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Abstract We developed an end-to-end process for inducing models of behavior from
expert task performance through in-depth case study. A subject matter expert (SME)
performed navigational and adversarial tasks in a virtual tank combat simulation,
using the dTank and Unreal platforms. Using eye tracking and Cognitive Task Analy-
sis, we identified the key goals pursued by and attributes used by the SME, including
reliance on an egocentric spatial representation, and on the fly re-representation of
terrain in qualitative terms such as “safe’” and “risky”. We demonstrated methods for
automatic extraction of these qualitative higher-order features from combinations of
surface features present in the simulation, producing a terrain map that was visually
similar to the SME annotated map. The application of decision-tree and instance-
based machine learning methods to the transformed task data supported prediction
of SME task selection with greater than 95 % accuracy, and SME action selection
at a frequency of 10 Hz with greater than 63 % accuracy, with real time constraints
placing limits on algorithm selection. A complete processing model is presented for a
path driving task, with the induced generative model deviating from the SME chosen
path by less than 2 meters on average. The derived attributes also enabled environ-
ment portability, with path driving models induced from dTank performance and de-
ployed in Unreal demonstrating equivalent accuracy to those induced and deployed
completely within Unreal.

Keywords Virtual environment - Avatar - Spatial representations - Instance-based

learning - Cue learning - Hierarchical task network

Our goal in this study was to explore methods for creating a cognitive model of sub-
ject matter expert (SME) behavior in a real-time video game by relying as directly

B.J. Best (X))
Adaptive Cognitive Systems, 909 Harris Avenue St. 202D, Bellingham, WA 98225, USA
e-mail: bjbest@adcogsys.com

@ Springer


mailto:bjbest@adcogsys.com

Inducing models of behavior 371

as possible on the recorded traces of the expert’s behavior, automating as much of
the process as possible. Cognitive models are often developed in one of two ways:
(a) through extensive task analysis and knowledge engineering to produce rule-based
systems, or (b) by inducing performance models from the data, using paradigms
known as case-based reasoning, instance-based modeling (Aha et al. 1991) or learn-
ing from examples (Simon and Zhu 1988; Simon and Gobet 1996). This second ap-
proach is the focus of our work.

One common way to situate a cognitive model is to develop it within a cogni-
tive architecture (Newell 1990). Recently, the ACT-R cognitive architecture (An-
derson et al. 2004) has been used as a platform to develop models using an
instance-based methodology (Taatgen and Wallach 2002; Gonzalez et al. 2003;
Best and Lovett 2006). ACT-R itself is a production-system based framework for
developing cognitive models that incorporates a symbolic layer largely concerned
with rule-based (procedural) processing, and combines this with a subsymbolic layer
that incorporates an activation-based (declarative) memory, and various forms of sta-
tistical learning.

An instance-based ACT-R model typically uses some set of productions to sim-
ulate the broader scale of cognition, and then performs retrievals from declarative
memory to perform a similarity-based lookup for cases similar to the current con-
text that have already been memorized. Equipped with a bootstrapping mechanism
(e.g., the ability to randomly guess on initial trials), an instance-based ACT-R model
can operate in an environment, learning from its own actions as it performs the task
(e.g., Best et al. 2008). Many of these models, however, have focused on discrete
tasks, where the instance-based model produces exactly one action when requested
to do so and then returns control to the higher-level logic that drives it. It is un-
clear how suitable these models are for continuous control in real-time environments,
since these tasks have the potentially to produce large and computationally cumber-
some memories (see Douglass et al. 2009, for an approach to managing large-scale
ACT-R memories), and it is also unclear how individual instance-based task models
might be sequenced or stitched together. It is unclear how suitable these models are
for continuous control in real-time environments, and how individual instance-based
task models might be sequenced or stitched together.

Our aim was to evaluate the feasibility of using instance-based modeling to induce
a cognitive model from a recorded real-time continuous performance of a subject mat-
ter expert (SME), as demonstrated in a virtual environment, with our initial modeling
explorations focusing on the ACT-R cognitive architecture. The SME piloted a virtual
ground vehicle, a tank with an independent turret and main chassis, and performed
a variety of tasks that included combat, seeking cover, scouting terrain, and driving
a twisty forested path. We translated the continuous behavior of an SME performing
a task in a virtual environment into a set of discrete instances to create the learning
examples. These instances could include any of a number of ground truth attributes
from the simulation environment, or derived attributes. Furthermore, many instance-
based models focus on a particular narrow task (e.g., a typical laboratory task), but
identifying the tasks to be performed in a larger scale task (for example, an unstruc-
tured combat operation) is a prerequisite to being able to apply an instance-based
model to a narrow task that it is suited for. Identifying and selecting an appropriate
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task given an unfolding scenario and extracting and determining which instance to
use during task performance are significant technical challenges. Addressing both the
task selection problem and the task performance problem are critical requirements to
applying instance-based models to large-scale modeling of behavior. The remainder
of this report will focus on these issues.

1 Task environments

Virtual environments can place severe demands upon computational resources, mak-
ing it challenging to develop cognitive models capable of acting within real-time
constraints (Best and Lebiere 2006). That is, while it is straightforward to simulate
real-time performance given a simulation that is allowed to run slower than wall
clock time, when coupled to an embedded real-time system, a cognitive model must
execute its perceive-act cycle within the constraints of wall clock time, and that con-
straint can be extremely demanding. In particular, agent behavior in the environment
becomes unacceptable using cycle times of more than 200 ms, while less than 100 ms
tends to produce smoother behavior, and a response of less than 50 ms is required to
achieve targeting behavior (e.g., Best and Lebiere 2006). The actual response time
is especially critical since a cognitive entity must address its own “lag” in produc-
ing actions—the world it perceives, if dynamic, is not likely to be in the exact same
state 50 ms in the future. As this lag between perception and response grows, so too
does the error produced by a cognitive system attempting to produce responses in a
real-time virtual environment.

There are possibly similarities between the minimum cycle time needed to gener-
ate “non-jerky” actions in a virtual real-time task environment and the estimates of
cognitive cycle time. Multiple researchers, in attempting to formulate computational
theories of cognition, have asserted a fundamental discrete human decision cycle of
approximately 50 ms (Newell 1990; Meyer and Kieras 1997; Anderson and Lebiere
1998). This cycle, and in particular its relation to driving tasks, has been explored
in detail by Salvucci and colleagues (e.g., Salvucci and Gray 2004; Salvucci 2006;
Brumby et al. 2007). Their work has demonstrated that simulating human behavior
in real-time tracking tasks such as steering can be accomplished with a high degree
of fidelity with an effective discrete cycle of 50 ms (though also requiring some in-
terleaving of tasks if the central cognitive processor performs a variety of tasks).

This cycle time is somewhat independent of the data sampling rate, which needs to
be frequent enough to capture snapshots of the performance, but need not necessarily
be the same as the cycle time for performance. Some researchers have used sampling
rates as rapid as 10 ms for capturing sensor data from driving tasks performed by hu-
man participants (e.g., Best et al. 2008). Similarly, Ball and Gluck (2003) report using
a simulated task environment for a Predator Uninhabited Air Vehicle (UAV) with a
simulation “heartbeat” of 20 ms. At the other end of the scale, Scott and Cummings
(2007) report collecting human performance data in a real-time simulated command
and control task environment at the rate of 6 cycles per second, or 166.67 ms per
cycle. Finally, some researchers have sidestepped the issue of cycle time by only col-
lecting and logging data snapshots coincident with user actions (e.g., Schoelles and
Gray 2000). The critical latent issue here is one of pairing actions with percepts when
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actions are discrete. If an action only occurs once, a higher cycle rate would result
in more “empty” action entries in a log of simulation state paired with participant
actions. We will return to this issue later.

