 Searching for the next iterate

We choose the next iterate as a point from the polygonal line connecting the points
s0k , . . . , s

Nk
k . Each line segment [st−1

k , stk] corresponds to the convex subproblemsolved
by Algorithm 3.1 and hence each line search function φ̂t

k corresponds to the usual �1
merit function fromnonlinear programming. Thismakes it technicallymore difficult to
prove the convergence behavior stated in Proposition 4.2 which is also the motivation
for the following procedure.

First we parametrize the polygonal line connecting the points s0k , . . . , s
Nk
k by its

length as a curve ŝk : [0, 1] → R
n in the following way. We define tk(1) := Nk , for

every γ ∈ [0, 1) we denote by tk(γ ) the smallest number t such that Stk > γ SNk
k and

we set αk(1) := 1,

αk(γ ) := γ SNk
k − Stk (γ )−1

k

Stk (γ )

k − Stk (γ )−1
k

, γ ∈ [0, 1),

where S0k := 0, Stk := ∑t
τ=1 ‖sτ

k − sτ−1
k ‖ for t = 1, . . . , Nk . Then we define

ŝk(γ ) = stk (γ )−1
k + αk(γ )(stk (γ )

k − stk (γ )−1
k ).

Note that ‖ŝk(γ )‖ ≤ γ SNk
k .

In order to simplify the proof of Proposition 4.2, for γ ∈ [0, 1] we further consider
the following line search functions

Yk(γ ) := φ
tk (γ )

k (αk(γ )), Ŷk(γ ) := φ̂
tk (γ )

k (αk(γ )),

Zk(γ ) := (1 − αk(γ ))φ̂
tk (γ )

k (0) + αk(γ )φ̂
tk (γ )

k (1). (56)

Now consider some sequence of positive numbers γ k
1 = 1, γ k

2 , γ k
3 , . . . with 1 >

γ̄ ≥ γ k
j+1/γ

k
j ≥ γ > 0 for all j ∈ N. Consider the smallest j , denoted by j (k) such

that for some given constant ξ ∈ (0, 1) one has
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Yk(γ
k
j ) − Yk(0) ≤ ξ

(
Zk(γ

k
j ) − Zk(0)

)
. (57)

Then the new iterate is given by

xk+1 := xk + ŝk(γ
k
j (k)).

As can be seen from the proof of Lemma 4.5, this choice ensures a decrease in merit
function � defined in the next subsection.

The following relations are direct consequences of the properties of φt
k and φ̂t

k

|Yk(γ ) − Ŷk(γ )| = o(γ SNk
k ), Ŷk(γ ) ≤ Zk(γ ), Zk(γ ) − Zk(0) ≤ 0. (58)

The last property holds due to Proposition 4.1 and

Zk(γ ) − Zk(0) = (1 − αk(γ ))r tk(γ )

k,0 + αk(γ )r tk(γ )

k,1 , (59)

which follows from αk(0) = 0, Stk (0)−1
k = 0 and hence φ̂

tk (0)
k (0) = φ̂1

k (0). We recall
that r tk,0 and r

t
k,1 are defined by (45).

Lemma 4.2 The new iterate xk+1 is well defined.

Proof In order to show that the new iterate is well defined, we have to prove the
existence of some j such that (57) is fulfilled. Note that Stk (0)−1

k = 0 and Stk (0)k >

0. There is some δk > 0 such that |Yk(γ ) − Ŷk(γ )| ≤ −(1−ξ)r
tk (0)
k,1 γ S

Nk
k

S
tk (0)
k

, whenever

γ SNk
k ≤ δk . Since lim j→∞ γ k

j = 0, we can choose j sufficiently large to fulfill

γ k
j S

Nk
k < min{δk, Stk (0)k } and then tk(γ k

j ) = tk(0) and αk(γ
k
j ) = γ k

j S
Nk
k /Stk (0)k , since

Stk (0)−1
k = 0. This yields

Yk(γ
k
j ) − Ŷk(γ

k
j ) ≤ −(1 − ξ)αk(γ

k
j )r

tk(γ k
j )

k,1 . (60)

Then by second property of (58), (59), taking into account r
tk(γ k

j )

k,0 ≤ 0 by Proposi-
tion 4.1 and Yk(0) = Zk(0) we obtain

Yk(γ
k
j ) − Yk(0) ≤ Ŷk(γ

k
j ) − Yk(0) − (1 − ξ)αk(γ

k
j )r

tk (γ k
j )

k,1

≤ ξ(Zk(γ
k
j ) − Zk(0)) + (1 − ξ)

(
Zk(γ

k
j ) − Zk(0) − αk(γ

k
j )r

tk (γ k
j )

k,1

)

≤ ξ(Zk(γ
k
j ) − Zk(0)) + (1 − ξ)(1 − αk(γ

k
j ))r

tk (γ k
j )

k,0

≤ ξ(Zk(γ
k
j ) − Zk(0)).

Thus (57) is fulfilled for this j and the lemma is proved. ��
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4.2 Convergence of the basic algorithm

We consider the behavior of the Algorithm 4.1 when it does not prematurely stop and
it generates an infinite sequence of iterates

xk, Bk, (s
t
k, δ

t
k), λ

t
k, (V

t
1,k, V

t
2,k), t = 0, . . . , Nk and θk, λ

Nk
k , λ

Nk
k .

Note that δNk
k < ζ . We discuss the convergence behavior under the following assump-

tion.

Assumption 1 1. There exist constants Cx ,Cs,Cλ such that

‖xk‖ ≤ Cx , SNk
k ≤ Cs, λ̂hk , λ̂

g
k , λ̂

F
k ≤ Cλ

for all k, where λ̂hk := maxi∈E {λ̃hi,k}, λ̂g
k := maxi∈I {λ̃g

i,k}, λ̂F
k := maxi∈V {λ̃F

i,k}.
2. There exist constants C̄B,CB such that CB ≤ λ(Bk), ‖Bk‖ ≤ C̄B for all k, where

λ(Bk) denotes the smallest eigenvalue of Bk .

For our convergence analysis we need one more merit function

�k(x) := f (x) +
∑

i∈E
σ h
i,k |hi (x)| +

∑

i∈I
σ
g
i,k(gi (x))

+ +
∑

i∈V
σ F
i,kd(Fi (x), P).

Lemma 4.3 For each k and for any γ ∈ [0, 1] it holds that

�k(xk + ŝk(γ )) ≤ Yk(γ ) and �k(xk) = Yk(0). (61)

Proof The first claim follows from the definitions of �k and Yk and the estimate

d(Fi (xk + s), P1), d(Fi (xk + s), P2) ≥ min{d(Fi (xk + s), P1), d(Fi (xk + s), P2)}
= d(Fi (xk + s), P),

which holds by (20). The second claim follows from (35). ��
A simple consequence of the way that we define the penalty parameters in (42) is

the following lemma.

