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Abstract In recent years several methodologies have been developed to combine and inter-
pret ensembles of climate models with the aim of quantifying uncertainties in climate
projections. Constrained climate model forecasts have been generated by combining various
choices of metrics used to weight individual ensemble members, with diverse approaches to
sampling the ensemble. The forecasts obtained are often significantly different, even when
based on the same model output. Therefore, a climate model forecast classification system
can serve two roles: to provide a way for forecast producers to self-classify their forecasts;
and to provide information on the methodological assumptions underlying the forecast gen-
eration and its uncertainty when forecasts are used for impacts studies. In this review we
propose a possible classification system based on choices of metrics and sampling strategies.
We illustrate the impact of some of the possible choices in the uncertainty quantification of
large scale projections of temperature and precipitation changes, and briefly discuss pos-
sible connections between climate forecast uncertainty quantification and decision making
approaches in the climate change context.
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1 Introduction

A number of recent reviews have examined the use of ensembles of climate models as a mea-
sure of uncertainty in climate forecasting.1 Most conclude that interpreting the distribution
of models in terms of the probability that the real world response will lie in a given inter-
val is problematic, because it is unclear to what extent these ensembles have been designed,
and can be expected, to span the range of possible behavior of the climate system (Tebaldi
and Knutti 2008; Knutti et al. 2010, 2013; Knutti 2010). Numerous studies have attempted
to use climate observations explicitly to constrain climate forecasts, in the hope of provid-
ing more robust and reproducible estimates of forecast uncertainty. However, the results
of these studies are very difficult to compare, because as well as using different models,
ensemble designs and observational constraints, they often rely on fundamentally different
assumptions regarding the meaning of uncertainty in a climate forecast and the status of cli-
mate model output. These assumptions, which are often obscure to forecast users, have a
first-order impact on estimates of forecast uncertainty.

In this review, we propose a classification system based on two broad distinctions that
relate various recent studies: differences between methods used to assign a likelihood or
goodness-of-fit statistic to individual ensemble members, and differences in the methods
use to sample the climate models ensemble in order to generate the forecast. In Section 2
we present a historical overview of the different approaches that have attempted to quantify
forecast uncertainty. We then describe and categorize the metrics used to assign a likelihood
to individual ensemble members in Section 3, and the sampling methods to generate the
forecast in Section 4. Section 5 shows an example illustrating the influence of metric and
sampling strategy on the forecast uncertainty quantification. Finally, in Section 6 we discuss
the utility of a forecast classification system for forecast users, focusing on the relationship
between the approach chosen to interpret the climate ensemble information and the formal
decision analysis method adopted by the decision maker.

2 Overview

Some of the earliest studies attempting to quantify uncertainty in climate forecasts emerged
from the detection and attribution literature of the 1990s, notably the optimal fingerprinting
approach of references (Hasselmann 1993, 1997; Santer et al. 1994; Hegerl et al. 1996). In
Leroy (1998) and Allen and Tett (1999) the authors observed that optimal fingerprinting
could be cast as a linear regression problem in which it is assumed that general circulation
models (GCMs) simulate the space-time patterns of the climate response to various external
drivers correctly, and observations are used to estimate the magnitude of that response. It
was argued that while it is acceptable to assume that spatio-temporal patterns of response
are independent of the response amplitude for large-scale surface temperature changes, this
is not valid in general, in particular for changes in atmospheric circulation or precipitation,
or for abrupt changes in forcing over the period of interest (Allen et al. 2000).

Optimal fingerprinting can be thought of as equivalent to generating a large “pseudo-
ensemble” simply by taking the mean space-time pattern of response to a given external

1We use the term ’forecast’ as an estimation of future events, including raw and post processed climate model
output, which in the case of decadal or longer time scales is conditioned on future emission scenarios.
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forcing as simulated by a small ensemble and scaling it up and down by an arbitrary
parameter representing uncertainty in the response magnitude. The goodness-of-fit between
individual members of this pseudo-ensemble are then evaluated with some kind of weighted
sum of squares, with the expected model-data differences due to internal climate vari-
ability, observation error and (in some studies) model pattern uncertainty providing the
weights or metric (Allen 2003; Huntingford et al. 2006). For example, the range of warming
attributable to anthropogenic greenhouse gas increases over the past 50 years, evalu-
ated across the members of this pseudo-ensemble that fit the data better than would be
expected by chance in, say, 90 % of cases, provides a confidence interval on this quan-
tity. This approach is the primary information source for attribution statements in the IPCC
Assessments (IPCC 2001, 2007).