2 Paper roadmap

This study pursues a set of interconnected goals, and reports on the progress of inter-
mediate steps in pursuing the overall goal of inducing a cognitive model directly from
subject matter expert task performance. The paper is thus organized as follows. First,
we detail the method of data collection in the virtual task environment, including a
discussion of the tasks used, the subject matter expert, the raw results of data collec-
tion, and the results of a cognitive task analysis on these results. Second, we discuss a
methodology for applying transformations to the “raw” data to produce data that has
similar information content compared to the information identified in the cognitive
task analysis. Third, we apply learning methods to both task performance (actions)
and task selection (goals) in the transformed task data, analyze and determine the per-
formance of selected algorithms on the task data, examine algorithmic implications
for data storage and processing. Fourth, we connect the various pieces and present a
complete processing model for a particular task, path driving. Fifth, and finally, we
present our conclusions.

3 Method
3.1 Participants and models

SME The subject matter expert (SME) was a habitual heavy video game player and
a consistent user of the dTank and Unreal simulation environments over the period
of more than a year, including the different phases of this study. The SME trained
against the synthetic opponents until able to consistently defeat three simultaneous
opponents with near certainty, and could repeatedly drive various obstacle courses
without colliding with obstacles, as well as complete various other tasks within the
synthetic environment. We estimate that the SME logged several hundred hours in
the dTank simulator, as well as several hundred more in the Unreal simulator.

CIBRE The Cognitive Instance-Based Rule Engine (CIBRE) architecture is a light-
weight instance-based learning system implemented in the LISP programming lan-
guage (Best and Gerhart 2011). CIBRE learns from a data set of snapshots in time,
or instances, and uses knowledge elicited from those instances to predict a response
based on the values of attributes contained in the current context. The instances cho-
sen to base a response on are selected based on similarity to the current context, and
the critical calculation is thus a “lookup” in the instance memory of the relevant prior
experiences. Each instance contains one or more attributes and at least one response.
Particular task models are stored within partitions in CIBRE’s instance memory, pre-
venting tasks from interacting.

CIBRE makes one pass through a training set and stores any instance that makes
a novel contribution into its instance memory. When engaged in an instance-based
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loop, as the model provides responses, the context chunk is compared attribute-by-
attribute to all instances in the instance memory (the context chunk can either be an
instance from the testing partition or the current state of the environment in which
the model is embedded). The similarity of all of the attributes is summed to calculate
the similarity for the entire instance. Once the most similar stored instance is found,
the model returns the response from that instance as the predicted response for the
current context. The response can drive behavior (e.g., a response corresponds to
and is translated into a key-press in the dTank behavioral domain) or can simply be
a classification (e.g., the response in the validation domain named “mushroom” is
whether or not the mushroom is poisonous).

3.2 Materials and procedures

SME tasks and battle simulations We recorded and analyzed real-time performance
and behavior of the SME in a virtual environment. The SME participated in four com-
plete battle simulations, and a number of constrained scenarios. In these simulations
the SME piloted a virtual ground vehicle, a tank with an independent turret and main
chassis. The constrained scenarios that the SME participated in were:

e Aim: Rotate the tank turret to search for an opponent, and fire projectile at the
opponent

e Avoid-dense: Drive around the map in 750 seconds without hitting any buildings
or woods

e Chase-long: Chase an enemy tank for 750 seconds

e Path: Drive around a grass path lines with trees within 400 seconds

o Seek-cover: There are two blue tanks, one of which will attack. Seek cover in a
map containing hills, trees, and towns.

e Avoid: Drive around the map in 750 seconds without hitting any buildings or woods

e Chase-short: Chase an enemy tank for 150 seconds.

o Target. There is a blue officer on the map. Find the target and drive the tank directly
to 1t.

e Shoot: There is a blue officer on the map. Rotate the turret to the target and fire a
projectile at it.

The majority of data collected were complete battle simulations in which the SME
participated in a 1,000 second simulation against three enemies (two tanks and one
officer on foot), providing a maximum of 10,000 discrete samples per battle (battles
terminated either at the end of 1,000 seconds, when all opponents were defeated, or
when the SME was defeated). The constrained scenarios were run a variable number
of times, dependent on the performance of the target models and the length in time
of the typical scenario, but no scenario was recorded fewer than five times. One con-
strained scenario, the Path scenario, and the complete battle scenarios were chosen
for further exploration during this study.

Virtual environments We worked with the dTank virtual environment (Ritter 2008;
Fig. 1) and the Unreal Tournament game engine for task performance and data collec-

tion. The dTank environment provides a “bird’s eye” view of a battlefield, including

@ Springer



Inducing models of behavior 375

- # Tankdet 1.07 - (10 dar 2007)

Fig. 1 A screen capture of both the omniscient (/eff) and commander views (middle) of a dTank battle.
Bubble captions have been added for clarification purposes

an omniscient view for third-party observers, and an actual commander view provid-
ing limited visibility for terrain and obstacles through a moveable viewing cone (in
the direction of the turret). In the commander view, the player, or in this case, the
SME, can only see what is in the “whiskers”, or arrows, that are immediately in front
of him. The actual map, shown on the left, is the same in the commander view, but
is unseen by the player. The Unreal Tournament game engine is a real-time three-
dimensional video game engine that provides support for a variety of “first person
shooter” games, and includes support for vehicles such as tanks. Our core method-
ology has been to prototype and develop interaction models using the lightweight
dTank virtual environment, and then port the resulting models to the Unreal plat-
form. We will first focus on the dTank environment, and will return to the Unreal
environment later.

Instance retrieval rates The dTank environment is not a fast-paced environment,
and action cycles of 200 ms are sufficient for producing reasonable behavior. How-
ever, we chose to use a minimum cycle time of 50 ms (20 Hz) for two primary rea-
sons. First, we were interested in examining the practical difficulties in performing
instance-based retrievals at a rate shown to match many basic findings in cognition.
Second, we anticipated integrating models with the Unreal Engine, which has strin-
gent real-time demands, and moves at a much faster pace. We will return to this later,
illustrating the factors that limit the speed of instance-based processing.

Collecting and segmenting data from human task performance We collected con-
tinuous data in two different ways: (a) we collected behavioral streams from the
SME during battle simulations in the dTank domain, and (b) we collected a series
of scripted behaviors in which the actions were more constrained.

For both of these situations, the data were automatically converted offline into
instances based on a dTank message frequency of 5 Hz. This frequency determines
the rate of which responses are collected. Responses in dTank, however, are often
“discrete”: they occur at exactly one point in time. As a result of this, at a very high
sampling frequency, almost no conditions would result in a response. To account for

@ Springer



376 B.J. Best

this, responses that occurred between sample points (during the 200 ms interval) were
pushed forward to the next sample point.

These data were collected for two entirely different purposes. Our overall goal is
to produce instance-based models of task behavior, but this presupposes the model
can appropriately select a unit task to execute. Thus, we aim to solve two separate
problems using instance-based decision making. The first problem is task selection,
while the second problem is task execution (given a task to execute). We will deal
with each of these in turn.

The SME behavior was analyzed into distinct goals and behavioral sequences
through a Cognitive Task Analysis (CTA). We segmented the battles into higher-
level categories of either goals or behavioral sequences. Doing this repetitively on a
broad scale is largely unrealistic; the time to hand-annotate 5,000 lines (per simula-
tion) created a severe bottleneck in the data collection process. Our process, however,
involves producing a model that can automatically learn how to perform task selec-
tion given a sufficient set of learning data. The remainder of our data collection has
focused on task execution, where a lower level task is given as the performance goal
to a human participant. Details of one such lower level task—following a tree-lined
path—is presented in two different virtual domains later in this paper.

Determining the task structure 'We asked the SME to play a round of dTank battles,
which were recorded for later analysis. During these assessment battles, the SME was
only able to see the typical ‘commander view’ window. However, for the purposes of
illustration and analysis, the commander view and the ‘omniscient view’ were both
recorded (see Fig. 1). The omniscient view was obscured from the SME’s sight during
the battle trials. Each battle was segmented into discrete ‘behavioral chunks’, where
each such behavioral chunk is identified by the elapsed battle time at which it began.
This breakdown of each battle into discrete behavioral chunks was then later refined
in the expert review and assessment of SME battle performance.