Lemma 4.4 Under Assumption 1 there exists some k̄ such that for all k ≥ k̄ the
penalty parameters remain constant, σ̄ := σk and consequently �k(x) = �k̄(x).

Remark 4.2 Note that we do not use�k for calculating the new iterate because its first
order approximation is in general not convex on the line segments connecting st−1

k
and stk due to the involved min operation.

Lemma 4.5 Assume that Assumption 1 is fulfilled. Then

lim
k→∞ Yk(γ

k
j (k)) − Yk(0) = 0. (62)

123



382 M. Benko, H. Gfrerer

Proof Take an existed k̄ from Lemma 4.4. Then we have for k ≥ k̄

�k+1(xk+1) = �k̄(xk+1) = �k̄(xk + ŝk(γ
k
j (k)))

= �k(xk + ŝk(γ
k
j (k))) ≤ Yk(γ

k
j (k)) < Yk(0) = �k(xk)

and therefore �k+1(xk+1) − �k(xk) ≤ Yk(γ k
j (k)) − Yk(0) < 0. Hence the sequence

�k(xk) is monotonically decreasing and therefore convergent, because it is bounded
below by Assumption 1. Hence

−∞ < lim
k→∞ �k(xk) − �k̄(xk̄) =

∞∑

k=k̄

(�k+1(xk+1) − �k(xk))

≤
∞∑

k=k̄

(Yk(γ
k
j (k)) − Yk(0))

and the assertion follows. ��
Proposition 4.2 Assume that Assumption 1 is fulfilled. Then

lim
k→∞ Ŷk(1) − Ŷk(0) = 0 (63)

and consequently
lim
k→∞ ‖sNk

k ‖ = 0. (64)

Proof We prove (63) by contraposition. Assuming on the contrary that (63) does not
hold, by taking into account Ŷk(1) − Ŷk(0) ≤ 0 by Proposition 4.1, there exists a
subsequence K = {k1, k2, . . .} such that Ŷk(1) − Ŷk(0) ≤ r̄ < 0. By passing to
a subsequence we can assume that for all k ∈ K we have k ≥ k̄ with k̄ given by
Lemma 4.4 and Nk = N̄ , where we have taken into account (40). By passing to a
subsequence once more we can also assume that

lim
k

K→ ∞
Stk = S̄t , lim

k
K→ ∞

r tk,1 = r̄ t1, lim
k

K→ ∞
r tk,0 = r̄ t0, ∀t ∈ {1, . . . , N̄ },

where r tk,1 and r
t
k,0 are defined by (45). Note that r̄ N̄1 ≤ r̄ < 0.

Let us first consider the case S̄ N̄ = 0. There exists δ > 0 such that |Yk(γ )−Ŷk(γ )| ≤
(ξ − 1)r̄ N̄1 γ SN̄k ∀k ∈ K , whenever γ SN̄k ≤ δ. Since S̄ N̄ = 0 we can assume that

SN̄k ≤ min{δ, 1/2} ∀k ∈ K . Then

Yk(1) − Yk(0) ≤ r N̄k,1 + (ξ − 1)r̄ N̄1 SN̄k ≤ r N̄k,1 + (ξ − 1)r N̄k,1 = ξr N̄k,1

= ξ(Zk(1) − Zk(0)) ≤ ξ r̄ N̄1
2

< 0
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and this implies that for the next iterate we have j (k) = 1 and hence γ k
j (k) = 1,

contradicting (62).
Now consider the case S̄N �= 0 and let us define the number τ̄ := max{t | S̄t =

0} + 1. Note that Proposition 4.1 yields

r tk,1, r
t+1
k,0 ≤ −λ(Bk)

2

t∑

τ=1

‖sτ
k − sτ−1

k ‖2 ≤ −CB

2

1

t

(
t∑

τ=1

‖sτ
k − sτ−1

k ‖
)2

= −CB

2

1

t
(Stk)

2 (65)

and therefore r̃ := maxt>τ̄ r̄ t < 0, where r̄ t := max{r̄ t0, r̄ t1}. By passing to a subse-

quence we can assume that for every t > τ̄ and every k ∈ K we have r tk,0, r
t
k,1 ≤ r̄ t

2 .

Now assume that for infinitely many k ∈ K we have γ k
j (k)S

N̄
k ≥ Sτ̄

k , i.e. tk(γ
k
j (k)) >

τ̄ . Then we conclude

Yk(γ
k
j (k)) − Yk(0) ≤ ξ(Zk(γ

k
j (k)) − Zk(0))

= ξ

(
(1 − αk(γ

k
j (k)))r

tk(γ k
j (k))

k,0 + αk(γ
k
j (k))r

tk(γ k
j (k))

k,1

)
≤ ξ r̃

2
< 0

contradicting (62). Hence for all but finitely many k ∈ K , without loss of generality
for all k ∈ K , we have γ k

j (k)S
N̄
k < Sτ̄

k .
There exists δ > 0 such that

|Yk(γ ) − Ŷk(γ )| ≤ |r̄ τ̄ |(1 − ξ)γ γ SN̄k
8Sτ̄

∀k ∈ K , (66)

whenever γ SN̄k ≤ δ. By eventually choosing δ smaller we can assume δ ≤ Sτ̄ /2 and
by passing to a subsequence if necessary we can also assume that for all k ∈ K we
have

2Sτ̄−1
k /γ ≤ δ < Sτ̄

k ≤ 2Sτ̄ . (67)

Now let for each k the index j̃(k) denote the smallest j with γ j S N̄k ≤ δ. It obviously

holds that γ k
j̃(k)−1

SN̄k > δ and by (67) we obtain

Sτ̄−1
k ≤ γ δ ≤ γ γ k

j̃(k)−1
SN̄k ≤ γ k

j̃(k)
SN̄k ≤ δ < Sτ̄

k

implying tk(γ k
j̃(k)

) = τ̄ and

αk

(
γ k
j̃(k)

)
≥ γ δ − Sτ̄−1

k

Sτ̄
k − Sτ̄−1

k

≥ γ δ

4Sτ̄

by (67).
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Taking this into account together with (66) and γ k
j̃(k)

SN̄k ≤ δ we conclude

Yk
(
γ k
j̃(k)

)
− Ŷk

(
γ k
j̃(k)

)
≤

|r̄ τ̄ |(1 − ξ)γ γ k
j̃(k)

SN̄k

8Sτ̄
≤ −(1 − ξ)

γ δ

4Sτ̄
r τ̄
k,1

≤ −(1 − ξ)αk

(
γ k
j̃(k)

)
r
tk

(
γ k
j̃(k)

)

k,1 .

