
Carbon balance effects of U.S. biofuel production and use

John M. DeCicco1 & Danielle Yuqiao Liu1 & Joonghyeok Heo1 &

Rashmi Krishnan1 & Angelika Kurthen1 & Louise Wang1

Received: 5 May 2016 /Accepted: 24 July 2016 /Published online: 25 August 2016
# The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The use of liquid biofuels has expanded over the past decade in response to policies
such as the U.S. Renewable Fuel Standard (RFS) that promote their use for transportation. One
rationale is the belief that biofuels are inherently carbon neutral, meaning that only production-
related greenhouse gas (GHG) emissions need to be tallied when comparing them to fossil
fuels. This assumption is embedded in the lifecycle analysis (LCA) modeling used to justify
and administer such policies. LCA studies have often found that crop-based biofuels such as
corn ethanol and biodiesel offer at least modest net GHG reductions relative to petroleum
fuels. Data over the period of RFS expansion enable empirical assessment of net CO2 emission
effects. This analysis evaluates the direct carbon exchanges (both emissions and uptake)
between the atmosphere and the U.S. vehicle-fuel system (motor vehicles and the physical
supply chain for motor fuels) over 2005–2013. While U.S. biofuel use rose from 0.37 to
1.34 EJ/yr over this period, additional carbon uptake on cropland was enough to offset only
37 % of the biofuel-related biogenic CO2 emissions. This result falsifies the assumption of a
full offset made by LCA and other GHG accounting methods that assume biofuel carbon
neutrality. Once estimates from the literature for process emissions and displacement effects
including land-use change are considered, the conclusion is that U.S. biofuel use to date is
associated with a net increase rather than a net decrease in CO2 emissions.

1 Introduction

Production and consumption of biofuels, meaning biomass-based liquids such as biodiesel and
ethanol, has grown steadily in the United States, from 4.2 billion gallons (0.37 EJ/yr) in 2005
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to 14.6 billion gallons (1.34 EJ/yr) in 2013 (EIA 2015; higher heating value basis). By 2013
biofuels accounted for nearly 6 % of U.S. motor fuel energy consumption. The use of biofuels
to displace petroleum has been driven by public policies, including subsidies but most
compellingly by regulations, notably the U.S. Renewable Fuel Standard (RFS) and California
Low-Carbon Fuel Standard (LCFS). Policy rationales include agribusiness income, energy
security, oil depletion and greenhouse gas (GHG) mitigation (Brown and Brown 2012).

The environmental justification rests on the assumption that, as renewable alternatives to
fossil fuels, biofuels are inherently carbon neutral because the CO2 released when they are
burned is derived from CO2 uptake during feedstock growth (NRC 2011, 195). That conven-
tion is premised on globally complete carbon accounting in which biogenic emissions are not
counted in energy sectors when carbon stock changes are counted in land-use sectors. This
assumption has been used in cap-and-trade programs and carbon taxes as promulgated to date,
which address only fossil-derived CO2 emissions. However, errors arise when bioenergy is
treated as carbon neutral in national and subnational policies, which do not impose globally
coherent accounting that tracks all carbon stock changes (Searchinger et al. 2009).

The carbon neutrality assumption is also embedded in lifecycle analysis (LCA), which
traditionally focused only on production-related GHG emissions within a fuel’s supply chain.
Some LCA models omit biogenic CO2 emissions from the accounting, as in the U.S.
Environmental Protection Agency (EPA) analysis of the RFS (EPA 2010a). Others automat-
ically credit biogenic CO2 emissions during their calculations, as in GREET (2011). GREET
modeling finds that corn ethanol, the dominant fuel used to comply with the RFS, reduces
GHG emissions by 20–50 % compared to petroleum gasoline (Wang et al. 1997; Wang et al.
2012). Such studies have justified biofuel promotion as a both a near- and long-term GHG
reduction strategy (Greene 2004; Farrell et al. 2006; CARB 2010) and justify claims that the
RFS has reduced GHG emissions to date (BIO 2015).