A portion of an example verbal protocol, from the beginning of Battle 1 until the
first time the SME fires, appears in Table 1. It corresponds to Fig. 1, a screen capture
(with both omniscient and commander views) taken at the onset of behavioral chunk
beginning 43200 milliseconds into the battle (the commander view is on the right,
and includes the ‘turret whiskers’ of the two enemies and the human-controlled tank).
A video screen capture of the SME battle performance was recorded for later analysis.

Eye-tracking dTank trials We had the SME perform a series of dTank battle tri-
als during which we recorded his eye movements with a ViewPoint EyeTracker by
Arrington Research®, using terrain maps drawn from the map annotation activity.

Using instances: the path driving model We developed a model of path driving
using the CIBRE instance-based rule engine (Best and Gerhart 2011) to simulate
SME behavior. The SME completed the path five times, avoiding obstacles (trees)
along the way, and this data was used to train the CIBRE agent. We compared each
recorded position of the CIBRE agent against the closest recorded SME position from
among the five paths.
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Table 1 Protocol summary for -
the first 61200 milliseconds Time (ms) Summary
from Battlel

0 BEGIN BATTLE
0 scout perimeter
3600 see Opponent
7000 start for cover, keep scouting
7600 see 2nd Opponent
9000 head for cover
12600 they see me, keep an eye out as seek cover
19400 good cover, wait to be loaded, monitor Opponent position
32400 It’s been a while, seek Opponent location
43200 see Opponents again, they’re still close together
45000 stay out of sight
54600 nearly loaded; take another peek; they don’t see me
60400 loaded, select nearest Opponent as target
61200 FIRE

4 Results
4.1 Determining the task structure through cognitive task analysis

Following the argument that expertise leads to simple yet sophisticated systems of
representation, we revisited the video battles and attempted to categorize the dTank
SME “behavioral segments” in a way that expressed the SME’s battle representation
not at the key-press level but at the intention level. For example, the SME would often
remain as concealed as possible while continuing to peek out at an opponent he was
stalking. This approach led to the identification of 7 discrete Tactic Categories that
were then used to classify the SME behavior:

Fire At Opponent,

Monitor Opponent Position,
Scout Perimeter,

Seek Cover,

Seek Opponent Location,
Stay Out Of View, and
Target Opponent.

These seven categories were determined based on a single rater’s perception of the
SME behavior and comments during the CTA. The SME reported engaging in mul-
tiple battle “tasks” simultaneously. With that in mind, we also explored categorizing
each behavioral segment by at least one and as many as three hierarchically ordered
Tactic Categories: Primary Tactic, Secondary Tactic and Tertiary Tactic.

Four complete SME battles were coded using the set of 7 Tactic Categories. Each
battle consisted of approximately 50 individual behavioral segments, totaling 206
individual segments across all battles. Although the complete set of possible Tactic
Category combinations (given a minimum of 1 and a maximum of 3 categories per
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Play dTank

m

Destroy Destroy Destroy
a tank another tank an officer
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Look for opp !
Shoot opp Seek cover Monitor;opp
| \ \

4 v \| v
Drive in circle Aim at opp. Stay in cover Creep at opp
Stay in grass Try to shoot side Stay in deep cover Rotate turret

Stay in safe Fire asap Opp not in sight e
m ;ﬁgt Attack opponent Attack opponent

Drive full speed
Explore map Actions

Attack opponent

Top to botiom, left to right as importance. Exit when precondiion is false.
Fig. 2 The task structure used by a subject matter expert (SME) for a dTank battle

chunk) is 259, only 27 actually came up in these 4 battles. Interestingly, only 5 of
the 27 unique Tactic combinations were used in all 4 battles; 5 were used in 3 of
the 4 battles; 7 were used in only 2 battles, and 10 (a full third) were unique to a
single battle. Four battles is a relatively small data set, yet this analysis indicates that
this methodology is in fact sufficiently robust to capture both the commonalities and
the unique situations that appear across different battles in a meaningful yet succinct
manner. The resulting task structure is shown in Fig. 2.

We used this structure, along with the cue/attribute structure described in the sub-
sequent section to annotate instances and determine if it was possible to predict goals
from available cues.
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4.2 Determining the cue/attribute structure

The virtual tank commander should, given a set of circumstances, produce behav-
ior that approximates that of the SME in the same circumstances. This depends on
identifying the context: What is the SME seeing and attending to within the battle en-
vironment that elicits that specific behavior? One obvious source of context is the raw
information provided by the dTank and Unreal environments. That raw information,
including attributes such as Speed, Heading, Opponent Type (Officer versus Tank),
and Time, can easily be provided as input for the virtual commander. However, the
CTA revealed that the SME filters and interprets environmental features in a way that
far exceeds the simple consumption of raw data. Examples of these less direct—but
at least equally important (as reported by the SME in the CTA)—attributes include
proximity to cover from fire, and time until opponent is loaded. These ‘cognitive’
cues must be derived from the (simulation environment) ground truth (e.g., Best and
Lebiere 2006; Lathrop 2008).

4.3 Spatial representation in virtual environments

An important aspect of context recognition is the ability to recognize specific terrain
configurations that might help determine the appropriate course of action. One such
attribute that the SME routinely utilized is the proximity to cover. To adequately
simulate human behavior, a model must interact with the virtual environment in much
the same way that the human does; this may entail some form of SME-like visual
parsing of the environment by the synthetic commander. The next sections detail our
efforts to understand and quantify the SME’s visual parsing of the dTank environment
and cues.

This is of particular interest in that large areas of the terrain maps remain under-
specified or unknown to the tank commander (whether SME or virtual agent) dur-
ing battle. This is rather different from the majority of typical training environments
where much of what is present is known to the operator or agent. Use of the dTank
environment in this project therefore afforded a unique opportunity to investigate
such situations that are relatively rare in test environments but relatively common in
the real world. We believed that an investigation of the SME’s representation of the
dTank battle space would be an essential component underlying the development of
a virtual tank commander. To that end, we proceeded with two tracks of investigation
into the SME’s visual representation of the dTank environment: Test Terrain Map
Assessment, and Eye-tracking dTank trials.

4.4 SME assessment of test terrain dTank maps

The CTA revealed that the SME was very sensitive to the specific configuration of the
terrain both leading up to and during engagements with opponents. This suggested
that it might be necessary for the model to make SME-like assessments of the terrain.
To enable this, we produced a set of 21 test terrain maps (see Fig. 3) and asked the
SME to assess the omniscient view of those terrain maps.

The SME verbally indicated that any areas he had indicated as ‘high potential
threat” (YELLOW) would also be ‘strategically weak areas of engagement during
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Fig. 3 Example test terrain map < BattleField - dTank 4.4 (20 March 2008)

battle’ (RED). However, not all RED (strategically weak areas) are also ‘high po-
tential threat’ (YELLOW) areas. The SME reported that in the absence of a specific
battle (including tank position) configuration, the areas of ‘low confidence regard-
ing opponent tank location” (MAGENTA) would be redundant with areas of ‘high
potential threat’. Additional information would be necessary to disambiguate these
two categories and to specify the areas of ‘high confidence regarding opponent tank
location’ (BLACK). Figure 4 shows where the SME annotated a map and verbally
reported that he was being “extremely careful” with the placement of the ‘strategi-
cally’ strong areas of engagement during battle’ (GREEN) to hug the periphery of
the low hills area. This is in marked contrast to the placement of the ‘strategically
strong’ areas around the towns. We investigated this information in the eye-tracking
analysis of the SME battle behavior.

