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Abstract
Here, we investigate the seasonal variability in the dissolved inorganic carbon (DIC) cycle in
the Northwest Pacific using a high-resolution biogeochemical and carbon model coupled
with an operational oceanmodel. Results show that the contribution to DIC from air–sea CO2

exchange is generally offset by vertical mixing at the surface at all latitudes, with some
seasonal variation. Biological processes in subarctic regions are evident at the surface,
whereas in the subtropical region these processes take place within the euphotic layer and
then DIC consumption deepens southward with latitude. Such latitudinal differences in
biological processes lead to marked horizontal and vertical contrasts in the distribution of
DIC, with modulation by horizontal and vertical advection–diffusion processes.

Keywords Biogeochemicalmodel . Inorganic carbon cycle .NPZDC .NorthwestPacific .Ocean
acidification . JCOPE . pH . Aragonite saturation

1 Introduction

The atmospheric partial pressure of CO2 (pCO2) has been increasing at a rate of ~ 1.8 ppm by
volume (ppmv) per year in recent decades as a result of human activities such as fossil-fuel
burning, deforestation, and cement production (Takahashi et al. 2009; IPCC 2013). In the pre-
industrial era, the ocean was generally a net source of CO2 emissions to the atmosphere
because of the mineralization of land-derived organic matter in addition to that produced by in
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situ production, and CaCO3 precipitation (Mackenzie et al. 2004). Rising atmospheric CO2

concentrations caused by fossil-fuel combustion and land-use changes (Mackenzie et al. 2004;
Bauer et al. 2013; IPCC 2013; IGBP, IOC, SCOR 2013) reversed the direction of the air–sea
CO2 flux, leading the global ocean to become a net sink of anthropogenic CO2. The present
thickness of the upper thermocline, where large amounts of anthropogenic CO2 emissions are
stored, is estimated to be of the order of a few hundred meters (Mackenzie et al. 2004). The
oceanic coastal zone changed from being a source to a sink during the industrial era
(Mackenzie et al. 2004; Bauer et al. 2013). Several estimates of CO2 sinks and sources in
ocean provinces (Cai et al. 2006) and/or spatially explicit typology (Laurelle et al. 2010)
showed that marginal seas in the tropics are sources of CO2, whereas those in temperate
regions and at high latitudes act as sinks (Cai et al. 2006; Laurelle et al. 2010).

Data-based estimates of variability and trends in oceanCO2 uptake are limited by the short record
of observations. Although high-quality measurements of CO2 in surface waters and air commenced
in the early 1960s, the amount of available information is still limited (Wanninkhof et al. 2013). The
principal observational approaches for estimating sea–air fluxes of CO2 are tomeasureΔpCO2 from
ships (Takahashi et al. 2009; Nakaoka et al. 2013) and moorings (Sutton et al. 2017), and apply a
parameterization using a function of wind speed (Wanninkhof et al. 2013). Other approaches rely on
simulations made by ocean biochemistry general circulation models (OBGCMs) with parameteri-
zation of biogeochemical processes and total dissolved inorganic carbon (DIC) measurements in the
ocean interior, and/or atmospheric data. However, gaps remain in the understanding of ocean CO2

uptake, especially the spatiotemporal variability of the seasonal inorganic/organic carbon cycle,
because CO2 concentrations and other related oceanic variables are difficult to observe simulta-
neously, frequently, and widely. The seasonal variability in pCO2 shows differences at a local scale
(Takahashi et al. 2009; Sutton et al. 2017).Model estimates of temporal trend detection (Keller et al.
2014; Lovenduski et al. 2015) show the influence of both decadal/interannual and seasonal
variabilities and suggest that the time of emergence of a trend signal is basically around 10 years
in the surface but the tropical area needs more time.

The detailed processes that generate variation in the DIC of the ocean interior are still uncertain.
Several studies have proposed possible mechanisms for the oceanic annual carbon cycle (Palmer
and Totterdell 2001; Takahashi et al. 2002; Xiu and Chai 2013). Palmer and Totterdell (2001)
discussed physical and biological mechanisms that contribute to the global annual mean carbon
cycle using an ecosystem model without considering the contribution of air–sea CO2 exchange.
They reported that the effects of vertical mixing were largely offset by biological processes in the
latitudinal range of 25−60° N over ocean surfaces and that the effects of advection were mostly
offset by biological processes at latitudes of < 20° N. Takahashi et al. (2009) focused on the relative
importance of temperature and biological effects to the global seasonal cycle of air–sea CO2

exchange by evaluating monthly climatological maps of air–sea CO2 flux and pCO2. Xiu and
Chai (2013) investigated the seasonal and decadal variability of the upper-ocean carbon cycle in the
North Pacific using a physical–biogeochemical model. Their results showed that the seasonal
variability in pCO2 andCO2 flux in theNorth Pacific followed the change in sea surface temperature
closely, with high and low values in summer and winter, respectively, and that surface pCO2

variations at themodeled sites correspond towell-known observational monitoring points controlled
primarily by anthropogenic CO2 and modulated by decadal variations.