Once the significance of carbon stock changes, notably those due to indirect land-use
change (ILUC), was recognized, traditional (attributional) LCA models were supplemented by
economic modeling of market effects. Such consequential LCA methods are used to compute
Bcarbon intensity^ (CI) metrics for the RFS and LCFS (EPA 2010a; CARB 2010). However,
their results are highly uncertain, undermining confidence in GHG reduction benefits (NRC
2011). These LCA methods now have a system boundary that spans the globe spatially and
extends many years into the future temporally. Thus, although it was proposed as an objective
way to compare fuels (DeCicco and Lynd 1997; Sperling and Yeh 2009; CARB 2010), LCA
has become a form of scenario analysis. However, it is inferior in this regard to integrated
assessment modeling (IAM), which uses a biogeochemically and economically coherent
analytic framework that LCA lacks (Delucchi 2013; DeCicco 2015). Moreover, as a static
framework, it fails to reflect the stock-and-flow dynamics that are fundamental to bioenergy
systems (DeCicco 2013; Haberl 2013). Indeed, policy applications of LCA raise serious
questions regarding the limitations of the method (Plevin et al. 2014; McManus et al. 2015).

Given such concerns, it is useful to analyze the situation by a method other than LCA. One
can empirically examine the direct carbon exchanges associated with the displacement of
petroleum fuels by biofuels since the RFS was passed in 2005, a period for which commercial-
scale data are available. Here, direct exchanges refer to carbon flows, including CO2 uptake
and CO2 emissions as well as movements of material carbon, between a vehicle-fuel system
and the atmosphere, other parts of the biosphere (notably the food system where biomass used
to make biofuels would otherwise be consumed) and the geosphere. Material carbon refers to
carbon bound in organic materials (whether recently fixed through photosynthesis or of fossil
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origin) as opposed to CO2. The system to be analyzed includes motor vehicles using fuels
regulated by the RFS and the associated fuel supply chains. The latter include farms and oil
wells, biorefineries and petroleum refineries, operations that transport feedstocks and distribute
fuels, and operations that provide inputs such as fertilizer and purchased energy.

Such a vehicle-fuel system is the subject of attributional LCA as traditionally conducted. It
excludes indirect, market-mediated effects outside the system boundary, such as interactions
with global commodity markets for energy and for the agricultural products that in turn affect
land use. Evaluating market effects requires economic modeling, resulting in the very large
and, practically speaking, irreducible uncertainties that bedevil discussions of biofuels and
climate. A narrow analysis of direct carbon exchanges cannot provide a complete answer to the
question of a biofuel’s GHG emissions impact globally. However, it can assess the extent to
which CO2 uptake in feedstocks suffices to offset CO2 emissions from fuel combustion,
providing a bounding result relevant to the broader question. Although indirect effects can
be negative (reducing net emissions) or positive, they are dominated by carbon stock releases
due to land-use change (Fargione et al. 2008; Searchinger et al. 2008; Melillo et al. 2009).
Therefore, evaluating the offset observable within the vehicle-fuel system provides an upper
bound on the net overall offset.

2 Method

Evaluating the direct carbon exchanges associated with a given physical system is conceptu-
ally straightforward. DeCicco (2012) proposed an Annual Basis Carbon (ABC) accounting
method that treats all carbon flows in a spatially and temporally explicit manner. Unlike LCA
or other forms of carbon accounting used for climate policy to date, it does not treat biofuels as
inherently carbon neutral. Instead, it tallies CO2 emissions on the basis of chemistry in the
specific locations where they occur. ABC accounting reflects the stock-and-flow nature of the
carbon cycle, recognizing that changes in the atmospheric stock depend on both inflows and
outflows, while LCA focuses only on inflows (GHGs discharged into the atmosphere). It also
conforms to a methodology that calls for a consistent system boundary that encompasses both
biofuel and fossil fuel pathways (Schlamadinger et al. 1997).