4.5 Eye-tracking dTank trials

The omniscient view terrain map and the SME’s eye movements during one battle
appear in Fig. 5a. In this display, saccades, which are defined as eye movements that
exceed a qualitative threshold velocity of 0.2 on a scale of O to 1 (a parameter of the
ViewPoint data analysis software), appear in blue and fixations appear in green. The
saccades show a pattern of jumping from the current tank position to relevant infor-
mation on the information panels. And then right back, while the fixations are most
heavily focused on the battlefield elements (self and opponents). Figure 5b displays a
superposition of fixations (in pink; the saccade traces removed for ease of interpreta-
tion) on the omniscient version of the terrain map. Note that the SME never sees this
omniscient view of the terrain map during the battle.
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Fig. 4 Map annotated by the £ BattleField - dTank 4.4 (20 March 2008)

SME, where yellow is classified — . A
as a ‘high potential threat’, red a
‘strategically weak area of
engagement during battle’, and
green a ‘strategically strong area
of engagement during battle’

Fig. 5a Example SME eye trace with saccades and fixations displayed
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=D Plot - dTank_stimulus_window.bmp

< TankNG 1.02 - (10 Var 2CG7)

Fig. 5b Example SME eye trace that is superimposed upon the omniscient map, with only the fixations
displayed

The SME spends a small amount of time looking at the battle statistics (i.e., head-
ing, speed, time, etc.), while the vast majority of the SME’s gaze is directed at the
location of the opponents and at the terrain immediately in the vicinity of the SME’s
tank. The fact that the SME spends much of his time regarding the immediate vicinity
is not surprising: that is the only visual information about the terrain that is present
to the human commander (see Fig. 1). However, it is very interesting that the SME
spends so much of his time gazing at the location of the opponents, even if the oppo-
nent is not currently visible.

To quantitatively report how much time was spent looking at the different regions
of the terrain map, we generated a ‘weather map’ version of the eye tracking results.
In this display, the terrain map has been segmented into a 10 x 10 grid, and the to-
tal fixation time for each of the 100 terrain areas has been color coded. The total
fixation times associated with each color is given in Table 2 (‘warmer’ colors repre-
sent a disproportionate amount of time spent focusing on that map region), while the
corresponding frequency map is shown in Fig. 6.

The comparison of the different visual perceptions of the terrain map by the SME
reveals that the SME’s eye movement during the battle is strongly influenced by the
location of the opponents during the battle. This is not surprising—the goal of the
battle is not to scout the terrain, but to seek and engage opponents. This analysis
further reveals that the SME spends a great deal of time looking at the opponent—
sometimes even when there is nothing to see. At this stage of the battle, the SME has
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Table 2 Color coding of total fixation times as displayed in the eye tracking ‘weather maps’

Color Total Fixation (ms)
Yellow 100 - 199
25-99
10-24
Blue 1-9
Gray <1

Battle 1

Fig. 6 The total fixation time in the 100 regions of the Battle 1 terrain map, with the terrain map showing
on the right

destroyed 2 of the 3 opponents and has located the final opponent tank—it is in the
middle of the trees. The vast majority of the time, the SME can see absolutely nothing
of the middle of those trees—yet, as displayed in the associated ‘weather map’, the
SME spends an extraordinary amount of time focusing on that region of the map,
looking where he thinks the opponent is, even when the opponent is out of view.
The SME’s visual fixations are less concerned with studying terrain features, but
instead trying to locate and keep track of the opponents. The SME is very aware of the
terrain features, and uses them to his advantage during battles, but the knowledge he is
maintaining is less spatial and more environmental. In particular, the eye fixations are
directed towards particular areas of the map. This leads to the consideration of what
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environmental information the SME is detecting, representing and utilizing during
the course of a battle, and how to best represent this information in attributes.

4.6 Map annotation

During the Cognitive Task Analysis (CTA), and most directly as a result of using
the eye-tracking methodology, it became apparent that the SME was not merely pay-
ing attention to and making decisions based on the raw environment information he
was getting from the game. Rather than keeping track specifically of where woods,
buildings, hills, and grass were located, the SME was maintaining a representation
of which areas of the map were safe to be in, which provided a good place to hide
and which were dangerous. The key finding is that the SME was directing visual
saccades towards areas that had particular properties related to the context of the ter-
rain and mission, but that were not visual properties of the environment. That is, the
SME selectively devoted attention to terrain areas that were indistinguishable from
other terrain areas just based on visual features; one patch of grass that might attract
substantial attention had exactly the same visual features as any other patch of grass,
and thus the visual features of the targets did not provide sufficient explanation for
the eye-tracking results, and thus it was obvious that the models would be unable to
account for this directed attention (the models were responsible for moving the turret
and adjusting the visual cone to obtain terrain and opponent information). However,
our initial models only used the “ground-truth” or raw environment information that
they could parse directly from the environment. Thus, we turn to determining how to
interpret and represent the environmental information similar to the SME and account
for the eye gaze data.

Using a handful of maps annotated by the SME as reference, we automated and
approximated the process. As Fig. 4 depicts, the entire map has not been annotated
by the SME; we defined unannotated areas of grass as “risky” and unannotated areas
of terrain as “cover”. We also broke up the categories of safe (green) and deep-cover
(yellow) into three categories—safe, cover, and deep-cover. The resulting five cate-
gories give the agent a comprehensive but abstract representation of the entire dTank
environment. Grass is coded based on proximity to terrain as safe (within 2 tiles),
risky (2 to 6 tiles away), or dangerous (more than 6 tiles away). Similarly, terrain was
classified based on proximity to grass as safe (within 1 tile), cover (within 2 tiles), or
deep-cover (more than 2 tiles away).

Figure 7 shows a comparison of the map annotated by the SME and the map anno-
tated by our automated system. There are more categories of terrain in the automated
version; however, the two maps are qualitatively very similar. Both show the same
“dangerous” and “deep-cover” areas, even preserving the slightly fuzzy boundaries
between territory considered safe and cover. The main difference to note is the red cir-
cle in the upper-right corner of the map that was annotated automatically. The entire
town has been colored in red based on the SME comment that he tried to stay away
from towns because they offered a false cover. We designate towns as “dangerous” to
convey this message to the agent. These “dangerous” areas are exactly the areas the
SME often turns the tank turret towards and devotes a majority of eye gaze towards,
thus allowing us to account for the eye gaze data within a computational model.
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Fig. 7 The map from Fig. 4, as annotated by the SME (lefr) and the same map, annotated automatically
(right). Red (dangerous), green (safe), and yellow (cover with poor visibility) represent the same type of
terrain in both maps. On the right, blue designates terrain that is considered in cover while pink designates
risky terrain. In the eye-tracking data, the “risky” terrain receives a vastly disproportionate amount of the
attention of the SME

4.7 Egocentric spatial representation

As part of our attribute enumeration, we identified a significant gap in the infor-
mation conveyed in the attributes as directly extracted from the environment. While
the human SME was able to identify objects on the map and navigate around them,
the environment attributes did not convey the spatial reasoning that humans take for
granted (i.e., the disconnected nature of the attributes prevented any sort of naviga-
tion with respect to obstacles). To remedy this, following the method described in
Best and Lebiere (2006), we developed an egocentric spatial representation, dividing
the area surrounding the tank into bins of varying width, and adding several attributes
that provided information as to the identity of and distance to the objects surround-
ing the tank. We chose to employ finer granularity towards the front of the tank and
rougher granularity towards the back in an effort to capture the fact that humans gen-
erally encode a greater level of detail about the environment in front of them and pay
less attention to what is behind them (see Fig. 8).

The distance to the closest terrain object (woods, hill, wall, etc.) in each bin is
returned as an attribute. We also identify the closest and farthest of the objects and
provide the angles to those objects as attributes. The addition of these navigational
attributes allowed us to successfully create a model that drives a tank through a curvy
path surrounded by trees—even if the path is different than any path used in the data
collection. We have also implemented the same type of binning using the cognitive
attributes discussed in the next section.

The result of this analysis is a real-time extraction layer for dTank that converts the
“bird’s-eye” view of the map to an egocentric representation on the fly, computing the
geometry between the driver’s tank and the objects that are either within the tank’s
view cone, or have been viewed within the last few seconds (we have used 2.5 seconds
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Fig. 8 Spatial bins used with dTank for determining nearby object attributes

as a spatial memory span to enable some persistence, but this is easily a research topic
unto itself). Each of the bins in Fig. 8 is represented twice: once for what the object
that fills the bin in (a tree, for example), and once for the distance to the nearest object
in that direction (18.2 meters, for example).