Now we can proceed as in the proof of Lemma 4.2 to show that j̃(k) fulfills (57).
However, this yields j̃(k) ≥ j (k) by definition of j (k) and hence γ k

j (k)S
N̄
k ≥

γ k
j̃(k)

SN̄k ≥ Sτ̄−1
k showing tk(γ k

j (k)) = tk(γ k
j̃(k)

) = τ̄ . But thenwe also haveαk(γ
k
j (k)) ≥

αk(γ
k
j̃(k)

) ≥ γ δ

4S̄τ̄ and from (57) we obtain

Yk(γ
k
j (k)) − Yk(0) ≤ ξ(Zk(γ

k
j (k)) − Zk(0)) ≤ ξαk(γ

k
j (k))r

tk(γ k
j (k))

k,1 ≤ ξγ δr̃

8S̄τ̄
< 0

contradicting (62) and so (63) is proved. Condition (64) now follows from (63) because
we conclude from (65) that Ŷk(1) − Ŷk(0) ≤ −CB

2
1
Nk

(SNk
k )2 ≤ −CB

2
1
Nk

‖sNk
k ‖2. ��

Now we are ready to state the main result of this section.

Theorem 4.1 Let Assumption 1 be fulfilled. Then every limit point of the sequence of
iterates xk is at least M-stationary for problem (1).

Proof Let x̄ denote a limit point of the sequence xk and let K denote a subsequence
such that lim

k
K→ ∞ xk = x̄ . Further let λ be a limit point of the bounded sequence λ

Nk
k

and assumewithout loss of generality that lim
k

K→ ∞ λ
Nk
k = λ. First we show feasibility

of x̄ for the problem (1) together with

λ
g
i ≥ 0 = λ

g
i gi (x̄), i ∈ I and (λH , λG) ∈ NP |V |(F(x̄)). (68)

Consider i ∈ I . For all k it holds that

0 ≥
(
(1 − θ

g
i,kδ

Nk
k )gi (xk) + ∇gi (xk)s

Nk
k

)
⊥ λ

g,Nk
i,k ≥ 0.

Since 0 ≤ δ
Nk
k ≤ ζ, θ

g
i,k ∈ {0, 1} we have 1 ≥ (1 − θ

g
i,kδ

Nk
k ) ≥ 1 − ζ and together

with sNk
k → 0 by Proposition 4.2 we conclude

0 ≥ lim sup
k

K→ ∞

(
gi (xk) + ∇gi (xk)s

Nk
k

(1 − θ
g
i,kδ

Nk
k )

)
= gi (x̄),
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λ
g
i ≥ 0 and

0 = lim
k

K→ ∞
λ
g,Nk
i,k

(
gi (xk) + ∇gi (xk)s

Nk
k

(1 − θ
g
i,kδ

Nk
k )

)
= λ

g
i gi (x̄).

Hence λ
g
i ≥ 0 = λ

g
i gi (x̄). Similar arguments show that for every i ∈ E we have

0 = lim
k

K→ ∞

(
hi (xk) + ∇hi (xk)s

Nk
k

(1 − δ
Nk
k )

)
= hi (x̄).

Finally consider i ∈ V . Taking into account (22), (34) and δ
Nk
k ≤ ζ we obtain

d(Fi (xk), P) ≤ ‖δNk
k (θH

i,k Hi (xk),−θGi,kGi (xk))
T + ∇Fi (xk)s

Nk
k ‖1

≤ ζd(Fi (xk), P) + ‖∇Fi (xk)s
Nk
k ‖1.

Hence, ∇Fi (xk)s
Nk
k → 0 by Proposition 4.2 implies

(1 − ζ )d(Fi (x̄), P) = lim
k

K→∞
(1 − ζ )d(Fi (xk), P) ≤ lim

k
K→∞

‖∇Fi (xk)s
Nk
k ‖1 = 0,

showing the feasibility of x̄ . Moreover, the previous arguments also imply

F̃i (xk, s
Nk
k , δ

Nk
k ) := δ

Nk
k (θH

i,k Hi (xk),−θGi,kGi (xk))
T +Fi (xk)+∇Fi (xk)s

Nk
k

K→ Fi (x̄).
(69)

Taking into account (14), the fact that λ
Nk
k fulfills M-stationarity conditions at

(sNk
k , δ

Nk
k ) for (19) yields

(λ
H,Nk
k , λ

G,Nk
k ) ∈ NP |V |(F̃(xk, s

Nk
k , δ

Nk
k )).

However, this together with (λ
H,Nk
k , λ

G,Nk
k )

K→(λH , λG), (69), and (13) yield
(λH , λG) ∈ NP |V |(F(x̄)) and consequently (68) follows.

Moreover, by first order optimality condition we have

Bks
Nk
k + ∇ f (xk)

T +
∑

i∈E
λ
h,Nk
i,k ∇hi (xk)

T +
∑

i∈I
λ
g,Nk
i,k ∇gi (xk)

T

+
∑

i∈V
∇Fi (xk)

T λ
F,Nk
i,k = 0

for each k and by passing to a limit and by taking into account that Bks
Nk
k → 0 by

Proposition 4.2 we obtain

∇ f (x̄)T +
∑

i∈E
λhi ∇hi (x̄)

T +
∑

i∈I
λ
g
i ∇gi (x̄)

T +
∑

i∈V
∇Fi (x̄)

T λF
i = 0.
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Hence, invoking (14) again, this together with the feasibility of x̄ and (68) implies
M-stationarity of x̄ and the proof is complete. ��

5 The extended SQP algorithm for MPVC

In this sectionwe investigatewhat can be done in order to secureQM -stationarity of the
limit points. First, note that to prove M-stationarity of the limit points in Theorem 4.1
we only used that (λ

H,Nk
k , λ

G,Nk
k ) ∈ NP |V |(F̃(xk, s

Nk
k , δ

Nk
k )), i.e. it is sufficient to

exploit only theM-stationarity of the solutions of auxiliary problems. Further, recalling
the comments after Lemma 3.1, the solution (s, δ) of QP(ρ, I 1(s, δ)∪ I 00(s, δ)) isM-
stationary for the auxiliary problem. Thus, in Algorithm 3.1 for solving the auxiliary
problem, it is sufficient to consider only the last problemof the four problems (31),(32).
Moreover, definition of limiting normal cone (11) reveals that, in general, the limiting
process abolishes any stationarity stronger that M-stationarity, even S-stationarity.