Applying the same scaling factors to model-simulated responses to future forcing pro-
vides a method for deriving confidence intervals on future climate change (Allen et al.
2000; Stott and Kettleborough 2002; Stott et al. 2006), this has been referred to as the ASK
(Allen-Stott-Kettleborough) approach. The crucial assumption (which is also implicit in
attribution studies) is that fractional errors in model-simulated responses persist over time
(Allen et al. 2000), so a model that underestimates the past response to a given forcing by,
for example 30 %, may be expected to continue to do so in the future under certain forcing
scenarios. A similar approach, but comparing simple or intermediate-complexity models
directly with observations was taken in Forest et al. (2000, 2002), Knutti et al. (2002)
and Meinshausen et al. (2009), hereafter FKM (Forest-Knutti-Meinshausen). Other authors,
such as Hansen et al. (1995) and Wigley and Raper (2001), also used this approach of vary-
ing parameters in simple climate models to generate uncertainty ranges or distributions for
climate forecasts, but we highlight FKM since they make a point of systematic comparison
of model simulations with observations. An advantage of FKM is simplicity: it is straightfor-
ward to generate large ensembles with simple and intermediate-complexity models, varying
parameters to generate a broad range of behavior and then filter these by comparison with
observations. The disadvantage is that direct comparison of the output of this class of models
with observations is problematic, since their representation of, for example, land and ocean
is inevitably idealized, making it ambiguous what observations they should be compared
against (although similar issues can also be raised with GCMs).

Both ASK and FKM can provide ranges of uncertainty in forecast climate that, for vari-
ables that are poorly constrained by observations, may be much wider than the range of
available GCM simulations in a multi-model ensemble such as CMIP3 or CMIP5. This
was clearly an advantage when very few models were available, and will continue to be
necessary as long as the spread of simulations in multi-model ensembles is thought to
underestimate the full range of uncertainty. These methods therefore provide a comple-
mentary approach to more recent methods of probabilistic forecasting such as weighted
multi-model ensembles (Tebaldi et al. 2004), or perturbed-physics ensembles generated by
varying model parameters using expert subjective assessments of their uncertainty (Murphy
et al. 2004).

Using Bayesian methods as in Tebaldi et al. (2004), Murphy et al. (2004, 2007), and
Sexton et al. (2012) the perturbed physics ensembles were weighted by their goodness-of-
fit to observations, generating distributions that have an explicit probabilistic interpretation
as the degree of belief in the relative probability of different outcomes in the light of
the evidence available. This is arguably the simplest approach to uncertainty analysis of
GCM-based climate forecasts, and the most natural for non-climate-modelers: given a com-
plex model containing uncertain parameters, specify distributions for all these parameters,
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sample them to generate an ensemble and constrain with observations. Difficulties in the
implementation of this approach arise because many of the parameters to which climate
forecasts are particularly sensitive do not correspond to any observable and only really mean
something in the context of a particular model or parametrization, and hence cannot be
assigned a standard error as an observable quantity might be.

The sheer number of under-determined parameters in climate models also makes it
impossible to ensure that, for a given model structure, all important uncertainties have actu-
ally been sampled. This is illustrated graphically in Sanderson et al. (2008, 2010), where
nominally similar parameters were varied over nominally similar ranges in two GCMs
obtaining a very broad distribution of responses in one case and a relatively narrow one in
the second case.

We conclude this overview by noting that these different approaches have used very dif-
ferent underlying statistical philosophies. Consistent with the attribution literature, ASK
provides classical (“frequentist”) confidence intervals - that is, ranges over which models
match observations better than a given threshold for goodness-of-fit. Early implementations
of FKM were also frequentist in character, while recent implementations (Sansó et al. 2008;
Meinshausen et al. 2009) have used more explicitly Bayesian approaches, exploring sensi-
tivities to prior distributions but still generally avoiding any claim to accurate representation
of actual subjective prior beliefs. In contrast, the studies in references (Murphy et al. 2004;
Murphy et al. 2007; Sexton et al. 2012) have generally aimed to provide credible intervals,
or Bayesian posterior probabilities - ranges within which the forecast quantity of interest is
expected to lie given both the prior expectations of the investigators and the constraints of
the observations.2