The Japan Coastal Ocean Predictability Experiment (JCOPE; http://www.jamstec.go.
jp/jcope/) is an operational eddy-resolving physical ocean model for the Northwest Pacific,
the Japan Sea, the Okhotsk Sea, and the East China Sea (Miyazawa et al. 2009, 2014). Ishizu
et al. (2019) recently developed a biogeochemical and carbon model coupled with the JCOPE
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(JCOPE_EC). This model generally reproduces the observed seasonal variability of
chlorophyll-a (Chl-a), dissolved inorganic nitrogen (DIN), phosphorus (DIP), and inorganic
carbon (DIC), and total alkalinity (ALK), but includes monthly climatological damping for
DIN, DIP, DIC, and ALK (Ishizu et al. 2019). The damping forcibly constrains the calculated
biological parameters (DIN, DIP, DIC, and ALK) around the monthly climatological values
with a timescale of 30 days (Ishizu et al. 2019), meaning that those authors were unable to
discuss the mechanism of the inorganic carbon cycle. In this study, we therefore performed a
simulation using JCOPE_EC without any climatological damping and examined the physical
and biological mechanisms represented by the model dynamics, focusing on the critical roles
of horizontal and vertical advection–diffusion processes in generating seasonal variation in
DIC.

We present the results from JCOPE_EC (without climatological damping) and discuss the
mechanisms responsible for the simulated seasonal inorganic carbon cycle for the Northwest
Pacific. Details of the model configuration are given in Section 2, model accuracy is described
in Section 3, the processes involved in the inorganic carbon cycle in the model are discussed in
Section 4, and the conclusions of the study are provided in Section 5.

2 Model and data

2.1 Model configuration

The JCOPE_EC (Ishizu et al. 2019) is an off-line tracer model driven by physical processes
simulated by an operational eddy-resolving ocean general circulation model (JCOPE2M;
Miyazawa et al. 2017) based on the Princeton Ocean Model with a generalized sigma
coordinate (Mellor 2001). The model is a three-dimensional high-resolution regional model
covering the Northwest Pacific (108–180° E, 10.5−62° N) with a horizontal resolution of 1/12°
(4.4–9.1 km) and 46 vertical active levels. The model structure is the same as that described by
Ishizu et al. (2019), but our model differs in that the governing equations for DIN, DIP, DIC,
and ALK (equations 4, 5, 17, and 18 of Ishizu et al. 2019) remove climatological damping.

We determined the biogeochemical model parameters using multi-optimized operations
(Ishizu et al. 2019) separately for subarctic and subtropical regions (Table 1). These biogeo-
chemical parameters are the maximum growth rate from photosynthesis (Vmax), the phyto-
plankton mortality rate at 0 °C (MP), the phytoplankton respiration rate (R), the maximum
grazing rate of zooplankton (Gz), the zooplankton mortality rate (M)z, the decomposition rate
(VPN), and the optimum light intensity for phytoplankton (Iopt). In addition to the parameters
described in Ishizu et al. (2019), we introduced latitudinal changes in Vmax,MP, R,Mz, VPN, and
Iopt according to the results of several sensitivity experiments as follows:

Vmax ¼ 0:5V0
max tanh Lat−Latbnd:vmaxð Þ=Latslp

� �þ 1
� �þ V1

max ð1Þ

MP ¼ 0:5M0
P tanh Lat−Latbndð Þ=Latslp

� �þ 1
� �þM1

P ð2Þ

R ¼ 0:5R0 tanh Lat−Latbndð Þ=Latslp
� �þ 1

� �þ R1 ð3Þ
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MZ ¼ 0:5M0
Z tanh Lat−Latbndð Þ=Latslp

� �þ 1
� �þM1

Z ð4Þ

VPN ¼ 0:5V0
PN tanh − Lat−Latbndð Þ=Latslp

� �þ 1
� �þ V1

PN ð5Þ

Iopt ¼ 0:5I0opt tanh − Lat−Latbndð Þ=Latslp
� �þ 1

� �þ I1opt ð6Þ

where Vmax, MP, R, Mz, VPN, and Iopt change latitudinally from 0.28 to 0.97 day−1, 0.054 to
0.155 (mmol Nm−1) m−3 day−1, 0.0011 to 0.00256 day−1, 0.044 to 0.12 (°C)−1, 0.0954 to
0.47 day−1, and from 20 to 100 W m−2, respectively; Vmax

0, R0,MP
0,Mz

0, VPN
0, Iopt0, Vmax

1, R1,
MP

1,Mz
1, VPN

1, and Iopt1 are the tunable parameters (Table 1); Latbnd.vmax, Latbnd, and Latslp are
the coefficients representing the values at latitudinal boundaries and the latitudinal slopes for
these parameters, respectively (Table 1 and Eqs. 1, 3, 4, 5, and 6).

The first version of JCOPE_EC had a model bias resulting in a large decrease in ALK in
summer due to anomalously high CaCO3 production with a large increase in Chl-a during
summer in subarctic regions (Ishizu et al. 2019). To suppress this large decrease in ALK in this
model, we set the CaCO3 to non-photosynthetic POC production ratio to a much smaller value
(0.00035) in the version of the model used here (Table 1). This improvement allows the model
to well represent the seasonal variability of ALK in our target region (Section 3).