Nevertheless, in practical situations it is likely that some assumption, securing that
a stronger stationarity will be preserved in the limiting process, may be fulfilled. E.g.,
let x̄ be a limit point of xk . If we assume that for all k sufficiently large it holds
that I 00(x̄) = I 00(sNk

k , δ
Nk
k ), then x̄ is at least QM -stationary for (1). This follows

easily, since now for all i ∈ I 00(x̄) it holds that λ
G,Nk
i,k = 0, λ

H,Nk
i,k , λ

G,Nk
i,k ≥ 0 and

consequently

λG
i = lim

k→∞ λ
G,Nk
i,k = 0, λ

H
i = lim

k→∞ λ
H,Nk
i,k ≥ 0, λ

G
i = lim

k→∞ λ
G,Nk
i,k ≥ 0.

This observation suggests that to obtain a stronger stationarity of a limit point, the
key is to correctly identify the bi-active index set at the limit point and it serves as a
motivation for the extended version of our SQP method. Before we can discuss the
extended version, we summarize some preliminary results.

5.1 Preliminary results

Let a : Rn → R
p and b : Rn → R

q be continuously differentiable. Given a vector
x ∈ R

n we define the linear problem

LP(x) min
d∈Rn

∇ f (x)d

subject to ∇a(x)d = 0,
(b(x))− + ∇b(x)d ≤ 0,
−1 ≤ d ≤ 1.

(70)

Note that d = 0 is always feasible for this problem. Next we define a set A by

A := {x ∈ R
n | a(x) = 0, b(x) ≤ 0}. (71)

Let x̄ ∈ A and recall that theMangasarian-Fromovitz constraint qualification (MFCQ)
holds at x̄ if the matrix ∇a(x̄) has full row rank and there exists a vector d ∈ R

n such
that
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∇a(x̄)d = 0, ∇bi (x̄)d < 0, i ∈ I(x̄) := {i ∈ {1, . . . , q} | bi (x̄) = 0}.

Moreover, for a matrix M we denote by ‖M‖p the norm given by

‖M‖p := sup{‖Mu‖p | ‖u‖∞ ≤ 1} (72)

and we also omit the index p in case p = 2.

Lemma 5.1 Let x̄ ∈ A, let assume that MFCQ holds at x̄ and let d̄ denote the solution
of L P(x̄). Then for every ε > 0 there exists δ > 0 such that if ‖x − x̄‖ ≤ δ then

∇ f (x)d ≤ ∇ f (x̄)d̄ + ε, (73)

where d denotes the solution of L P(x).

Proof The classical Robinson’s result (c.f. [9, Corollary 1, Theorem 3]), together
with MFCQ at x̄ , yield the existence of κ > 0 and δ̃ > 0 such that for every x with
‖x − x̄‖ ≤ δ̃ there exists d̂ with ∇a(x)d̂ = 0, (b(x))− + ∇b(x)d̂ ≤ 0 and

‖d̄ − d̂‖ ≤ κ max{‖∇a(x)d̄‖, ‖((b(x))− + ∇b(x)d̄)+‖} =: ν.

Since ‖d̂‖∞ ≤ ‖d̂ − d̄ + d̄‖∞ ≤ 1+ ν, by setting d̃ := d̂/(1+ ν) we obtain that d̃ is
feasible for LP(x) and

‖d̄ − d̃‖ ≤ 1

1 + ν
‖d̄ − d̂ + νd̄‖ ≤ (1 + √

n)ν

1 + ν
≤ (1 + √

n)ν.

Thus, taking into account ∇a(x̄)d̄ = 0, (b(x̄))− + ∇b(x̄)d̄ ≤ 0 and ‖d̄‖∞ ≤ 1,
we obtain

‖d̄ − d̃‖ ≤ (1 + √
n)κ max{‖∇a(x) − ∇a(x̄)‖, ‖b(x) − b(x̄)‖ + ‖∇b(x) − ∇b(x̄)‖}.

Hence, given ε > 0, by continuity of objective and constraint functions as well as
their derivatives at x̄ we can define δ ≤ δ̃ such that for all x with ‖x − x̄‖ ≤ δ it holds
that

‖∇ f (x) − ∇ f (x̄)‖1, ‖∇ f (x)‖‖d̄ − d̃‖ ≤ ε/2.

Consequently, we obtain

∇ f (x)d̃ ≤ ‖∇ f (x)‖‖d̃ − d̄‖ + ‖∇ f (x) − ∇ f (x̄)‖1‖d̄‖∞ + ∇ f (x̄)d̄ ≤ ∇ f (x̄)d̄ + ε

and since ∇ f (x)d ≤ ∇ f (x)d̃ by feasibility of d̃ for LP(x), the claim is proved. ��
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Lemma 5.2 Let ν ∈ (0, 1) be a given constant and for a vector of positive parameters
ω = (ωE , ωI) let us define the following function

ϕ(x) := f (x) +
∑

i∈{1,...,p}
ωE
i |ai (x)| +

∑

i∈{1,...,q}
ωI
i (bi (x))

+. (74)

Further assume that there exist ε > 0 and a compact set C such that for all x ∈ C it
holds that ∇ f (x)d ≤ −ε, where d denotes the solution of L P(x). Then there exists
α̃ > 0 such that

ϕ(x + αd) − ϕ(x) ≤ να∇ f (x)d (75)

holds for all x ∈ C and every α ∈ [0, α̃].
Proof Definition of ϕ, together with u+ − v+ ≤ (u − v+)+ for u, v ∈ R, yield

ϕ(x + αd) − ϕ(x) ≤ f (x + αd) − f (x)

+‖ω‖∞(‖a(x + αd) − a(x)‖1 + ‖(b(x + αd) − (b(x))+)+‖1). (76)

By uniform continuity of the derivatives of constraint functions and objective function
on compact sets, it follows that there exists α̃ > 0 such that for all x ∈ C and every h
with ‖h‖∞ ≤ α̃ we have

‖∇ f (x + h) − ∇ f (x)‖1, ‖ω‖∞(‖∇a(x + h) − ∇a(x)‖1 + ‖∇b(x + h)

−∇b(x)‖1) ≤ 1 − ν

2
ε. (77)

Hence, for all x ∈ C and every α ∈ [0, α̃] we obtain
f (x + αd) − f (x) = να∇ f (x)d + (1 − ν)α∇ f (x)d

+
∫ 1

0
(∇ f (x + tαd) − ∇ f (x))αddt

≤ να∇ f (x)d − (1 − ν)αε + 1 − ν

2
αε = να∇ f (x)d − 1 − ν

2
αε.

On the other hand, taking into account ∇a(x)d = 0, ‖d‖∞ ≤ 1, (77) and

(b(x))− + α∇b(x)d = (1 − α)(b(x))− + α((b(x))− + ∇b(x)d) ≤ 0

we similarly obtain for all x ∈ C and every α ∈ [0, α̃]
‖ω‖∞(‖a(x + αd) − a(x)‖1 + ‖(b(x + αd) − (b(x))+)+‖1)

≤ ‖ω‖∞
(
‖ 1∫
0
(∇a(x + tαd) − ∇a(x))αddt‖1

+‖ 1∫
0
(∇b(x + tαd) − ∇b(x))αddt‖1

)
≤ 1 − ν

2
αε.