4.8 Architectures for instance-based performance

Instance-based models base decisions on similarity to stored examples. The great-
est problem in instance selection is one of efficiency; as the number of attributes
is increased, efficient search for similar instances (a requirement for instance-based
reasoning) becomes more difficult, with approaches such as kd-trees losing their ad-
vantage at dimensions greater than about 10, while instances can be influenced by
even very distant examples in similarity space, requiring calculating similarity across
large portions of the stored instances (see Deng and Moore 1995, for a thorough
treatment of these issues).

We initially used ACT-R for the instance-based model, but experienced difficul-
ties in achieving satisfactory real-time performance (response times within 200 ms)
as the number of attributes and instances we used were scaled upwards. This led
us to attempt to develop an in-house architecture capable of performing instance-
based processing at a higher rate. In an effort to provide greater performance, we
incorporated several key features. In particular, we focused on being able to identify
new instances that produced no new learning (redundant), and prune them, prevent-
ing growth in instances, and on being able to filter out irrelevant attributes, thereby
reducing the dimensionality and resulting search times of the stored instances.

In our experiments, we were able to prune approximately three quarters of all
new instances without any loss in accuracy. Through further improvements, including
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adaptive cue-weighting, which allows identification of irrelevant attributes and their
filtering (the majority of attributes are irrelevant or redundant in many problems), we
were able to increase both the speed and the accuracy of instance-based processing
well beyond what we were able to achieve using ACT-R (Best and Gerhart 2011).
We tested the speed of processing instances using both ACT-R 5.0 and ACT-R 6.0.
The ACT-R 5.0 system, because it uses a simpler representation at the code level, is
actually substantially faster than ACT-R 6.0 when processing instances (ACT-R 6.0
uses more robust data structures based on the Common Lisp Object System, which
are somewhat slower than the struct-based ACT-R 5.0 system), and thus we have cho-
sen to test CIBRE against the faster ACT-R 5.0 implementation (note that this speed
differential may be confined to components leveraged in instance-based processing
and the ACT-R 6.0 system may be generally faster than ACT-R 5.0—we have not
attempted any comprehensive performance comparison of the two implementations).

It is a fair question to ask how many instances an instance-based system that at-
tempts to capture cognitive performance might need to store. Simon and Gilmartin
(1973) estimated chess expertise as consisting of 50,000 chunks, where a chunk con-
sisted of ~7 slots that could hold individual pieces of information, while Gobet
(1997) estimated that 100,000 to 150,000 chunks would be required for expertise
in a particular domain. Given these estimates, we focused our exploration on instance
memories of up to 100,000 instances with 7 slots (attributes). The processing im-
plications of chunks and slots are largely independent and multiplicative, and the
two can thus be multiplied to provide an overall system load, so 50,000 chunks with
14 slots would produce nearly identical results. Many of the datasets we worked with
here involving SME performance in a virtual environment had greater than 10,000 in-
stances, but also had greater than 100 attributes, resulting in memories of greater than
1,000,000 attributes. Given this, this simulation will explore the processing implica-
tions of storing up to 700,000 attributes, demonstrating the implications of storing a
typical, not extreme, memory for task performance in a virtual environment.

Figure 9 shows the instance-based processing times of CIBRE compared to the
ACT-R 5.0 implementation. The time is the amount of wall clock time required to
execute a single retrieval from the instance memory for a given number of instances
(known as chunks in the ACT-R framework) with 7 attributes (slots in ACT-R) as the
number of instances increases to 100,000.

We highlight the 50 ms decision time level, which we suggest is the minimum
threshold for real-time usability. These results suggest that the CIBRE platform is
capable of handling real-time instance-based processing for a memory of 100,000
items on a current generation computer, which in this case is a hex-core processor
running at 3.6 GHz. Multiplying chunks by slots, CIBRE can process memory par-
titions of approximately 700,000 attributes and respond within 50 ms, while memo-
ries of 1,000,000 attributes, by extrapolation, can still be processed within 100 ms.
The ACT-R architecture, on the other hand, is less well-suited for real-time environ-
ments, and the out-of-date (but much faster) 5.0 implementation crosses the critical
50 ms threshold at approximately 30,000 instances (chunks), handling approximately
200,000 attributes within 50 ms, while the 6.0 implementation is substantially slower,
and even the faster ACT-R 5.0 system is unable to process an instance memory with
1,000,000 attributes within 200 ms.
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Fig. 9 Comparison of wall clock instance-based processing times for CIBRE and ACT-R against the
critical 50 ms real-time processing threshold

The simple reason for the speed difference is in the underlying processing that
must be done: the CIBRE system uses a tight inner loop and smaller structures to
hold the same information. It is also able to use datatypes to optimize its perfor-
mance (even though it runs in the same Lisp as ACT-R), and need not calculate or
maintain the more extensive data structures of ACT-R. As the number of chunks
increases, however, the larger memory footprint of the ACT-R chunks also start to
interact, further slowing the system through memory management interactions, while
the CIBRE performance is linear out to the limits of our exploration. As the non-
linearity of ACT-R performance in the previous graph shows, this focus on careful
memory management becomes more important as memories become larger.

It is important to note that in every problem set we have encountered, we have
been able to both prune the number of instances and the number of attributes automat-
ically using the CIBRE system, and the times presented factor this extra processing in
for the CIBRE architecture, while the ACT-R comparisons do not involve any extra
processing that might be called for in instance-based processing (e.g., advanced sim-
ilarity functions). Focusing on a worst-case analysis, even if the gains due to pruning
were not realizable for some domain-specific reason, the CIBRE system consistently
responds to instance-based decision queries more than three times faster than ACT-
R 5.0 (and more than ten times faster than ACT-R 6.0), allowing processing of an
expert sized memory of 50,000 to 100,00 chunks in real-time. However, we are con-
sistently able to maintain accuracy on test domains while pruning 80 % of the data
(Best and Gerhart 2011), resulting in an overall processing speed approximately 15x
faster than ACT-R 5.0 when performing induction on the same dataset, representing
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more than an order of magnitude in speedup. This enables storing and processing
large quantities of instances in real-time, one of our critical problem constraints.

We tested the representations described in the previous section using the instance-
based rule engine and toolkit we developed, CIBRE (Best and Gerhart 2011), for
both the entire battle (task selection) and several sub-task (task execution) paradigms.
A diagram of the entire system developed appears in Fig. 10. The system uses a Hier-
archical Task Network Planner for high-level control (specifying the interrelationship
of tasks and switching between them) and an instance-based processor for task exe-
cution. The goal of this design is to support multiple instance-based models within
the same framework (shown as “partitions” within the instance memory in Fig. 10),
allowing a broad task (such as the general dTank battle) to be modeled using a divide-
and-conquer approach, with multiple focused instance-based models providing the
low-level task performance detail.

In the context of the current task environments, the SME’s performance is stored
within the Instance Memory through their direct action with the task environment
(and logging through the CASEMIL hub). The Planner within CIBRE evaluates the
context (task environment variables and state) against its stored knowledge of goal
selection, and selects an appropriate task. Given a task to work on and the current con-
text (state variables and their transformations), the Real Time Decision Engine then
queries the Instance Memory for the appropriate action. This action is determined
by blending its prior relevant experiences, where relevance is determined through
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comparing similarity between stored experiences and the current context along those
dimensions that have been determined to be important. The selected action is then
passed back out to the environment through the CASEMIL hub thereby producing
behavior in the virtual task environment.

4.9 Using cues to select goals and perform tasks

Applying generative models on a broad scale requires identifying tasks to be exe-
cuted (task selection) and performing tasks that have been selected (task execution).
We evaluated two machine-learning approaches, comparing the use of instance-based
models of task selection and execution to a decision-tree approach. The choice of
these two formalisms was motivated by their contrasting properties in the context of
large, noisy human performance data sets characterized by the number of attributes,
m, and the number of cases in the training set (instances), n, and where n is typically
at least an order of magnitude larger than m. Learning new material in instance-
based systems is extremely rapid because it consists mainly of storing new instances,
with time complexity O (mn), but the time required to produce decisions from those
stored instances is also a linear factor of the size of the knowledge base, or complexity
O (mn). Decision trees, on the other hand, exhibit the opposite tendency, and while
the learning phase (tree construction) can be extremely laborious, with a time com-
plexity of O(mn?logn), the decision making phase can be executed with extreme
efficiency, with time complexity of O (m). Thus, with n ~ 10 m, the learning time of
the instance-based approach should be strictly less than the learning time for decision
tree induction, while the execution time at task performance of the instance-based
approach can be expected to be approximately two orders of magnitude greater than
the decision-tree approach.