The model was driven by forcing from daily oceanic (JCOPE2M) and six-hourly atmo-
spheric (NCEP/NCAR) reanalysis data for a 1-year period (2015). The initial concentrations of
phytoplankton were set to 0.1 and 0.0 mmol N m−3 for depths above and below 150 m,
respectively. The initial zooplankton concentrations were set to 10% of the phytoplankton
concentration. The initial detritus concentration was set to 0.0 mmol N m−3. The variables
DIN, DIP, and DIC were initialized using the climatology for January, and ALK was
initialized using the annual climatology (Ishizu et al. 2019).

2.2 Model validation

To validate phytoplankton concentrations in the model, MODIS-Aqua Ocean Color Data for
Chl-a from 2015 were used, as downloaded from the website of the Physical Oceanography
Distributed Active Archive Center (PODAAC). To validate the model results for DIN, DIP,
and DIC, we used monthly climatological DIN, DIP, and DIC data (World Ocean Atlas 2013
(WOA13); Yasunaka et al. 2013) and Japan Meteorological Agency (JMA) observational data
for 2015, as in Ishizu et al. (2019). There are no applicable monthly climatological datasets for
ALK in our target region (Goyet et al. 2000; Key et al. 2004; Takatani et al. 2014, Takahashi
et al. 2014). We therefore used ALK observational data obtained by JMA in 2015 for
comparison with model results (Section 3).

3 Results

3.1 Accuracy of modeled Chl-a, DIN, DIC, and ALK

Model results presented here are slightly less accurate than those of the model with the
climatological conditions described by Ishizu et al. (2019), except for ALK. However, the
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Table 1 Biogeochemical parameters in JCOPE_EC without the climatological condition. An asterisk in the
value column signifies that latitudinal differences are the biogeochemical parameters adopted latitudinal differ-
ences from Eqs. 1–6

Symbol Definition Value Units Referenced
values
Ishizu et al.
2019

Ecosystem model
For phytoplankton
Vmax Growth rate for phytoplankton *0.28–0.97 day−1 0.0492
Vopt

0 0.690
Vopt

1 0.625
lat
bnd.vmax Boundary for latitudinal

differences in growth rate for
phytoplankton

40.0

A Affinity coefficient of basic
cellular physiology

6.75 mmol N m−1 day−1

MP Phytoplankton mortality rate at
0 °C

*0.054–0.155 (mmol N m−1) m−3 day−1 0.04

Pmin Threshold of phytoplankton
mortality

0.0587 (mmol N m−1) m−3

R Phytoplankton respiration rate at
0 °C

*0.0011–0.00256 day−1 0.0317

Ropt
0 0.00147

Ropt
1 0.00185

CP
T Temperature coefficient for

photosynthesis
0.0392 °C−1

CRP
T Temperature coefficient for

phytoplankton respiration
0.0519 °C−1

CMP
T Temperature coefficient for

phytoplankton mortality
0.0693 °C−1

Iopt Optimum light intensity for
phytoplankton

*20–120 W m−2 *20–120

Iopt0 100.0
latbnd Boundary for latitudinal

differences
45.0

latslp Slope for latitudinal differences 4.0
cdom Light dissipation coefficient of sea

water
0.015 m−1 *0.015–0.045

Latslp_dom Slope for latitudinal differences
for c

dom

1.5

For zooplankton
GZ Maximum grazing rate of

zooplankton at 0 °C
0.423 day−1

λ Ivlev constant 1.4 (mmol N m−3)−1

MZ Zooplankton mortality rate at 0 °C *0.044–0.12 °C−1 0.05
MZ

0 0.0760
MZ

1 0.0825
βz Growth efficiency of zooplankton 0.3
αz Assimilation efficiency of

zooplankton
0.7

P* Zooplankton threshold value for
grazing on phytoplankton

0.0430 (mmol N m−1) m−3

CGZ
T Temperature coefficient for

zooplankton grazing
0.0390 °C−1

CMP
T Temperature coefficient for

zooplankton mortality
0.0693 °C−1
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model used here still simulates observed conditions well, capturing the basic seasonal varia-
tions of DIN, DIP, DIC, and ALK in comparison with the climatological and in situ data
(Figs. 1, 2, 3, 4, and 5). Although the satellite data in the subarctic region exhibit
distinctive double peaks in spring and autumn (Fig. 5(a)), the concentration of Chl-
a given by the model shows only a single peak in summer in the subarctic region
(Figs. 1 and 5(a, d)). Ishizu et al. (2019) suggested that this single peak in summer is
caused by a lack of iron restriction (Tsuda et al. 2003) of the model. The seasonal
variabilities in DIN and DIC in the model outputs are represented well (Fig. 2(g, h)
and the 50° N line in Fig. 5(e)) compared to the DIN and DIC climatology (Figs. 2(c,
d) and 5(c−e)). It is difficult to judge whether the distribution of ALK is accurate, but
modeled ALK concentrations are generally constant throughout the year (Fig. 4(d−g))
and are consistent with JMA observations (Fig. 4(a−c)).