Figure 1 depicts the vehicle-fuel system to be analyzed in terms of material carbon
flows, referring to carbon that originates in feedstocks and is utilized as fuel, emitted
during processing or exits the system in some other material form. These flows
exclude other system inputs and outputs (such as natural gas or other fuels used for
process energy and their associated GHG emissions), whose molecular carbon is not
part of a feedstock-to-fuel material pathway. Those purely process-related emissions
are evaluated separately in a manner similar to that of LCA. The extent to which end-
use CO2 is balanced by CO2 uptake is a function of the carbon exchanges shown in
Fig. 1. Flows along the top of the diagram are CO2 exchanges between the system
and the atmosphere; flows along the bottom are exchanges of material carbon, in
either biomass leaving the system or crude oil entering it, with external systems.
Cropland is within the system boundary and so ABC analysis counts carbon uptake
regardless of the extent of biofuel use. Although the carbon in biomass output from
the system is eventually emitted as CO2 when feed and food products are consumed,
these emissions occur outside the vehicle-fuel system and are mediated by complex
displacement effects, as described later.
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2.1 Evaluating carbon uptake

The net amount of carbon taken up by vegetation is net primary production (NPP), which for
annual crops ends up in one of several places. A significant portion ends up in the harvest and
is removed from the cropland. A portion may accumulate as soil organic carbon (SOC). Some
may be lost as organic matter carried by farm runoff or blown from the field by the wind, and
some may be oxidized by fire or other non-biological process. A large portion decomposes or
is consumed by organisms foraging on the land itself, comprising local heterotrophic respira-
tion (Rh). Net ecosystem production (NEP) is the difference between NPP and Rh and it
represents the net downward flow of CO2 from the atmosphere in terrestrial ecosystems
(Lovett et al. 2006). NEP is not necessarily the same as ongoing carbon accumulation on
land; rather, it is the portion of NPP that becomes material carbon available for local
sequestration or other disposition.

For a biofuel to provide a net reduction in CO2 emissions, the production of its feedstock
must effect a gain in NEP (DeCicco 2013). In other words, it is not sufficient for the feedstock
to have merely removed carbon from the atmosphere. Rather, there must be an increase the
rate of carbon removal, a test written as:

d NEPð Þ=dt > 0 ð1Þ
This condition formalizes the Searchinger (2010) insight about Bthe need for additional
carbon.^ It can be evaluated over a period of time by calculating:

ΔNEP ¼ NEPt1−NEPt0 ð2Þ
where tn is a time index (year).

For this analysis, we estimate NEP over 2005–2013 and evaluate ΔNEP both annually and
cumulatively over the period using crop data from the U.S. Department of Agriculture
(USDA). From Lovett et al. (2006):

NEP ¼ NPP−Rh ¼ HþΔSOCþ Ex þ Ox ð3Þ
Here, H is the carbon harvest, that is, the mass of the carbon embodied in the crops harvested.
ΔSOC is the change in soil organic carbon on the cropland; Ex is carbon removed from the

Fig. 1 Material carbon flows
relevant to the substitution of a
biofuel for a fossil fuel
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land by runoff, leaching or wind; and Ox is carbon oxidized non-biologically, e.g., through fire.
As explained in the appendix, for annual cropland Ex and Ox are small enough to omit and
ΔSOC does not differ significantly from zero. We therefore assume NEP ≈ H and estimate
annual changes in net carbon uptake as:

ΔNEPt ¼
X

i
Hi;t− Hi;t−1 ð4Þ

where

Hi,t carbon harvest of crop Bi^ at time Bt^ (a given year), and
Hi,t-1 carbon harvest of crop Bi^ at time Bt-1^ (the prior year).
Because harvest data reflect yield gains, increases in carbon uptake due to agricultural
intensification are reflected in these estimates of NEP.

2.2 Other material carbon flows

Regarding the other flows depicted in Fig. 1, end-use CO2 emissions from motor vehicles are
readily computed from fuel consumption data. For biofuels at commercial scale to date, the
only significant biogenic process emission is the CO2 during ethanol fermentation. Biofuel
coproducts are calculated using biorefining yield factors. The carbon exported to food and feed
markets is computed by subtracting the coproduct carbon plus fuel end-use and biogenic
process CO2 emissions from the carbon harvest. The fossil carbon input is computed from an
average well-to-pump processing factor for crude oil to gasoline and diesel fuel.