Consequently, (75) follows from (76) and the proof is complete. ��
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5.2 The extended version of Algorithm 4.1

For every vector x ∈ R
n and every partition (W1,W2) ∈ P(V ) we define the linear

problem

LP(x,W1) min
d∈Rn

∇ f (x)d

subject to ∇hi (x)d = 0 i ∈ E,

(gi (x))− + ∇gi (x)d ≤ 0 i ∈ I,
∇Fi (x)d ∈ P1 i ∈ W1,

(Fi (x))− + ∇Fi (x)d ∈ P2 i ∈ W2,

−1 ≤ d ≤ 1.

(78)

Note that d = 0 is always feasible for this problem and that the problem LP(x,W1)

coincides with the problem LP(x) with a, b given by

a := (hi (x), i ∈ E,−Hi (x), i ∈ W1)
T ,

b := (gi (x), i ∈ I,−Hi (x), i ∈ W2,Gi (x), i ∈ W2)
T . (79)

The following proposition provides the motivation for introducing the problem
LP(x,W1).

Proposition 5.1 Let x̄ be feasible for (1). Then x̄ is Q-stationary with respect to
(β1, β2) ∈ P(I 00(x̄)) if and only if the solutions d̄1 and d̄2 of the problems
LP(x̄, I 0+(x̄) ∪ β1) and LP(x̄, I 0+(x̄) ∪ β2) fulfill

min{∇ f (x̄)d̄1,∇ f (x̄)d̄2} = 0. (80)

Proof Feasibility of d = 0 for LP(x̄, I 0+(x̄)∪β1) and LP(x̄, I 0+(x̄)∪β2) implies

min{∇ f (x̄)d̄1,∇ f (x̄)d̄2} ≤ 0.

Denote by d̃1 and d̃2 the solutions of LP(x̄, I 0+(x̄) ∪ β1) and LP(x̄, I 0+(x̄) ∪ β2)

without the constraint −1 ≤ d ≤ 1, and denote these problems by ˜LP1
and ˜LP2

.
Clearly, we have

min{∇ f (x̄)d̃1,∇ f (x̄)d̃2} ≤ min{∇ f (x̄)d̄1,∇ f (x̄)d̄2}.

The dual problem of ˜LP j
for j = 1, 2 is given by

max
λ∈Rm

−∑
i∈I λ

g
i (gi (x̄))

− − ∑
i∈W j

2

(
λH
i (−Hi (x̄))− + λG

i (Gi (x̄))−
)

subject to (3) and λ
g
i ≥ 0, i ∈ I, λH

i , λG
i ≥ 0, i ∈ W j

2 , λG
i = 0, i ∈ W j

1 ,
(81)

where λ = (λh, λg, λH , λG),m = |E | + |I | + 2|V |,W j
1 := I 0+(x̄) ∪ β j ,W j

2 :=
V \ W j

1 .

123



390 M. Benko, H. Gfrerer

Assume first that x̄ is Q-stationary with respect to (β1, β2) ∈ P(I 00(x̄)). Then
the multipliers λ, λ from definition of Q-stationarity are feasible for dual problems

of ˜LP1
and ˜LP2

, respectively, both with the objective value equal to zero. Hence,
duality theory of linear programming yields that min{∇ f (x̄)d̃1,∇ f (x̄)d̃2} ≥ 0 and
consequently (80) follows.

On the other hand, if (80) is fulfilled, is follows that min{∇ f (x̄)d̃1,∇ f (x̄)d̃2} = 0

as well. Thus, d = 0 is an optimal solution for ˜LP1
and ˜LP2

and duality theory of
linear programming yields that the solutions λ1 and λ2 of the dual problems exist and
their objective values are both zero. However, this implies that for j = 1, 2 we have

λ
g, j
i gi (x̄) = 0, i ∈ I, λH, j

i Hi (x̄) = 0, λG, j
i Gi (x̄) = 0, i ∈ V

and consequently λ1 fulfills the conditions of λ and λ2 fulfills the conditions of λ,
showing that x̄ is indeed Q-stationary with respect to (β1, β2). ��

Now for each k consider two partitions (W 1
1,k,W

1
2,k), (W

2
1,k,W

2
2,k) ∈ P(V ) and

let d1k and d2k denote the solutions of LP(xk,W 1
1,k) and LP(xk,W 2

1,k). Choose dk ∈
{d1k , d2k } such that

∇ f (xk)dk = min
d∈{d1k ,d2k }

∇ f (xk)d (82)

and let (W1,k,W2,k) ∈ {(W 1
1,k,W

1
2,k), (W

2
1,k,W

2
2,k)} denote the corresponding parti-

tion. Next, we define the function ϕk in the following way

ϕk(x) := f (x) +
∑

i∈E
σ h
i,k |hi (x)| +

∑

i∈I
σ
g
i,k(gi (x))

+ +
∑

i∈W1,k

σ F
i,kd(Fi (x), P

1)

+
∑

i∈W2,k

σ F
i,kd(Fi (x), P

2). (83)

Note that the function ϕk coincides with ϕ for a, b given by (79) with (W1,W2) :=
(W1,k,W2,k) and ω = (ωE , ωI) given by

ωE := (σ h
i,k , i ∈ E, σ F

i,k , i ∈ W1,k), ωI := (σ
g
i,k , i ∈ I, σ F

i,k , i ∈ W2,k , σ
F
i,k , i ∈ W2,k).

Proposition 5.2 For all x ∈ R
n it holds that

0 ≤ ϕk(x) − �k(x) ≤ ‖σ F
k ‖∞|V |max{ max

i∈W1,k
d(Fi (x), P

1), max
i∈W2,k

d(Fi (x), P
2)}.
(84)

Proof Non-negativity of the distance function, together with (20) yield for every i ∈
V, j = 1, 2

0 ≤ d(Fi (x), P
j ) − d(Fi (x), P) ≤ d(Fi (x), P

j ).
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Hence (84) now follows from

∑

j=1,2

∑

i∈Wj,k

σ F
i,kd(Fi (x), P

j ) ≤ ‖σ F
k ‖∞|V | max

j=1,2
max
i∈Wj,k

d(Fi (x), P
j ).

��
An outline of the extended algorithm is as follows.

Algorithm 5.1 (Solving the MPVC*)

1: Initialization:
Select a starting point x0 ∈ R

n together with a positive definite n × n matrix
B0, a parameter ρ0 > 0 and constants ζ ∈ (0, 1), ρ̄ > 1 and μ ∈ (0, 1).
Select positive penalty parameters σ−1 = (σ h−1, σ

g
−1, σ

F−1).
Set the iteration counter k := 0.