The reproducibility of the model is poorer than that of Ishizu et al. (2019) for DIN and DIC
(Table 2), but the reproducibility of ALK is much improved, especially in the subarctic region,
the Kuroshio Extension, and the Japan Sea. The correlation between observed ALK and
simulated ALK is low and negative (R = − 0.24) in the Japan Sea because the simulated
ALK values there have near-uniform values with depth (not shown).

3.2 Ocean acidification indices pHin situ, pH25, and Ωarg

The ocean acidification indices pHin situ, pH25, and aragonite saturation (Ωarg) were calculated
from model results for temperature, salinity, DIC, and ALK. The pHin situ values change
throughout the year (Figs. 6 and 7). The summer pHin situ values in the subarctic region
(150–175° E, 50−60° N) are slightly higher (8.05–8.10) than those shown in Fig. 9 of Ishizu
et al. (2019); 7.95–8.00; Figs. 6(a−d) and 7a). Summer pHin situ values for regions north of 35°

Table 1 (continued)

Symbol Definition Value Units Referenced
values
Ishizu et al.

2019

For diatoms
WD Singing velocity of detritus 6.7 m day−1

VPN Decomposition rate at 0 °C
(DET→DIN)

*0.0954–0.28 day−1 0.05

VPN
0 0.1853

VPN
1 0.1876

CλD
T Temperature coefficient for

decomposition
0.0693 °C−1

Carbon cycle model
RP:N Stoichiometry of nitrogen to

phosphorus
16.0

RC:P Molar elemental ratios 112.0
RCaCO3:POC CaCO3 over nonphotosynthetical

POC production ratio
0.00035 0.035

RALK:N Alkalinity over
nonphotosynthetical N
production ratio

0.001

DCaCO3 CaCO3 remineralization e-folding
depth

3500.0 m
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N decreased by 0.05 from winter to summer (Figs. 6(a−d) and 7a). The general seasonal
variability is consistent with the previous model version used by Ishizu et al. (2019).

Horizontal distributions of pH25 exhibit consistent seasonal variability across all latitudes
(Figs. 6(e−h) and 7b) but with different amplitudes. The pH25 values at higher latitudes are
lower than at lower latitudes, with an increase of 0.15 in summer. Their amplitudes gradually
decrease southward. The pH25 values in the subtropical region south of 20° N are generally
constant throughout the year.
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Fig. 1 Surface distribution of monthly mean chlorophyll-a (Chl-a) concentrations from MODIS_Aqua data and
from model outputs (this study) for January (a, e), April (b, f), July (c, g), and October (d, h). Conversion from
phytoplankton to Chl-a values was performed using a weight ratio of carbon to chlorophyll-a of C:Chl-a = 40:1
(Li et al. 2010; Stelmakh and Gorbunova 2018) and a ratio of C:N = 106:16 (Redfield et al. 1963)
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(b, f), July (c, g), and October (d, h) from climatology from WOA13 and Yasunaka et al. (2014) and model
outputs, respectively
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The seasonal pattern of Ωarg (Fig. 6(i–l)) is similar to that of pH25 (Fig. 6(e–h)). The Ωarg

values in the same area of pH25 north of 35° N become 0.5–1.0 larger in summer and in
autumn. The summer increase in Ωarg is less evident in the south.

Correlation coefficients for modeled pHin situ, pH25, and Ωarg are higher than those reported
by Ishizu et al. (2019) because the accuracy of the modeled ALK concentrations is much
improved compared to them.
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f), July (c, g), and October (d, h) from climatology and model outputs, respectively. The climatology was
obtained by combining the datasets of Goyet et al. (2009), Key et al. (2014), and Yasunaka et al. (2014) (see
Section 3.1 for details)
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4 Discussion

4.1 Processes affecting the seasonal inorganic carbon cycle

To identify processes affecting the inorganic carbon cycle, we examined the physical and
biological mechanisms underlying the seasonal inorganic carbon cycle in the Northwest
Pacific using the model results. We separately evaluate each process included in the governing
equation as follows:

Model outputs of surface chlorophyll-a data in 165E Line
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Fig. 5 Time series of surface chlorophyll-a, DIN, DIC, and ALK data along 165° E from model outputs. Purple,
blue, green, and red colors depict data for 20° N, 30° N, 40° N, and 50° N, respectively
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Table 2 Correlation coefficients (R) in chlorophyll-a (Chl-a), DIN, DIC, alkalinity, pH 25, and Ωarg between
observed data and model outputs in 2015 for each region (Fig. 1). The left and middle values in a column indicate
R and the 95% confidence interval for R, respectively. Values in brackets indicate p values relative to a
significance level of 0.05. Chl-a values are expressed by using the common logarithm, log10(Chl-a). Italic and
bold values indicate the areas of lower and higher and correlation coefficients, respectively, compared with those
given by Ishizu et al. (2019)