2.3 Other processing emissions and displacement effects

In addition to the CO2 released through processing or combustion of material carbon, other
GHGs are directly released from the system as a result of energy use and other processes
within the respective fuel supply chains. These emissions are commonly modeled by
attributional LCA and for our purposes there is no need to analyze them independently. We
use parameters from EPA (2010b) to make this part of the analysis consistent with EPA’s RFS
analysis [A1(a)].1

Changes in flows of material carbon across the system boundary result in changes in the
amount of carbon available to the rest of the economy nationally and internationally, causing
market-mediated effects of varying sign and magnitude (Hertel et al. 2010). Because they
require economic modeling based on limited data, the net impact of such displacement effects
is highly uncertain. They include product and co-product substitution, changes in food and
feed consumption, agricultural intensification (yield gain) and expansion (land-use change),
and petroleum market rebound.

We do not evaluate these displacements but rather cite previously published estimates to put
our vehicle-fuel system results in perspective. Overall, displacement effects increase the GHG
releases from biofuel use at least for several decades (Melillo et al. 2009; Mullins et al. 2011;
Mosnier et al. 2013; Chen et al. 2014; among others). Plevin et al. (2015) show that the carbon
releases due to ILUC, which can dominate displacement effects, are most likely to be quite
large and very unlikely to be negligible. The net GHG emissions estimate obtained through our

1 See specified appendix section in the supplemental information.
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circumscribed ABC analysis therefore provides a lower bound for the overall (direct plus
indirect) GHG emissions impact of existing biofuel systems.

3 Analysis

This section has three main parts. The first evaluates the material carbon balance for the
vehicle-fuel system to estimate the biogenic carbon offset, comprising the paper’s main result.
The second and third parts address GHG emissions related to fuel processing and displacement
effects, respectively.

3.1 Material carbon balance

We calculate vehicle end-use CO2 emissions using fuel carbon content data from EPA (2010b)
and fuel consumption data from EIA (2015). Figure 2 shows the resulting estimates in TgC/yr
(carbon rather than CO2 mass basis; 1 Tg = 1012 g). The rate at which motor fuel carbon flows
into the air declined by 23 TgC/yr, or 5 %, from 455 to 432 TgC/yr over 2005–2013, due to the
2008 recession and vehicle efficiency gains [A1(e)]. However, the biofuel portion of tailpipe
CO2 emissions rose from 6.5 TgC/yr in 2005 to 24.1 TgC/yr in 2013. In 2013, biofuels
accounted for 5.8 % of motor fuel energy end-use and 5.6 % of tailpipe CO2 emissions, up
from a 1.4 % share in 2005.

The other component of biogenic emissions occurs during ethanol fermentation, which
yields one mole of CO2 per mole of C2H5OH produced. This release reached 10.2 TgC/yr in
2013. Combined with biofuel end-use CO2 emissions, the overall increase in motor fuel-
related biogenic emissions was 25 TgC/yr. In policy-oriented carbon accounting to date, these
biogenic emissions are treated as carbon neutral. In ABC accounting, how much they are
actually Bneutralized^ (offset) by gains in carbon uptake is a question to be addressed.

3.1.1 Carbon uptake on cropland

To estimate CO2 uptake on cropland we used Annual Crop Production (ACP) data from the
National Agricultural Statistical Service (NASS; USDA 2015), including planted area, har-
vested area, average yield and production by crop. For tractability, the analysis was limited to
crops that covered at least 95 % of U.S. cropland according to the USDA Cropland Data Layer

Fig. 2 Direct carbon emissions
from U.S. motor fuel use, 2000–
2014. Source: derived from EIA
(2015)
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in 2013. We did not attempt to estimate overseas carbon uptake for the small portion of biofuel
that was imported, which averaged 5 % of U.S. biofuel consumption over 2005–13 [A1(f)].
Uptake was calculated by multiplying crop production by the fraction of carbon in each crop
from composition data adjusted for moisture content [A2]. As shown in Fig. 3, net CO2 uptake
rose from 195 to 215 TgC/yr over 2005–2013. These estimates of NEP reflect the downward
flow of carbon from the atmosphere into the part of the biosphere occupied by U.S. cropland.