2: Correction of the iterate:
Set the corrected iterate by x̃k := xk .
Take some (W 1

1,k,W
1
2,k), (W

2
1,k,W

2
2,k) ∈ P(V ), compute d1k and d2k as solu-

tions of LP(xk,W 1
1,k) and LP(xk,W 2

1,k) and let dk be given by (82).

Consider a sequence of numbers α
(1)
k = 1, α(2)

k , α
(3)
k , . . . with 1 > ᾱ ≥

α
( j+1)
k /α

( j)
k ≥ α > 0.

If ∇ f (xk)dk < 0, denote by j (k) the smallest j fulfilling either

�k(xk + α
( j)
k dk) − �k(xk) ≤ μα

( j)
k ∇ f (xk)dk, (85)

or α
( j)
k ≤ �k(xk) − ϕk(xk)

μ∇ f (xk)dk
. (86)

If j (k) fulfills (85), set x̃k := xk + α
j (k)
k dk .

3: Solve the Auxiliary problem:
Run Algorithm 3.1 with data ζ, ρ̄, ρ := ρk, B := Bk,∇ f := ∇ f (x̃k), hi :=
hi (x̃k),∇hi := ∇hi (x̃k), i ∈ E, etc.
If the Algorithm 3.1 stops because of degeneracy, stop the Algorithm 5.1 with
an error message.
If the final iterate sN is zero, stop the Algorithm 5.1 and return x̃k as a solution.

4: Next iterate:
Compute new penalty parameters σk .
Set xk+1 := x̃k + sk where sk is a point on the polygonal line connecting the
points s0, s1, . . . , sN such that an appropriate merit function depending on σk
is decreased.
Set ρk+1 := ρ, the final value of ρ in Algorithm 3.1.
Update Bk to get positive definite matrix Bk+1.
Set k := k + 1 and go to step 2.

Naturally, Remark 4.1 regarding the stopping criteria for Algorithm 4.1 aplies to
this algorithm as well.
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Lemma 5.3 Index j (k) is well defined.

Proof In order to show that j (k) iswell defined,we have to prove the existence of some
j such that either (85) or (86) is fulfilled. By (84) we know that �k(xk)−ϕk(xk) ≤ 0.
In case �k(xk) − ϕk(xk) < 0 every j sufficiently large clearly fulfills (86). On the
other hand, if �k(xk) − ϕk(xk) = 0, taking into account (84) we obtain

�k(xk + αdk) − �k(xk) ≤ ϕk(xk + αdk) − ϕk(xk).

However, Lemma 5.2 for ν := μ and C := {xk} yields that if ∇ f (xk)dk < 0 then
there exists some α̃ such that

ϕk(xk + αdk) − ϕk(xk) ≤ μα∇ f (xk)dk

holds for all α ∈ [0, α̃] and thus (85) is fulfilled for every j sufficiently large. This
finishes the proof. ��

5.3 Convergence of the extended algorithm

We consider the behavior of the Algorithm 5.1 when it does not prematurely stop and
it generates an infinite sequence of iterates

xk , Bk , θk , λ
Nk
k , λ

Nk
k , (stk , δ

t
k), λ

t
k , (V

t
1,k , V

t
2,k), and x̃k , d

1
k , d2k , (W 1

1,k ,W
1
2,k), (W

2
1,k ,W

2
2,k).

We discuss the convergence behavior under the following additional assumption.

Assumption 2 Let x̄ be a limit point of the sequence of iterates xk .

1. Mangasarian-Fromovitz constraint qualification (MFCQ) holds at x̄ for constraints
x ∈ A, where A is given by (71) and a, b are given by (79) with (W1,W2) :=
(I 0+(x̄), V \ I 0+(x̄)) or (W1,W2) := (I 0+(x̄) ∪ I 00(x̄), V \ (I 0+(x̄) ∪ I 00(x̄))).

2. There exists a subsequence K (x̄) such that lim
k
K (x̄)→ ∞ xk = x̄ and

W 1
1,k = I 0+(x̄), W 2

1,k = I 0+(x̄) ∪ I 00(x̄) for all k ∈ K (x̄).

Note that the Next iterate step from Algorithm 5.1 remains almost unchanged
compared to the Next iterate step from Algorithm 4.1, we just consider the point x̃k
instead of xk . Consequently, most of the results from subsections 4.1 and 4.2 remain
valid, possibly after replacing xk by x̃k where needed, e.g. in Lemma 4.3. The only
exception is the proof ofLemma4.5,wherewehave to show that the sequence�k(xk) is
monotonically decreasing. This follows now from (85) and hence Lemma 4.5 remains
valid as well.

We state now the main result of this section.

Theorem 5.1 Let Assumptions 1 and 2 be fulfilled. Then every limit point of the
sequence of iterates xk is at least QM-stationary for problem (1).
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Proof Let x̄ denote a limit point of the sequence xk and let K (x̄) denote a subsequence
from Assumption 2 (2.). Since

‖xk − x̃k−1‖ ≤ SNk−1
k−1 → 0

we conclude that lim
k
K (x̄)→ ∞ x̃k−1 = x̄ and by applying Theorem 4.1 to sequence x̃k−1

we obtain the feasibility of x̄ for problem (1).
Next we consider d̄1, d̄2 as in Proposition 5.1 with β1 := ∅ and without loss of

generality we only consider k ∈ K (x̄), k ≥ k̄, where k̄ is given by Lemma 4.4. We
show by contraposition that the case min{∇ f (x̄)d̄1,∇ f (x̄)d̄2} < 0 can not occur. Let
us assumeon the contrary that, say∇ f (x̄)d̄1 < 0.Assumption 2 (2.) yields thatW 1

1,k =
I 0+(x̄) and feasibility of x̄ for (1) together with I 0+(x̄) ⊂ W 1

1,k ⊂ I 0(x̄) imply x̄ ∈ A

for A given by (71) and a, b given by (79) with (W1,W2) := (W 1
1,k,W

1
2,k). Taking into

account Assumption 2 (1.), Lemma 5.1 then yields that for ε := −∇ f (x̄)d̄1/2 > 0
there exists δ such that for all ‖xk − x̄‖ ≤ δ we have ∇ f (xk)dk ≤ ∇ f (xk)d1k ≤
∇ f (x̄)d̄1/2 = −ε, with dk given by (82).