Parameter Subtropical region Subarctic region Kuroshio extension Japan Sea

Chlorophyll-a 0.67; 0.63 < R < 0.70
(0.07)

0.83; 0.79 < R< 0.87
(0.07)

0.80; 0.75 < R < 0.84
(0.12)

0.92; 0.89 < R < 0.94 (0.15)

DIN 0.61; 0.57 < R< 0.65
(0.04)

0.87; 0.83 < R< 0.90
(0.12)

0.84; 0.81 < R < 0.87
(0.10)

0.94; 0.92 < R< 0.95
(0.11)

DIC 0.69; 0.64 < R< 0.74
(0.09)

0.87; 0.81 < R < 0.91
(0.20)

0.72; 0.79 < R < 0.89
(0.17)

0.95; 0.92 < R < 0.97 (0.26)

Alkalinity 0.39; 0.31 < R< 0.47
(0.09)

0.88; 0.83 < R < 0.92
(0.20)

0.63; 0.51 < R < 0.72
(0.17)

− 0.24; − 0.47 < R< 0.02
(0.26)

pH25 0.81; 0.77 < R < 0.84
(0.09)

0.88; 0.82 < R < 0.92
(0.20)

0.89; 0.92 < R < 0.95
(0.17)

0.94; 0.90 < R < 0.96 (0.26)

Ωarg 0.99; 0.994 <R < 0.995
(0.09)

0.98; 0.978 <R < 0.986
(0.20)

0.99; 0.987 <R < 0.991
(0.17)

0.99; 0.985 <R < 0.993
(0.26)
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∂ DIC½ �
∂t

¼ ∂ DIC½ �
∂t

� �
A

þ ∂ DIC½ �
∂t

� �
xy dif

þ ∂ DIC½ �
∂t

� �
z dif

þ ∂ DIC½ �
∂t

� �
Bio

þ ∂ DIC½ �
∂t

� �
air−sea

ð7Þ

where the subscripts A, xy_dif, z_dif, Bio, and air–sea represent the time derivatives of DIC
induced by advection, horizontal diffusion (i.e., horizontal mixing), vertical mixing, biological
processes, and air–sea CO2 exchange (positive values indicate a transfer of CO2 from air to
sea), respectively. Note that we refer to these as “DIC variation terms” here, and the DIC
variations induced by air–sea CO2 exchange are included only for the top (surface) level and
not for the levels below it. The total DIC variation term on the left side of Eq. (7) is a
summation of all the terms on the right-hand side of the equation.
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Fig. 7 Time series of surface pHin situ (a), pH25 (b), and Ωarg (c) along 165° E from model outputs. Purple, blue,
green, and red colors depict data for 20° N, 30° N, 40° N, and 50° N, respectively
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Air–sea CO2 exchange shows negative values (CO2 emission to the atmosphere) in
winter north of 35° N (Fig. 8(a)) and positive values (CO2 absorption from the
atmosphere) south of 35° N, and vice versa in summer for these regions. The
subarctic region releases CO2 to the atmosphere in winter north of 35° N (Fig.
8(a)), and absorbs CO2 from the atmosphere in summer north of 35° N (Fig. 8(c)).
In contrast, the subtropical region south of 35° N intensely absorbs CO2 south of the
Kuroshio Extension in winter (Fig. 8(a)). A weak release of CO2 from the ocean to
the atmosphere occurs south of 40° N in summer. The areas of strongest release are
located in the northeast of the Kuril Islands in the Oyashio region and in the Okhotsk
Sea in autumn–winter (Fig. 8(a, d)). (Further details on air–sea CO2 exchange
represented in the model are described in the Appendix.)

Horizontal distributions and monthly mean balances of the DIC variation terms in
the surface layer induced by all subprocesses (Figs. 8 and 9(a−d)) indicate that the
air–sea CO2 exchange shown in Fig. 8(a−d) is generally offset by vertical mixing.
Biological processes, however, made a subordinate contribution to the total DIC
variation (Figs. 8 and 9(c, d, g, h, j, k, m)). Negative biological process values
indicate consumption of DIC through photosynthesis. Biological process contributions
vary spatially and with depth (Figs. 8 and 9; Appendix Figs. 16–18). At the surface
level, the DIC consumption induced by biological processes is high in the subarctic
region around 50° N throughout the year (Figs. 8(m−p) and 9(a−d)). The peak
consumption of DIC moves deeper beneath the surface southward (Fig. 9(d, e–g, j,
m); Appendix Figs. 17 and 18). The highest DIC consumption occurs at 50–100 m
depth at 30–40° N (Fig. 9(g, j, k); Appendix Figs. 16(m–p) and 17(m–p)) and at
200 m depth in the subtropical region south of 30° N (Fig. 9(m); Appendix Fig.
18(m–p)). The contributions from biological processes at the surface and at 200 m
depth are of opposite sign (Fig. 8(m–p); Appendix Fig. 18(m–p)). Instead of the
contributions of the vertical mixing or biological processes below the surface, we see
that advection processes are relatively contributed to the total DIC variation (Fig. 9(i–
k, n, m)).