Carbon uptake is dominated by corn, which has the largest planted area and a higher yield
than other crops. The carbon harvest from corn alone rose by 25 TgC/yr over the analysis
period due to a 17 % increase in planted area and a 7 % increase in yield. The corn-soy rotation
is the most extensive U.S. farming practice and soybeans are second to corn basis in planted
area. However, soybean yields average less than one-third those of corn by volume and only
about 25 % those of corn on a carbon basis. With increases of 6 % in planted area and 2 % in
yield, soybeans saw a carbon harvest gain of 2 TgC/yr. Nearly all other U.S. field crops saw
their planted areas decline over the period. Sorghum was an exception; however, its yield fell
and so its harvest did not change significantly. Among other crops, only wheat had a
measurable gain in carbon harvest, but by only 0.3 TgC/yr. Collectively, harvests fell for all
other major crops, mainly because of smaller planted area, netting out to an aggregate carbon
harvest increase of 20 TgC/yr (about 10 %) over 2005–2013.

3.1.2 The biogenic carbon offset

The observed increases in carbon harvest provide estimates of the increases in NEP over the
analysis period. Being smaller than the 25 TgC/yr increase in biogenic CO2 emissions
associated with biofuel use, it is not enough to fully offset those emissions. Because cropland
NEP varies annually with economically-driven crop planting decisions and weather-dependent
harvest outcomes, the overall offset is estimated by comparing cumulative gains in NEP to
cumulative biogenic emissions. These calculations are given in Table 1.

The first section of the table shows year-by-year ΔNEP (first differences of the annual
carbon harvest values shown in Fig. 3) and the gains in NEP and biogenic emissions relative to
2005. Because NEP is a flow (TgC yr−1), ΔNEP is the derivative of a flow and has TgC yr−2 as
its unit. Being based on harvest data, the annual ΔNEP can be positive (a gain in uptake) or
negative (e.g., due to a poor growing season). As shown in the table, the aggregate harvest as
measured on a carbon basis fell in 2006, meaning that the flow rate of CO2 from the

Fig. 3 Carbon uptake on U.S.
cropland, 2005–2013. Source:
derived from USDA (2015)
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atmosphere to cropland declined, giving a negative value for ΔNEP that year. It jumped in
2007 due to a better growing season but also because notably more corn was planted that year.
The annual variability of NEP is reflected in the changing sign of ΔNEP throughout the period.

Integrating ΔNEP gives the net change in the rate of carbon uptake since the base year
(2005), as shown by the BNet NEP gain^ row in Table 1. By 2013, the net gain in NEP was
nearly 20 TgC/yr, as can be seen in Fig. 3. To determine cumulative additional CO2 removal
from the atmosphere, we integrate again by taking the running sum of the annual gain in NEP.
As the integral of a mass flow rate, the resulting values have units of mass (TgC, i.e., millions
of metric tons). These results for additional CO2 removal are shown as BAdditional C uptake^
in the cumulative effects section of the table and plotted as the green line in Fig. 4.

Similar calculations are performed for the biogenic CO2 emissions. As shown in Table 1,
biogenic emissions increase annually because biofuel production rose steadily over the 2005–
2013 period. The cumulative amount of biogenic CO2 that entered the atmosphere is obtained
by integrating this flow, yielding the values plotted in black in Fig. 4. By the end of the period,
cumulative biogenic emissions reach 132 TgC. Cumulative net uptake, which reflects the
additional amount of carbon removed from the atmosphere by the cropland beyond what was
removed in the base year, sums to 49 TgC. The difference between the biogenic carbon
emitted and the additional carbon uptake is shown in Fig. 4 as the carbon neutrality Bgap,^
which reaches 83 TgC by 2013. This value reflects the extent to which biogenic emissions
exceeded additional carbon uptake over the analysis period.