Given the cues and goals we identified, we evaluated whether the cues comprised
a sufficient set of predictors for the goals and actions derived from the SME per-
formance (assuming that they were, in fact, predictable) by testing the prediction
performance of these two algorithms. One challenge in this was that the SME often
identified multiple goals they were pursuing simultaneously (for example, staying
hidden while monitoring an enemy tank; See Fig. 2 for a more complete goal decom-
position).

We used the four previously recorded “battles” as a source for test datasets, break-
ing the data into train and test segments. We explored several splits, including split-
ting all instances in the entire games randomly into either the training or testing par-
tition (labeled “All Battles” in Tables 3, 4, and 5), or by choosing one entire battle as
a training set, and then using it to predict the remainder of the training sets (labeled
“Game|[n]” in Tables 3, 4, and 5). The training instances were then selected from the
from the training partition by either choosing 1500 random instances, or by using
all available instances in the training partition. We also explored whether using all
of the available attributes or using a hand-selected subset of the attributes provided
better accuracy as well as its impact on run time. Because accuracy is significantly
influenced by chance, we also calculated chance accuracy on these datasets, shown
in Table 3. Thus, Table 3 shows the probability of guessing the action taken (e.g.,
throttle change) and the primary goal identified by the SME, based on whether the
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Table 3 Goal prediction accuracy using a hand-selected set of cues for either 1500 training instances, or
using all available training instances. Individual game predictions (Game 1-Game 4) derived from only
using samples from other games

# Instances Testing Set Game 1 Game 2 Game 3 Game 4
Chance 19.44 % 19.93 % 19.79 % 22.93 % 24.48 %
C4.5 Primary Goal 1500 89.83 % 33.99 % 12.39 % 40.31 % 14.22 %
IB Primary Goal 1500 94.93 % 44.06 % 38.43 % 38.25 % 10.66 %
C4.5 Primary Goal All 95.71 % 34.74 % 17.85 % 47.72 % 17.18 %
IB Primary Goal All 97.82 % 45.46 % 36.79 % 39.61 % 12.20 %

training data used is either a random half of the cases contained in all battles or one
of the individual battles.

We now turn to methods for predicting actions and goals from these datasets, us-
ing the instance-based methods described previously in contrast to the C4.5 decision
tree learning algorithm. The C4.5 classification algorithm (Quinlan 1993) has seen
widespread adoption and application to problems in machine learning and classifica-
tion, and generally shows an advantage of several orders of magnitude over instance-
based methods in terms of processing speed when applied to the same data (e.g., Best
et al. 2008), reflecting our decision time complexity predictions. Table 3 shows the
C4.5 derived classifier was able to correctly identify primary goals an overwhelming
majority of the time, compared to the probability of correctly guessing . In particu-
lar, when using a all available training cases of behavior from all of the battles with a
hand-selected set of attributes, the C4.5 classifier was able to predict the Primary Goal
95.71 % of the time. The decision tree classifier, however, underperformed the accu-
racy of the instance-based classifier, which achieved an accuracy of 97.82 % when
also using all available cases of training behavior with the hand-selected attributes.

We also tested whether or not we could predict the action taken using both the C4.5
classifier and the instance-based algorithm with the hand-selected cues. When using
all available training cases, a randomly selected half of the total cases, to predict
the other half of the cases, the C4.5 classifier predicted the Action Taken with an
accuracy of 58.59 % while the instance-based prediction achieved an accuracy of
61.46 %. However, prediction of actions taken in individual games using only cases
taken from other games is near chance.

The instance-based algorithm we have employed here (Best and Gerhart 2011) is
capable of selecting meaningful attributes, and it is thus possible to compare the per-
formance of the instance-based system using automatic selection of cues against the
hand-selection of cues. Table 5 reports the performance of the instance-based system
on both goal selection and action selection using all available cues derived from the
CTA. In all cases, the instance-based performance using all available cues exceeded
the accuracy of the instance-based system using hand-selected cues, with the system
correctly predicting each individual action in the split-half testing set 64.82 % of the
time. More significantly, when trained on subsets of battles, the automatic cue selec-
tion model was able to predict each individual action for games that were not sampled
in the training set nearly as well, with accuracies of 61.63 %, 79.41 %, 50.58 %, and
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Table 4 Action Taken prediction accuracy using a hand-selected set of cues for either 1500 training
instances, or using all available training instances. Individual game predictions (Game 1-Game 4) derived
from only using samples from other games

# Instances Testing Set Game 1 Game 2 Game 3 Game 4
Chance 19.44 % 19.93 % 19.79 % 22.93 % 24.48 %
C4.5 Action Taken 1500 48.03 % 20.38 % 12.02 % 1577 % 14.61 %
IB Action Taken 1500 59.99 % 24.75 % 16.39 % 21.48 % 23.26 %
C4.5 Action Taken All 58.59 % 15.68 % 10.38 % 16.64 % 15.40 %
IB Action Taken All 64.16 % 27.14 % 10.92 % 14.40 % 18.83 %

Table 5 Goal and Action Taken prediction accuracy using automatically selected cues for either 1500
training instances, or using all available training instances. Individual game predictions (Game 1-Game 4)
derived from only using samples from other games

# Instances Testing Set Game 1 Game 2 Game 3 Game 4
IB Primary Goal 1500 96.77 % 26.32 % 50.27 % 3121 % 22.24 %
IB Primary Goal All 98.36 % 26.16 % 42.99 % 32.16 % 22.23 %
IB Action Taken 1500 61.12 % 60.72 % 74.49 % 51.07 % 46.45 %
IB Action Taken All 64.82 % 61.63 % 79.41 % 50.58 % 43.68 %

43.68 % for Games 1-4. Thus, automatic cue selection led to much greater general-
ization across datasets.

The instance-based system, when used with a full set of cues, showed a large
accuracy advantage over alternatives we explored, especially in generalizing to games
that were previously unseen, making it a clear best choice for modeling continuous
control in task execution. When using the full set of attributes for prediction of goal
selection and action selection, we ran into difficulty using the C4.5 algorithm, and our
implementation was unable to return results within any practical amount of time. This
scaling issue is predicted by the computational complexity analysis at the beginning
of this section. We note, however, that the subset of accuracies returned from model
runs that did complete was strictly less than those returned using a hand-selected set
of attributes with the C4.5 algorithm. That is, accuracy was negatively impacted when
using C4.5 and greater numbers of attributes, so not only did the decision tree build
more slowly when attributes were added, but its accuracy also decreased.

The C4.5 algorithm performed well in terms of goal selection accuracy using the
hand-selected cues, providing accuracy within ~2 % of the instance-based model.
Given its superior runtime performance (two orders of magnitude faster), it is prac-
tically expedient to use a C4.5 derived classifier for task selection, while relying on
the instance-based method for task execution.

The significance of this result is that, given the set of cues and attributes we de-
rived, we were able to accurately predict the appropriate goal or task for a model or
agent to perform in a free-form battle scenario (where appropriate indicates corre-
spondence with the SME’s choices) using a decision-tree classifier. While this is a
somewhat naturalistic case study, it also serves as an existence proof: Given a large-
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scale scenario, we have identified a method that can be efficiently applied to the
problem of task selection, doing so with a high level of accuracy when compared to
the decisions of a human SME. This system has been implemented within the CIBRE
framework, allowing CIBRE to learn a decision tree capable of driving task selection
based on the current (and possibly shifting) context. While providing a level of con-
trol similar to that exhibited by a finite state machine, in this case the logic of task
switching is learned directly from the annotated data derived from the SME perfor-
mance.