The relative contribution of biological processes compared with the other terms at 165° E is
calculated as

relative contribution

¼ ΔDICBio

jΔDICAj þ jΔDICxy dif j þ jΔDICz dif j þ jΔDICBioj þ jΔDICair−seaj � 100% ð8Þ

as shown in Fig. 10. The highest DIC consumption occurs above 100 m depth north of 40° N
throughout the year, gradually deepening in the range 30–40° N, and spreading vertically at
100–350 m depth in the subtropical region at latitudes south of 30° N. These patterns of DIC
consumption/production may be caused by the latitudinal difference of the Chl-a maximum
depth (Ishizu et al. 2019; Sauzede et al. 2015). Vertical distributions of Chl-a along 165° E
from Ishizu et al. (2019) and global ocean Chl-a data from Sauzede et al. (2015) indicate that
the Chl-a maximum deepens southward; the Chl-a maximum is located in the surface layer in
subarctic regions and at ~ 150 m depth in subtropical regions. The highest Chl-a consumption
in the subtropical region from our results (Fig. 10) occurs at greater depths (200–500 m), but
the magnitude is relatively low and makes a negligible contribution to the total variation in
DIC (Fig. 9(n−p)).
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4.2 Mechanisms of the seasonal inorganic carbon cycle

The relative contributions of terms in the governing equation of DIC (Figs. 8 and 9; Appendix
Figs. 16–18) suggest possible mechanisms for the seasonal carbon cycle, as follows. CO2

(DIC) is absorbed from the atmosphere to the ocean during winter south of 40° N. The
corresponding absorbed volume of DIC is conveyed from the surface to the subsurface by
vertical mixing (Figs. 8(i, j) and 9(a−c)). In summer and autumn, CO2 (DIC) is released to the
atmosphere by air–sea interactions, and vertical mixing generally offsets carbon emissions
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Fig. 8 Surface horizontal distributions of monthly mean DIC variation terms generated by air–sea CO2 exchange
to the ocean (a–d), advection (e–h), vertical mixing (i–l), biological processes (m–p), and total DIC time variation
terms (q–t) at the surface (0 m depth) for January, April, July, and October, respectively
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(Figs. 8(c, d) and 9(a−c)). In the subarctic region, this interaction is opposite that in the
subtropical region (Figs. 8(a–k) and 9(a−d)), with a negative contribution from biological
processes (i.e., a sink) throughout the year (Figs. 8(m−p) and 9(a−d)). Below 50 m depth, the
advection term becomes more prominent in the subtropical region and in the Kuroshio

Fig. 9 Monthly mean balances of DIC variation terms (mmol C m−3 day−1) along 165° E for 20° N, 30° N, 40°
N, and 50° N at depths of 0, 50, 100, and 200 m. The monthly mean values were calculated within a range of five
grid cells (22.0–45.5 km) from the target location. Colored lines indicate monthly means of the processes of DIC
variation terms (ΔDIC) induced by advection, horizontal mixing, vertical mixing, biological processes, and air–
sea exchange process, and total DIC time variation (from Eq. 7). Positive and negative values indicate an increase
and decrease in each DIC time variation term, respectively. The DIC variation term influenced by air–sea CO2

exchange is considered only for the surface (a–d), not below it (e–p), where the green line representing zero is
given as a reference for the other terms
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Fig. 10 Vertical sections showing the relative contribution of biological processes to total DIC time variation
along 165° E (from Eq. 7) for January, April, July, and October. Positive and negative percentages indicate the
production and consumption of DIC induced by biological processes, respectively
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Extension region, connecting with total DIC time variation (Fig. 9(i–k, n, m)). Working
against the small negative contribution of biological processes below 200 m depth in our
model (Fig. 9(n−p)) is advection, which can produce an increase or decrease in DIC in the
subtropical region (Fig. 9(n)).

The modeled carbon cycle also includes latitudinal differences in total DIC time variation,
as shown in Figs. 12 and 13(a). Differences in the contribution from biological processes are
related to the total DIC time variation both horizontally and vertically (Figs. 12 and 13(a)). A
distinctive area of DIC decrease exists near 0–200 m depth, and deepens southward from the
subarctic region to the subtropical region (Figs. 11(a−d) and 12b). A comparison between the
annual mean DIC time variation and the Chl-a maximum depth (Ishizu et al. 2019; Fig. 12)
shows some similarity above 200 m depth. Advection dominates the trend in annual mean DIC
time variation in the subtropical region south of 30° N below 200 m depth (Fig. 9(n)). These
results suggest that the positive and negative patterns of annual mean DIC time variation are
caused by ocean currents (Fig. 9(n)).