Table 1 Biogenic carbon emissions compared to net gains in carbon uptake

Annual changes 2006 2007 2008 2009 2010 2011 2012 2013

ΔNEP (TgC yr−2) −11.5 22.5 −2.3 10.3 −7.2 −10.2 −13.3 31.5

Net NEP gain (TgC yr−1) −11.5 11.0 8.7 19.0 11.8 1.6 −11.7 19.8

Biogenic emissions (^) 3.7 7.2 13.6 16.7 20.8 22.5 22.5 24.7

Cumulative effects (running sum, TgC)

Additional C uptake −11.5 −0.5 8.2 27.2 39.0 40.6 28.9 48.7

Biogenic emissions 3.7 11.0 24.5 41.2 62.0 84.5 107.1 131.8

Net carbon emissions 15.2 11.5 16.3 14.0 23.0 43.9 78.2 83.1

Percent offset −308 % −5 % 33 % 66 % 63 % 48 % 27 % 37 %

Fig. 4 Cumulative carbon emitted
by U.S. biofuel use compared to
cumulative additional carbon
uptake on cropland
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The last line of Table 1 compares cumulative carbon uptake and biogenic emissions in
percentage terms, indicating that the additional uptake was enough to offset only 37 % of the
increase in biogenic emissions from 2005 to 2013. This result shows that full carbon neutrality
(a 100 % offset) fails for renewable fuel use in the United States over this period. It also shows
how the extent of offset depends on the growing season. Because harvests fell in 2006
compared to 2005 (when the RFS was passed), the percent offset is very negative in 2006
and does not become positive until 2008. The cumulative offset reaches a high of 66 % of
cumulative biogenic emissions in 2009 before falling again. Although subsequent years of data
are needed to make a longer-term estimate, even if biofuel production levels off it seems
unlikely that the cumulative offset would reach 100 % anytime soon.

3.1.3 Vehicle-fuel system carbon balance

Estimates of the material carbon flows defined in Fig. 1 can be used to construct a carbon mass
balance for the vehicle-fuel system, showing inputs by source and outputs according to their
disposition [A1(b)]. These balances, which exclude non-material-carbon process emissions,
are depicted in Fig. 5.

The carbon harvest is either output from the system as food and feed or refined into
biofuel. Some carbon is emitted as CO2 during biorefining and petroleum refining. In
biorefining, the primary coproduct is distiller’s grain, which is supplied for use as animal
feed [A1(c)]. For petroleum refining, the process CO2 emissions estimate assumes a well-
to-tank energy efficiency of 81.7 % [A1(d)].

In Fig. 5, the sum of input carbon flows matches the sum of the output flows each
year. The total rate of carbon flow through the system fell from 745 TgC/yr in 2005 to
715 TgC/yr in 2013, largely due to lower motor fuel demand. Although all of the
biogenic carbon emitted comes from NEP (the gross carbon harvest), the gain in NEP
over 2005–2013 does not produce enough additional carbon to cover the sum of that
which substitutes for fossil carbon in motor fuel plus what gets released during process-
ing. Because the increase in carbon harvest is less than the decrease in fossil carbon
input, fuel demand is met at the expense of carbon supplied to the food and feed system.
Thus, Fig. 5 reflects how ABC accounting respects conservation of mass (carbon), in
contrast to LCA, which does not ensure conservation of mass because it fails to properly
assess carbon uptake.

Fig. 5 Material carbon flows through the U.S. vehicle-fuel system (TgC/yr)
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3.2 Process GHG emissions

In addition to fuel-related material carbon emissions, GHGs are emitted from feedstock and fuel
processingoperations.Theseemissionsare the traditional focusofLCAand there isnoneedto revisit
their estimation here. For comparison purposes,we use process emission factors fromEPA (2010b).

Adding process emissions to material CO2 emissions yields total net GHG emissions from the
vehicle-fuel system, which dropped by 38 TgC/yr from 2005 to 2013, i.e., by about 10 % of base
year emissions (calculations given in appendix Table A2). This drop is explained by a combination
of greater carbon uptake (tallied as negative emissions), lower petroleum input and lower overall
fuel demand. GHG emissions from fuel processing increase due to the greater amounts of energy
and other inputs needed for producing biofuels compared to petroleum fuels. As seen in Fig. 5,
there was a loss of biomass carbon output from the system. Therefore, although the system’s net
GHG emissions fell, the decrease is only partly from a gain in carbon uptake tied to biofuel use. In
gross terms, the 20 TgC/yr increase in NEP explains just over half of the 38 TgC/yr GHG
reduction, but that is before considering other important effects such as reduced fuel demand.