Next, we choose k̂ to be such that for k ≥ k̂ it holds that ‖xk − x̄‖ ≤ δ and we set
ν := (1 + μ)/2,C := {x | ‖x − x̄‖ ≤ δ}. From Lemma 5.2 we obtain that

ϕk(xk + αdk) − ϕk(xk) ≤ 1 + μ

2
α∇ f (xk)dk (87)

holds for all α ∈ [0, α̃]. Moreover, by choosing k̂ larger if necessary we can assume
that for all i ∈ V we have

‖Fi (xk) − Fi (x̄)‖1 ≤ −min

{
1 − μ

2
, μ

}
αα̃∇ f (xk)dk
‖σ F

k ‖∞|V | . (88)

For the partition (W1,k,W2,k) ∈ {(W 1
1,k,W

1
2,k), (W

2
1,k,W

2
2,k)} corresponding to dk it

holds that I 0+(x̄) ⊂ W1,k ⊂ I 0(x̄) and this, together with the feasibility of x̄ for (1),
imply Fi (x̄) ∈ P j , i ∈ Wj,k for j = 1, 2. Therefore, taking into account (22), we
obtain

max

{
max
i∈W1,k

d(Fi (xk), P
1), max

i∈W2,k
d(Fi (xk), P

2)

}
≤ max

i∈V ‖Fi (xk) − Fi (x̄)‖1.

Consequently, (84) and (88) yield for all α > αα̃

ϕ(xk) − �k(xk) < −min

{
1 − μ

2
, μ

}
α∇ f (xk)dk .

Thus, from (87) and (84) we obtain for all α ∈ (αα̃, α̃]

�k(xk + αdk) − �k(xk) ≤ ϕ(xk + αdk) − ϕ(xk) + ϕ(xk) − �k(xk) ≤ μα∇ f (xk)dk
and �k(xk) − ϕ(xk) > μα∇ f (xk)dk .
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Now consider j with α
( j−1)
k > α̃ ≥ α

( j)
k . We see that α

( j)
k ∈ (αα̃, α̃], since

α
( j)
k ≥ αα

( j−1)
k > αα̃ and consequently j fulfills (85) and violates (86). However,

then we obtain for all k ≥ k̂

�k(xk+1) − �k(xk) ≤ μα
( j (k))
k ∇ f (xk)dk = μαα̃∇ f (x̄)d̄/2 < 0,

a contradiction.
Hence it follows that the solutions d̄1, d̄2 fulfill min{∇ f (x̄)d̄1,∇ f (x̄)d̄2} = 0 and

by Proposition 5.1 we conclude that x̄ isQ-stationary with respect to (∅, I 00(x̄)) and
consequently also QM -stationary for problem (1). ��

Finally, we discuss how to choose the partitions (W 1
1,k,W

1
2,k) and (W 2

1,k,W
2
2,k) such

that Assumption 2 (2.) will be fulfilled. Let us consider a sequence of nonnegative
numbers εk such that for every limit point x̄ with lim

k
K→ ∞ xk = x̄ it holds that

lim
k

K→ ∞

εk

‖xk − x̄‖∞
→ ∞ (89)

and let us define

Ĩ 0+k := {i ∈ V | |Hi (xk)| ≤ εk < Gi (xk)},
Ĩ 00k := {i ∈ V | |Hi (xk)| ≤ εk ≥ |Gi (xk)|},
Ĩ 0−k := {i ∈ V | |Hi (xk)| ≤ εk < −Gi (xk)},
Ĩ+0
k := {i ∈ V | Hi (xk) > εk ≥ |Gi (xk)|},

Ĩ+−
k := {i ∈ V | Hi (xk) > εk < −Gi (xk)}.

Proposition 5.3 For W 1
1,k and W 2

1,k defined by W 1
1,k := Ĩ 0+k and W 1

1,k := Ĩ 0+k ∪ Ĩ 00k
the Assumption 2 (2.) is fulfilled.

Proof Let x̄ be a limit point of the sequence xk such that lim
k

K→ ∞ xk = x̄ . Recall that

F is given by (8) and let us set L := max‖x−x̄‖∞≤1 ‖∇F(x)‖∞, where ‖∇F(x)‖∞ is
given by (72). Further, taking into account (89), consider k̂ such that for all k ≥ k̂ it
holds that ‖xk − x̄‖∞ ≤ min {εk/L , 1}. Hence, for all k ∈ K with k ≥ k̂ we conclude

‖F(xk) − F(x̄)‖∞ ≤
∫ 1

0
‖∇F(x̄ + t (xk − x̄))‖∞‖xk − x̄‖∞dt ≤ εk . (90)

Now consider i ∈ I 0+(x̄), i.e. Hi (x̄) = 0 < Gi (x̄). By choosing k̂ larger if necessary
we can assume that for all k ≥ k̂ it holds that εk < Gi (x̄)/2 and consequently, taking
into account (90), for all k ∈ {k ∈ K | k ≥ k̂} we have

|Hi (xk)| = |Hi (xk) − Hi (x̄)| ≤ εk < Gi (x̄) − εk ≤ Gi (xk),
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showing i ∈ Ĩ 0+k . By similar argumentation and by increasing k̂ if necessary we obtain

that for all k ∈ {k ∈ K | k ≥ k̂} =: K (x̄) it holds that

I 0+(x̄) ⊂ Ĩ 0+k , I 00(x̄) ⊂ Ĩ 00k , I 0−(x̄) ⊂ Ĩ 0−k , I+0(x̄) ⊂ Ĩ+0
k , I+−(x̄) ⊂ Ĩ+−

k .

(91)
However, feasibility of x̄ for (1) yields

V = I 0+(x̄) ∪ I 00(x̄) ∪ I 0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄)

and the index sets Ĩ 0+k , Ĩ 00k , Ĩ 0−k , Ĩ+0
k , Ĩ+−

k are pairwise disjoint subsets of V by def-
inition. Hence we claim that (91) must in fact hold with equalities. Indeed, e.g.

Ĩ 0+k ⊂ V \ ( Ĩ 00k ∪ Ĩ 0−k ∪ Ĩ+0
k ∪ Ĩ+−

k ) ⊂ V \ (I 00(x̄) ∪ I 0−(x̄) ∪ I+0(x̄) ∪ I+−(x̄))

= I 0+(x̄).

This finishes the proof. ��
Note that if we assume that there exist a constant L > 0, a number N ∈ N and a

limit point x̄ such that for all k ≥ N it holds that

‖xk+1 − x̄‖∞ ≤ L‖xk+1 − xk‖∞,

by setting εk := √‖xk − xk−1‖∞ we obtain (89), since

√‖xk − xk−1‖∞
‖xk − x̄‖∞

≥
√‖xk − x̄‖∞√
L‖xk − x̄‖∞

= 1√
L‖xk − x̄‖∞

→ ∞.

6 Numerical results

Algorithm 4.1 was implemented in MATLAB. To perform numerical tests we used a
subset of test problems considered in the thesis of Hoheisel [7].

First we considered the so-called academic example

min
x∈R2

4x1 + 2x2

subject to x1 ≥ 0,
x2 ≥ 0,
(5

√
2 − x1 − x2)x1 ≤ 0,

(5 − x1 − x2)x2 ≤ 0.