The decision tree approach produces a ruleset for making decisions while an
instance-based approach relies on similarity-based matching from memory. The rel-
ative advantages and disadvantages between them come into focus in the context
of identifying goals and identifying actions. Decision trees are at their weakest when
faced with learning data that are either noisy, or are characterized by decision surfaces
that are non-orthogonal to the attribute axes. While the first issue can be addressed by
thoroughly cleaning and scrubbing the data to remove noise, and the second issue can
be addressed using methods such as Principal Components Analysis (PCA) to align
the decision surfaces with the attribute axes (neither of which were done here), this
must be done carefully, and is challenging to automate. The instance-based methods,
on the other hand, are extremely tolerant of both noise and irregular decision sur-
faces, allowing for better performance without resorting to ad-hoc transformations of
the data. The action data were both noisy and highly non-linear, making the instance-
based method a clear choice for an automatic system. The sacrifice, however, is com-
putational processing demands, and thus we have chosen to use the decision tree
approach on the task selection data, where the lower noise and orthogonality of the
decision surfaces allowed the decision tree approach to perform at nearly as high a
rate of accuracy as the instance-based system, but in much less time.

4.10 Using instances: the path driving model

Turning to the problem of task execution, we developed a model of path driving using
the CIBRE instance-based rule engine (Best and Gerhart 2011) to simulate SME
behavior. The SME completed the path five times, avoiding obstacles (trees) along
the way, and this data was used to train the CIBRE agent. We then ran the CIBRE
model on the same task (the model is deterministic, with the possible exception of
latency differences caused by the underlying hardware and software, and thus only
one run was used for calculation, though several runs were conducted to confirm
its repeatability). We compared each recorded position of the CIBRE agent against
the closest recorded SME position from among the five paths. A plot of both of these
positions overlaid on the map is presented in Fig. 11. CIBRE’s average deviation from
the closest SME path was 1.95 meters with a standard deviation of 1.81 meters and a
maximum distance of 13.95 meters. Given that the path is generally about 20 meters
wide, expanding to 60 meters wide in some places, this represents close agreement
between the training data and CIBRE’s behavior.

Using the methodology described by Best and Lebiere (2006), and Best et al.
(2010), we then transferred the dTank model to a second virtual environment,
UT2004, to validate behavior in the new environment. We also collected instances
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Fig. 11 CIBRE (red) vs SME
(vellow) path tracings in dTank

Fig. 12 Left: CIBRE model ported from dTank (red) vs. closest SME (yellow) path. Right: CIBRE model
trained in UT2004 (blue) vs. the closest SME (yellow)

of our SME driving the path in the new environment and trained a new cognitive
agent. The results from both models are shown in Fig. 12 while the actual view of
the CIBRE agent in the UT2004 environment during task performance is shown in
Fig. 13. The image on the left shows the path as driven by CIBRE in UT2004 trained
on data collected in dTank (in red). The image on the right shows the path as driven
by CIBRE trained on data collected in UT2004 (in blue). The SME performance in
UT2004 is on both panels (in yellow). The same analysis was performed on both
models. The differences between the ported dTank model and the closest SME path
in UT2004 (mean 6.73, standard deviation 6.56, maximum 29.93) were similar to the
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CIBRE-PATH

Fig. 13 A CIBRE model following the tree-lined path

differences between the UT2004 model and the closest SME path in UT2004 (mean
7.20, standard deviation 6.79, maximum 30.68). While the differences are larger than
those reported for the dTank model in dTank, they are still within the confines of the
path, indicating some success in porting cognitive models between virtual environ-
ments using abstract egocentric spatial representations.

Our analysis has shown that while the cognitive model does not follow the SME’s
behavior exactly, it does a very good job of approximating it, even when ported to a
new environment, as long as the same information can be extracted from both envi-
ronments. The use of an egocentric spatial representation makes this transformation
straightforward: the model acts on a model-centric representation that is identical
across the virtual environments.

5 Conclusions

The analysis of the SME behavior told an interesting story: contrary to our original
hypothesis, the SME’s visual representation of the virtual environment was decep-
tively simple; sophisticated, but simple. This result is not surprising: experts in a
given field are often distinguished from novices in that they are able to recognize and
interact with larger groupings—or “chunks”—of information than novices are able
to do. The eye-tracking data, in particular, was confusing when interpreted in terms
of what was visible on the screen, and was only clearly interpretable when viewed in
terms of strategic direction of attention to areas that might contain threats. Thus, the
eye-tracking data revealed spatial strategies and information foraging relative to the
current game context rather than visual search strategies.
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Careful analysis of the SME’s discussion of his battle processes revealed that the
SME was taking discrete dTank information, such as the current time and the pres-
ence of trees, and turning them into meaningful battle cues, such as ‘opponent will be
loaded soon’ and ‘the Opponent can see—and possibly fire—at me’. On the basis of
this insight, we developed a series of environmental cues or attributes that are com-
putationally derived in real-time directly from the discrete dTank information that
is available to the SME during a battle. We extracted a total of 113 attributes, and
the simple path model uses approximately 10,000 instances, for a total of more than
1,000,000 total attributes (counting across all of the instances). We were unable to
generate real-time (within 200 ms) predictions for such large numbers of instances
and attributes using ACT-R. We have found that execution of many of the tactics
requires only a subset of these attributes. For example, seeking cover requires knowl-
edge of the terrain with respect to the tank whereas firing at an enemy tank requires
knowledge of that enemy’s location. However, determining that is a labor-intensive
process, and trial and error and hand-coding are not scalable strategies. To address
these issues, we developed a Cognitive Instance-Based Rule Engine (CIBRE), a plat-
form for real-time performance of spatial tasks in virtual environments, with an em-
phasis on computational efficiency, deep integration of rule-based and instance-based
processing, and pruning of instances and attributes as a means of reducing compu-
tational load We have focused on developing automatic methods for reducing the
number of attributes used through adaptive cue-learning, and have developed meth-
ods that match or exceed the accuracy performance of other similar systems reported
in the machine learning literature (Best and Gerhart 2011).

The analysis we presented on chunk processing rates is also, unfortunately, a best-
case for the ACT-R system. Not only did we use the faster ACT-R 5.0 implementation,
but the attributes themselves that we used for the testing presented in this paper were
minimal—all were a single digit. The actual attribute values we worked with in the
virtual environments were often much larger than single digits, and thus the mem-
ory load on the Lisp subsystem could be expected to be much greater. Our actual
experience suggests this is true and was, in fact, the primary reason for developing
CIBRE: We were unable to get consistent rapid instance-based responses from large
memories when using ACT-R and while the system might keep up for small seg-
ments of the performance, it would inevitably stumble and fall behind. This issue, in
particular, was documented in regards to the models presented in Best and Lebiere
(2006), along with several practical remedies that were necessary to achieve satisfac-
tory performance (such as flushing network buffers when processing fell behind), but
those remedies are still relevant since the instance-based systems of today are just
now approaching the processing speeds of the rule-based systems of a decade ago.

We do not take this as a weakness of the ACT-R system. Rather, it has many
things to do, and along with the capability, for example, for predicting blood oxygen
levels in brain regions, come corresponding data structures and memory demands.
Instance-based systems all suffer from the curse of dimensionality, and they hang on
the edge of computational intractability. If the target is real-time interaction this calls
for ruthlessly Spartan programming, which is certainly at odds with the goals for a
complete account of cognition in the form of a cognitive architecture.

The conclusion from the architectural explorations we conducted is clear:
instance-based methods can easily overwhelm computational resources in task data
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extracted from virtual environments. Optimizing code can only achieve modest gains
relative to existing systems—the real problem is simply the dimensionality of the
underlying data, which cannot be searched any more effectively by cleverly pro-
grammed algorithms than by a simple serial search once approximately ten or more
attributes are present in any instance (Deng and Moore 1995). To overcome this
“curse of dimensionality”, the only options are to either reduce the number of at-
tributes, or to reduce the number of instances used. Within the ACT-R architecture,
attribute selection is managed by hand-coding the retrieval that specifies the relevant
slots in an instance. This binary selection of attributes (they are either used or not) is
limited in terms of accuracy (Best and Gerhart 2011), and does not scale well to large
projects, or those that might initially include large numbers of attributes, as is often
the case in virtual environments. An automated means for selecting and weighting
attributes is an absolute requirement for a scalable method for these domains (and the
ACT-R theory currently precludes weighting of attributes).