3.3 Displacement effects

Changes in flows of material carbon across the system boundary change the amount of carbon
available to the rest of the economy nationally and internationally. Many effects are indirect, as
changes in supply and demand cause changes in price that affect petroleum fuels, grains and
other farm products as well as their coproducts, substitutes and other items, affecting GHG
emissions the associated markets. These effects include:

& Substitution of agricultural products (including co-products)
& Deprivation of agricultural products (reduced feed and food consumption)
& Intensification of agriculture (increased yield)
& Expansion of agriculture (direct and indirect land-use change)
& Petroleum market rebound (higher demand in non-regulated fuel markets)

Substitution, deprivation and intensification decrease net GHG emissions due to biofuel use
while expansion and rebound effects increase net emissions. Because it involves a release of
carbon stocks, agricultural expansion can have a very large impact. The other effects involve
marginal changes but have magnitudes significant relative to the direct impacts of the vehicle-
fuel system. Modeling displacement effects is beyond the scope of this study and so we use
estimates from the literature, acknowledging their very high uncertainty due to market
behavior, differences in modeling methods and data limitations.

Substitution effects are captured by EPA’s RFS analysis and so are reflected in the process
emissions estimates (Table A2). Evaluating deprivation effects is a new area of research; they may
be on the order of one-third of biogenic end-use emissions (Searchinger et al. 2015). Agricultural
intensification on U.S. cropland is reflected in the harvest data and so are reflected in our carbon
uptake results; we did not attempt to estimate intensification internationally. Petroleum market
rebound can amount to as much as one-half of the petroleum fuel displaced by biofuel, raising CO2

emissions inothermarkets (Chenet al. 2014).Thenet impact of these interactions is highlyuncertain
and so it is difficult to ascertain whether their combined effect is either positive or negative.

The displacement effects that clearly increase biofuel-related carbon emissions are direct
and indirect land-use change (DLUC and ILUC). For the RFS, EPA projected no significant
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DLUC-induced release of carbon stocks and a small gain in soil carbon by 2022. Nevertheless,
the available evidence does not support a gain in soil carbon to date [A4]. For DLUC, Lark
et al. (2015) examined the 2008–12 subset of our 2005–13 analysis period and estimated a
cumulative release of 36 TgC associated with the biofuel-related expansion of U.S. cropland
[A5(a)].

For ILUC, EPA’s RFS analysis amortizes carbon stock releases over a 30-year future time
horizon. For ABC analysis, releases are counted in the years when they occur, and so we
summed the EPA (2010c) projections of ILUC-induced CO2 releases each year over 2005–
2013, implying a cumulative 433 TgC release over the 8-year period [A5(b)]. Although any
such projection is highly uncertain, the DLUC and ILUC releases clearly overwhelm the
changes in direct vehicle-fuel systems emissions.

4 Discussion

These results demonstrate the value of going back to basics for addressing the CO2 effects of
biofuel use. ABC accounting focuses on the terms for which the best data are available and
which can be evaluated with minimal reliance on assumptions. The analysis is therefore
narrow in scope and does not attempt to quantify the overall GHG impact of biofuels
production and use. ABC accounting does not replace LCA, but it does call LCA results into
question, underscoring warnings about the method’s ability to mislead (Plevin et al. 2014).