(92)

As in [7],we tested289different startingpoints x0 with x01 , x
0
2 ∈ {−5,−4, . . . , 10, 20}.

For 84 starting points our algorithm found a global minimizer (0, 0) with objective
value 0, while for the remaining 205 starting points a localminimizer (0, 5)with objec-
tive value 10 was found. Hence, convergence to the perfidious candidate (0, 5

√
2),

which is not a local minimizer, did not occur (see [7]).
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Fig. 1 Ten-bar Truss example

Expectantly, after adding constraint 3−x1−x2 ≤ 0 to the model (92), to artificially
exclude the point (0, 0), unsuitable for the practical application, we reached the point
(0, 5), now a global minimizer. For more detailed information about the problem we
refer the reader to [7] and [2].

Next we solved 2 examples in truss topology optimization, the so called Ten-bar
Truss and Cantilever Arm. The underlying model for both of them is as follows:

min
(a,u)∈RN×Rd

V := ∑N
i=1 �i ai

subject to K (a)u = f,
f u ≤ c,
ai ≤ āi i ∈ {1, 2, . . . , N },
ai ≥ 0 i ∈ {1, 2, . . . , N },
(σi (a, u)2 − σ̄ 2)ai ≤ 0 i ∈ {1, 2, . . . , N }.

(93)

Here the matrix K (a) denotes the global stiffness matrix of the structure a and the
vector f ∈ R

d contains the external forces applying at the nodal points. Further, for
each i the function σi (a, u) denotes the stress of the i−th potential bar and c, āi , σ̄ are
positive constants. Again, for more background of the model and the following truss
topology optimization problems we refer to [7].

In the Ten-bar Truss example we consider the ground structure depicted in Fig. 1a
consisting of N = 10 potential bars and 6 nodal points. We consider a load which
applies at the bottom right hand node pulling vertically to the ground with force
‖ f ‖ = 1. The two left hand nodes are fixed, and hence the structure has d = 8
degrees of freedom for displacements.

We set c := 10, ā := 100 and σ̄ := 1 as in [7] and the resulting structure consisting
of 5 bars is shown in Fig. 1b and is the same as the one in [7]. For comparison, in the
following table we show the full data containing also the stress values.

We can see that although our final structure and optimal volume are the same as
the final structure and the optimal volume in [7], the solution (a∗, u∗) is different.
For instance, since f T u∗ = 8 < 10 = c, our solution does not reach the maximal
compliance. Similarly as in [7], we observe the effect of vanishing constraints since
the stress values from the table show that

σ ∗
max := max

1≤i≤N
|σi (a∗, u∗)| = 1.4882 > σ̂ ∗ := max

1≤i≤N :a∗
i >0

|σi (a∗, u∗)| = 1 = σ̄ .
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i a∗
i σi (a

∗, u∗) u∗
i

1 0 1.029700000000000 −1.000000000000000
2 1.000000000000000 1.000000000000000 1.000000000000000
3 0 1.119550000000000 −2.000000000000000
4 1.000000000000000 1.000000000000000 1.302400000000000
5 0 0.485150000000000 −1.970300000000000
6 1.414213562373095 1.000000000000000 −3.000000000000000
7 0 0.302400000000000 −8.000000000000000
8 1.414213562373095 1.000000000000000 −6.511800000000000
9 2.000000000000000 1.000000000000000 f T u∗ = 8
10 0 1.488200000000000 V ∗ = 8.000000000000002

Fig. 2 Cantilever Arm example

In the Cantilever Arm example we consider the ground structure depicted in Fig. 2a
consisting of N = 224 potential bars and 27 nodal points. Again, we consider a
load acting at the bottom right hand node pulling vertically to the ground with force
‖ f ‖ = 1. Now the three left hand nodes are fixed, and hence d = 48.

We proceed as in [7] and we first set c := 100, ā := 1 and σ̄ := 100. The resulting
structure consisting of only 24 bars (compared to 38 bars in [7]) is shown in Fig. 2b.
Similarly as in [7], we have max1≤i≤N a∗1

i = ā and f u∗1 = c. On the other hand,
our optimal volume V ∗1 = 23.4407 is a bit larger than the optimal volume 23.1399
in [7]. Also, analysis of our stress values shows that

σ ∗1
max := max

1≤i≤N
|σi (a∗1, u∗1)| = 60.4294 � σ̂ ∗1

:= max
1≤i≤N :a∗1

i >0
|σi (a∗1, u∗1)| = 2.6000

and hence, although it holds true that both absolute stresses as well as absolute ”ficti-
tious stresses” (i.e., for zero bars) are small compared to σ̄ as in [7], the difference is
that in our case they are not the same.

The situation becomes more interesting when we change the stress bound to σ̄ =
2.2. The obtained structure consisting again of only 25 bars (compared to 37 or 31 bars
in [7]) is shown in Fig. 2c. As before we have max1≤i≤N a∗2

i = ā and f u∗2 = c. Our
optimal volume V ∗2 = 23.6982 is now much closer to the optimal volumes 23.6608
and 23.6633 in [7]. Similarly as in [7], we clearly observe the effect of vanishing
constraints since our stress values show

σ ∗2
max := max

1≤i≤N
|σi (a∗2, u∗2)| = 24.1669 � σ̂ ∗2

:= max
1≤i≤N :a∗2

i >0
|σi (a∗2, u∗2)| = 2.2 = σ̄ .
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Finally, we obtained 32 bars (in contrast to 24 bars in [7]) satisfying both

a∗2
i < 0.005 = 0.005ā and |σi (a∗2, u∗2)| > 2.2 = σ̄ .

To better demonstrate the performance of our algorithm we conclude this section
by a table with more detailed information about solving Ten-bar Truss problem and 2
Cantilever Arm problems (CA1 with σ̄ := 100 and CA2 with σ̄ := 2.2). We use the
following notation.

Problem Name of the test problem

(n, q) Number of variables, number of all constraints
k∗ Total number of outer iterations of the SQP method
(N0, . . . , Nk∗−1) Total numbers of inner iterations corresponding to each outer iteration
∑k∗−1

k=0 j (k) Overall sum of steps made during line search

� feval Total number of function evaluations, � feval = k∗ + ∑k∗−1
k=0 j (k)

�∇ feval Total number of gradient evaluations, �∇ feval = k∗ + 1

Problem (n, q) k∗ (N0, . . . , Nk∗−1)
∑k∗−1

k=0 j (k) � feval �∇ feval

Ten-bar Truss (18, 39) 14 (1, . . . , 1, 2, 2, 2, 2, 1, 1) 67 81 15
CA1 (272, 721) 401 (1, . . . , 1) 401 802 402
CA2 (272, 721) 1850 (1, . . . , 1) 1850 3700 1851
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