The density range of this distinctive zone of contrast is comparable with that of the North
Pacific Ocean Central Mode Water (CMW; σθ = 26.0–26.5 kg m−3; Oka and Suga 2005; Oka
and Qui 2012; Fig. 12b). Those waters are formed by winter ventilation around thermocline
fronts, including the Kuroshio Extension front, the Kurhoshio Bifurcation front, and the
subarctic front, and are then spread by advection (Oka and Suga 2005; Oka and Qui 2012).
We therefore suggest that the positive and negative contrast in the temporal DIC variations
depends on uptake in the ventilation areas north of 40° N and could be transported by
advection (Fig. 12). A sensitivity experiment was performed in which the maximum depth
of Chl-a was decreased by adjusting the biological parameters related to photosynthesis (Iopt),
to check whether advection affects the contrast in DIC time variation below the surface layer.
Features of the DIC time variation south of 25° N were almost identical in the base and
sensitivity experiments (not shown), supporting the dominant role of advection in the sub-
tropical region.
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each DIC time variation term, respectively
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4.3 Comparison with previous work on the marginal seas

The balance of the monthly mean DIC time variation terms in the East China and Japan seas
(Fig. 13(a, b)) shows that air–sea CO2 exchange is generally offset by vertical mixing. These
balances differ from the simulation results for the Yellow and East China Seas of Luo et al.
(2015), which indicates that the contributions of vertical mixing, advection, and biological
processes to the inorganic carbon cycle largely offset each other on the continental shelves and
vary seasonally. The difference between the results of Luo et al. (2015) and those presented
here may be due to missing processes in our model that may be required to represent local
variability in these regions (e.g., the DIC input from river discharge), although the reproduc-
ibilities for the Japan and East China seas are high, with high correlation coefficients for
several variables, including Chl-a, DIN, DIC, pH25, and Ωarg (Table 2).

The reproducibility for the Okhotsk Sea could not be evaluated because of a lack of
observational data. Variations in DIC in Okhotsk Sea simulated by our model (Fig. 13(c))
are similar to those for the subarctic region of the Northwest Pacific, where the contributions of
air–sea CO2 exchange and vertical mixing are generally offset by each other (Fig. 13(c)) and
biological processes make a subordinate contribution.

The relatively small contribution of biological processes in the DIC cycle in
marginal seas can be explained by the latitude-dependent functions of biological
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(b) Annual mean of chlorophyll-a with density contours

Fig. 12 Vertical distributions of the annual mean of DIC time variation (a; mmol C m−3 day−1) and of
chlorophyll-a (b; mg m−3) along 165° E. Vertical distributions of colored chlorophyll-a in b are also shown
with contours of potential density, σθ (kg m−3)
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parameters (Section 2), as we adjusted the biological parameters to focus mainly on
the Northwest Pacific in the subtropical region and on subarctic regions (Ishizu et al.
2019; Eqs. 1–6). Tittensor et al. (2010) showed that biological communities in the
marginal seas are dissimilar to those of the Pacific at the same latitude, suggesting
that there is a limitation for the ability of the parameters optimizing method applied in
the present model (Section 2.1).

4.4 Comparison with a study based on observation data

Yasunaka et al. (2013) discussed the inorganic carbon cycle using surface DIC climatological
data, omitting physical processes such as advection and vertical mixing. Our results agree with
those of Yasunaka et al. (2013) in terms of the importance of biological processes from spring
to summer, especially in the subarctic region. However, in our model, biological processes are
a subordinate contributor to variation in DIC compared with both vertical mixing and air–sea
exchange throughout the year. The subsurface vertical structure of the biological contribution
varies with latitude.

Average daily net community production (NCP) values were estimated by Yasunaka et al.
(2013) from March to July as > 14 mmol m−2 C day−1 in the Kuroshio Extension region (140–
170° E, 30–40° N) and 2–6 mmol C m−2 day−1 in the subarctic region. The corresponding

values of NCP in our model can be calculated as ∫MLD
0

∂ DIC½ �
∂t dz, where MLD indicates the

mixed layer depth, which is defined as the depth at which the density is 0.125 kg m−3 greater
than the density at the surface (Ohishi et al. 2019; Suga et al. 2004; Ohno et al. 2004). The
modeled NCP (Fig. 14) shows positive values in the subtropical region of less than
2 mmol C m−2 day−1 and negative values in the subarctic region of less than −
4 mmol C m−2 day−1, respectively (Fig. 14), which are smaller than their respective estimated
values (Yasunaka et al. 2013). In addition, our model predicts that the distinctive positive/
negative (maximum/minimum) values spread sparsely and weakly only at the boundary
between the Kuroshio Extension and the subarctic region. Such differences between our
model and that of Yasunaka et al. (2013) can be explained by the horizontal and vertical
advection/diffusion processes represented in our model, which should be considered for better
understanding of the inorganic carbon cycle in our target regions.

Fig. 13 The same as in Fig. 9 but for the monthly mean balance of each DIC term in the surface layer (at 0 m
depth) in the East China Sea (30° N, 125° E), the Japan Sea (40° N, 135° E), and the Okhotsk Sea (55° N, 150°
E)
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5 Conclusions

To understand the seasonal inorganic carbon cycle in the Northwest Pacific, we performed
simulations using a biogeochemical and carbon model coupled with an operational ocean
model. The reproducibility of the model was sufficient to evaluate processes related to the
seasonal inorganic carbon cycle. We found that contributions to the inorganic carbon cycle
from air–sea CO2 exchange generally offset those of vertical mixing at the surface in the
Northwest Pacific. Biological processes are a subordinate contributor to variation in DIC and
show a latitudinal dependence in the euphotic layer. Advection actively contributes to variation
in DIC below the layer where biological processes contribute.