Because ABC accounting does not generate a lifecycle metric such as a CI value, its results
cannot be directly compared to LCA results. Moreover, ABC accounting is sensitive to system
dynamics, in contrast to LCA’s treatment of a system as static over a defined lifecycle.
Nevertheless, the finding of a 37 % offset of biogenic emissions over the period analyzed
rather than the 100 % offset assumed in LCA highlights the discrepancy. For example, take a
typical attributional LCA result claiming that corn ethanol is 44 % less carbon intensive than
petroleum gasoline (Wang et al. 2012). Using a 37 % offset of biogenic emissions instead of a
100 % offset would imply that corn ethanol is 27 % more carbon intensive than gasoline even
before considering land-use change [A1(g)]. Of course, this ABC result is for a specific period
of time and so makes no claim to offer a general characterization of corn ethanol. The method
thereby respects the fact that the seemingly simple question of comparing the carbon intensity
of one fuel to another is an ill-posed question empirically.

The differences between ABC accounting and LCA are more profound than numerical
comparisons can reveal. One fundamental distinction is that the ABC approach treats biofuels
as part of a dynamic stock-and-flow system. This differs from LCA, in which biofuel use is
modeled as a static system, i.e., one presumed to be in equilibrium with the atmosphere in
terms of its material carbon flow, that is compared to a distinct system involving the flow of
fossil carbon into the atmosphere. A related difference is ABC accounting’s explicit evaluation
of additionality by tracking changes in carbon uptake (NEP) when feedstocks are sourced.

Although it does not address leakage, which would require global modeling, ABC ac-
counting clearly delineates CO2 flows between the vehicle-fuel system and the atmosphere
from flows of material carbon with external markets. It thereby respects conservation of mass,
which LCA-based fuel comparisons do not. This distinction highlights the weakness of even
consequential LCA methods that fail to evaluate additionality but claim to offer correct carbon
accounting because they model leakage effects such as ILUC. Finally, the core aspects of ABC
accounting – including its estimation of the extent of offset – have a low level of uncertainty
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because the carbon uptake and vehicle emissions estimates reflect the composition of directly
measured material flows for feedstocks and fuels.

This paper does not attempt a consequential analysis, which would entail modeling a
counterfactual scenario against which actual 2005–2013 carbon exchanges are compared.
Such an analysis is left for future work. More broadly, there is a need to develop analytic
tools with a resolution and transparency suitable for addressing sectoral measures that target
transportation fuels. Liquid fuels can couple strongly to energy and agricultural markets and
therefore require dynamic analysis, ideally using commodity data for empirical validation as
done here. It would be useful to conduct ABC evaluations of other programs, such as
California’s LCFS. The method can also prospectively assess emerging biofuel technologies
that process cellulosic feedstocks. Such options may enable greater gains in NEP, e.g., by using
crop residues that reduce Rh or by using feedstocks that raise NPP. Finally, given how different
this approach is from the methods commonly used for energy analysis, further work is needed
to examine the research and policy implications going forward.

5 Conclusion

This retrospective, national-scale evaluation of substituting biofuels for petroleum fuels applied
AnnualBasisCarbonaccounting to takea circumscribed lookat the changes incarbon flowsdirectly
associated with a vehicle-fuel system. The systemwas defined to include motor fuel consumption,
fuel processing operations and resource inputs, including cropland for biofuel feedstocks. The
assumption that biofuels are inherently carbon neutral is a premise of most climate-related fuel
policies promulgated to date, including measures such as the LCFS and RFS that evaluate GHG
impacts using lifecycle modeling. However, this analysis found that the gains in CO2 uptake by
feedstock were enough to offset biofuel-related biogenic CO2 emissions by only 37 % over 2005–
2013,showingthatbiofueluse fellwell shortofbeingcarbonneutralevenbeforeconsideringprocess
emissions.

When this estimate of the real-world offset is considered together with values from the
literature for displacement effects, the conclusion is that rising U.S. biofuel use has been
associated with a net increase rather than a net decrease in CO2 emissions. This finding
contrasts with those of LCA studies which indicate that even crop-based biofuels such as corn
ethanol and soy biodiesel offer modest net GHG reductions. The global GHG impact of
biofuel use remains highly uncertain. Nevertheless, the necessary condition for a biofuel to
offer a CO2 mitigation benefit, namely, that the production of its feedstock must increase NEP,
can be evaluated empirically. Doing so provides a bounding result that suggests a need for
greater caution regarding the role of biofuels in climate mitigation.
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