Using instance-based methods, but hand-selecting a minimal set of attributes, it is
still possible to obtain reasonable real-time performance using the ACT-R instance-
based loop with the dTank virtual environment, which only requires about a 200 ms
cycle time for reasonable interaction, as long as the task data is also constrained to
be relatively “light” in terms of instances, and the total number of instances times
attributes is kept under approximately 500,000. However, this is insufficient for the
Unreal Engine interaction, which is a much faster-paced system, and would not sup-
port more complex tasks under even the lightweight dTank environment. While this
conclusion is qualitative, based on our explorations, we would advise using special
purpose instance-based systems such as CIBRE, which are an order of magnitude
faster (or more) than the ACT-R system, in preference to ACT-R for fast-paced three-
dimensional environments such as flight simulators and first-person shooters like Un-
real.

The Cognitive Task Analysis provided a great deal of insight into what the SME
is attending to within the environment and how the SME uses that information to
perform the overall task of playing dTank. This activity led to the production of
both Attributes and Tactical Categories that were specific to the dTank domain and
the tasks performed by the SME. These Attributes and Tactical Categories comprise
the features and responses that collectively make up the instances upon which the
instance-based learning system relies, and provided the grist for the sifting process
of determining which attributes were relevant to any particular task. The attribute set
itself is a super-set of the features used for each individual subtask—the method of
automatic attribute weighting used in CIBRE allows the instance-learning system to
determine which attributes matter for which tasks, which greatly simplifies the soft-
ware engineering aspect of model building.

The tactical categories themselves correspond to tasks to be executed during the
battle phase. We demonstrated a decision-tree based system capable of learning from
the SME data and producing task selection decisions that had a high level of agree-
ment with the SME. This system was embedded within the CIBRE framework to
address the challenge of task selection, allowing the system to choose a particular
task to focus on based on the current context. We note, however, that the decision tree
induction algorithm was not well-suited to learning the continuous control actions
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required for performance in the domain (likely due to noise in the data and irregular
decision surfaces), and performed poorly when predicting actions (an area where the
instance-based method excels for our domains). Rather, the algorithm succeeded best
at the more symbolic categorization task of identifying the goal the SME would have
selected. In this case, however, the decision tree, which can be represented directly as
a much faster ruleset, (when compared to an instance-based method) is clearly prefer-
able. It would be entirely feasible to use the instance-based system for both tasks, but
this would double the processing time of the system, and thus we have adopted a
hybrid approach to maximize real-time responsiveness while maintaining accuracy.

The entire range of attributes, determined from the CTA on the complete battle
task, supported task execution on a variety of micro-tasks. That is, the unconstrained
and naturalistic task helped provide a superset of attributes that covered those that
were necessary to perform various individual subtasks. One such task, a path driv-
ing task, was investigated in detail. Using this task, we demonstrated that the induced
instance-based model was capable of performing at a level similar to that of the SME.
Further, and perhaps more importantly, we demonstrated that the use of an egocen-
tric spatial representation allowed for a level of environment agnosticity: The dTank
model of path driving was successfully deployed in the Unreal Tournament fully im-
mersive three-dimensional environment, performing the same task without any model
modifications at similar levels of accuracy.

One issue with the data collected is that discrete actions such as key presses only
occur at one specific point in time, and thus the sampling rate relative to the base rate
for responses will produce some number of instances with no action (samples that
are taken between discrete actions). This is not a quirk of dTank or Unreal; rather it
will be true of any real-time task environment that takes discrete inputs such as key
presses or mouse clicks and is sampled using a set frequency. Our primary means
for dealing with this was to have the model determine a desired action state rather
than a specific discrete action. Thus, a model might target a certain speed, rather
than reproduce a throttle movement, and only produce an action when the current
action state mismatched the desired action state. The action at the level of instances is
therefore to set the vehicle state, rather than to adjust the state. While this difference is
subtle, it is also profound. In a sequence of 100 instances, there might be one throttle
adjustment among them, but every instance will have a throttle state associated with
them. If discrete actions were used as the basis for actions in the instances, the sheer
number of instances containing no action would overwhelm the rest, and result in a
model that produced no action whatsoever.

Another issue with the data collected in the entire battle phase was that there was
a large portion of time in which the appropriate behavior was to do nothing. These
“empty” sequences of behavior were difficult to reproduce, and caused an overesti-
mation of how much behavioral data we had actually collected. These periods were
often related to the task structure itself. For example, many tasks approached by the
SME were started with a task orientation phase, where the SME scanned the display
for several seconds without producing any action. This requires either incorporating
the task time delta into the instances, which is generally problematic because it can
result in the instance-system learning to attend to timestamps (rather than meaningful
attributes), or finding a way to account for the task structure outside of the instance
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system. For these reasons, we had the SME perform a series of pre-determined “vi-
gnettes” consisting of high-level actions identified during the CTA.

Approximately one third of the data we collected were pre-segmented behavioral
sequences during which the SME performed a simpler task several times (e.g., fol-
lowing an opponent, aiming and shooting, following the tree-lined path, etc.). These
data streams were much more compact, and were easier to replicate in real-time.
Most likely, the increased repetitions of behavioral sequences actually resulted in
more useable data per model, despite having many times fewer instances than the
models created from entire simulations. The improved real-time replication may also
be explained by the fact that the behavioral streams were in separate models, so there
was no interference between goals (i.e., given a particular situation the appropriate
action might depend on the goal to be achieved.

In the end, we were able to induce a model of task selection and a model of task
performance that both approximated human behavior directly from the data. How-
ever, this was only possible through the combination of ‘cognitive attributes’, such
as safe and risky territory, and an egocentric spatial representation—our attempts at
leveraging ground truth directly for both task selection and task performance were
consistently unsuccessful. Instead, the Cognitive Task Analysis was an essential tool
to developing a spatial representation that used features of the environment the expert
was using. Thus, knowledge engineering was replaced, by necessity, with attribute
engineering.

While we have induced models of task selection and task execution, for the free-
form battle scenario, we have not yet combined these individual models within a
framework for capturing the entire task performance. And, in fact, the naive approach
of simply placing all of those instances in a single task memory does not result in a
system capable of reproducing the highly structured and variable behavior produced
by the SME. This approach merges too many instances that are specific to particular
subgoals, and results in a system that produces a poor approximation to human be-
havior. Rather, we have focused on complete modeling of more constrained tasks, and
have demonstrated models of individual tasks up to the complexity of path driving,
where the path driving starts at a landmark (a virtual building) and ends at a corre-
sponding landmark (also a virtual building). This task does have components, and the
model must engage the throttle to start the tank moving, and bring the tank to a stop
when it reaches its destination, but this is approaching the limit of task structure that
we have been able to learn within a single instance memory.

The ability of CIBRE to reproduce human behavior based off of a recording of
an SME behavioral trace, producing a generative model of behavior by observing a
demonstration, has far reaching implications. This type of learning architecture could
easily be used in a virtual training environment due its ability to learn and model
human behavior based off of recorded data—most of the learning and induction is
automated and is part of the core algorithm, so extending it to new domains is much
simpler than conventional knowledge engineering.

We believe the most important contribution of this work is in detailing a method-
ology for recording and analyzing an expert performance in a virtual domain and
translating that directly into a performance model. There are, of course, many steps
left to take in this research, including increasing the breadth of the models so they
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include many smaller tasks and switch between them. We have identified a means
of selecting tasks, but have not yet approached the stitching together of those tasks
using a planning framework into a comprehensive model of overall behavior. We are
currently applying this methodology in concert with the CIBRE architecture to work
with flight simulators and hope to report on that in the near future.
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