A schematic representation of the main inorganic carbon cycle in the Northwest Pacific is
shown in Fig. 15. DIC is absorbed from the atmosphere during winter south of 40° N and is
released to the atmosphere north of 40° N (Fig. 15a). The DIC introduced in the subtropical
region is conveyed from the surface to the subsurface by vertical mixing, and the DIC released
in the subarctic region is compensated for by vertical mixing from subsurface layers (Fig. 15).
In summer, the opposite pattern occurs because vertical mixing is weaker and the correspond-
ing influence of mixing on variation in DIC decreases (Fig. 15b). Unlike the contribution from
seasonal air–sea CO2 exchange, the negative contribution induced by biological processes (i.e.,
a sink) below the surface occurs throughout the year (Fig. 15) and becomes stronger to the
subarctic region. Below the surface, the contribution of advection is prominent in the subtrop-
ical and Kuroshio Extension regions. This contribution of advection connects with the
increase/decrease in DIC in the subtropical region (Fig. 15).

Ocean circulation (Tally et al. 1993; Suga and Hanawa 1995a; Yasuda et al. 1997; Qui and
Chen 2006) transports DIC-rich and DIC-poor water and redistributes them over time. The
horizontal pattern of long-term DIC trends varies with depth. The impacts of long-term trends
in ocean acidification indices (pH and aragonite saturation) also show horizontal and vertical
dependencies. Future studies will use modeling experiments to evaluate decadal variations in
the NPZD and carbon cycle. Results of these experiments are expected to improve our
understanding of the variability in carbon, biological processes, and ocean acidification.
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Fig. 14 Daily net community production (NCP) from March to July, estimated from our model outputs
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Appendix

Figs. 16, 17, and 18, and 19

Fig. 16 Horizontal distributions of the monthly DIC variation term induced by advection (a–d), vertical mixing
(e–h), biological processes (i–l), and the total DIC time variation term (m–p) at 50 m depth for January, April,
July, and October, respectively
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Fig. 17 Horizontal distributions of the monthly DIC variation term induced by air–sea CO2 exchange (a–d),
advection (e–h), vertical mixing (i–l), biological processes (m–p), and the total DIC time variation term (q–t) at
100 m depth for January, April, July, and October, respectively
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Fig. 18 Horizontal distributions of the monthly DIC variation term induced by air–sea CO2 exchange (a–d),
advection (e–h), vertical mixing (i–l), biological processes (m–p), and the total DIC time variation term (q–t) at
200 m depth for January, April, July, and October, respectively
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We calculated air–sea CO2 fluxes (Fig. 8(a–d)) as ρw Vp k0C PCO2−Patm
CO2

� �
(Kantha, 2004;

Ishizu et al. 2019), where ρw is the density of seawater (kg m−3); k0C is the solubility of CO2 in
seawater (mol kg−1 atm−1; Weiss 1974); Vp is the piston velocity, which depends on wind
speed (U10) and the Schmidt number (Sc) and is expressed in units of m s-1

(Vp ¼ 8:61� 10−7 U2
10 Sc=660ð Þ−1=2; Wanninkhof, 1992); and PCO2 and Patm

CO2
are the partial

pressures of CO2 in surface waters and the atmosphere (μatm), respectively.
Compared with the global air–sea CO2 fluxes evaluated on the basis of monthly climato-

logical data (Takahashi et al. 2002, 2009; Yasunaka et al. 2013), our model provides a finer
spatiotemporal resolution of variability, with both strong and weak contrasts in air–sea CO2

fluxes in the target region (not shown). The seasonal changes in air–sea CO2 flux simulated by
our model (Fig. 8(a−d); note that the values in Fig. 8(a−d) do not represent the actual air–sea
CO2 flux, but the contribution of air–sea CO2 exchange to the total DIC balance) are similar to
the seasonal climatology (Takahashi et al. 2002; Yasunaka et al. 2013), although the annual
mean air–sea CO2 flux (Fig. 19) indicates a smaller sink in the Kuroshio Extension region
between 30° N and 40° N, and the transition between sink and source areas is less distinct than
that in the climatology (Takahashi et al. 2002; Yasunaka et al. 2013). For example, the
climatology (Yasunaka et al. 2013) shows an extensive sink area between 30° N and 40° N
of > 6 mmol m−2 C day−1, but our model predicts a mixture of sink and source areas in the
range from − 5 to 5 mmol m−2 C day−1. One reason for the relatively weak sink areas predicted
by our model may be uncertainty in the calculation of pCO2, as revealed by the MATLAB
program CO2sys.m (Orr and Epitalon 2015; Mackenzie et al. 2004). The calculation of pCO2

performed here gives higher pCO2 values in the ocean compared with the pCO2 climatology
(Nakaoka et al. 2013). While et al. (2012) also referred to large estimation in the calculation of
pCO2.

Fig. 19 Annual mean air–sea CO2 flux in 2015
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