These different approaches should only be expected to give similar results if the observa-
tions provide a very strong constraint on the forecast quantity of interest, which is typically
not the case in the long-term climate forecasting problem. If the constraints provided by the
observations are weak and models tend to cluster near the best-fitting model (as would be
expected if all modeling groups are aiming to simulate observations as well as possible),
these conditions are not satisfied, so ranges provided by the different approaches are not
directly comparable. It would be helpful to forecast users to be clearer about which approach
is being used in the presentation of uncertainty in any particular study. In what follows we
suggest a classification scheme that could be used to facilitate this task.

3 Metrics of individual model quality

All but the simplest approaches to sampling a range of uncertainty on a climate model fore-
cast require some measure of the quality of individual climate models or model-versions.
In general, this can be characterized as a distance measure, often expressed as a weighted
sum squared difference between a model simulation x0, which may be the mean of an
initial-condition ensemble, and the corresponding set of observations y:

r2 = (y − xo)
T C−1(y − xo) , (1)

2The distinction between confidence intervals and credible intervals is best summarised thus: if a forecast
quantity lies outside a 90 % confidence interval, then an event has occurred that was estimated at the time of
the forecast to have a less than 10 % probability of occurrence. If the forecast quantity lies outside a 90 %
credible interval, then the forecast quantity is found to have a value inconsistent (at the 10 % level) with our
expectations at the time the forecast was made.
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where C is a measure of the expected difference between model and observations due to
processes that can be treated as random. It typically represents internal climate variabil-
ity, but depending on the complexity of the analysis may also include a representation of
observational error, forcing error, irreducible model error and so on.

Under the assumption that errors are Gaussian and that the distributions of xo and C are
determined by a set of parameters �, the model-observations deviance can be expressed as
a likelihood:

L(�|y) = 1√
(2π)ndet |C| exp

(
− r2

2

)
(2)

where n is the rank of C, or the number of independent observations. In the case of
ASK-type regression approaches, � is simply the parameters of the regression model, or
undetermined scaling factors to be applied to model-simulated responses to individual forc-
ing agents, while in perturbed-parameter ensembles, � represents the parameters perturbed
in the climate model itself. The interpretation of � is more complicated when structural
model uncertainty is present, but for the sake of unity, we will assume that structural
uncertainty can in principle be parameterised.

In a Bayesian analysis, the likelihood L(�|y) is simply proportional to the probability
density function of obtaining a simulation xo in the vicinity of y given the parameters �,
Pr(xo = y|�). Clearly, this tends to become progressively smaller the higher the dimension
of y simply because the probability of the simulation “hitting the target” falls off faster
the higher the dimension of the space considered. Hence the absolute likelihood of any
setting of the parameters � depends, even for a structurally perfect model, on the number
of observations used to constrain it, making the interpretation of absolute likelihoods rather
obscure. Hence all studies rely more-or-less explicitly on the relative likelihood:

L(�1|y)
L(�0|y) = exp

(
− r2

1 − r2
0

2

)
, (3)

where �1 and �0 are two sets of parameters (two models or model-versions). Focussing on
relative likelihoods removes the explicit dependence of results on n, but we are still left with
two important practical issues: how many observations should be used to evaluate the model,
and to what extent are they independent? In principle, all available observations could be
incorporated into the likelihood function, but this has undesirable consequences in practice
since all climate models fail to simulate many observable aspects of the climate system.
Hence a naı̈ve incorporation of all available observations into r2 results in comparing the
relative likelihood of models whose individual likelihoods are vanishingly small. Worse,
because r2 is dominated by its largest individual terms, relative likelihoods are dominated
by the difference between the simulations and those aspects of the observations that the
models simulate least well (Murphy et al. 2004). This will result in poorly constrained model
variables having a disproportionately greater impact in the weighting.

Three approaches have been used in the literature to address this problem. In ascending
order of complexity, they are: M1, metrics restricted to a subset of observable quantities
that, on the basis of the evidence available, the model appears capable of simulating for at
least some settings of the parameters �; M2, metrics in which the individual contributions
to r2 from different observation-types are renormalized by the error in the best available (or
a reference) simulation of that observation-type; and M3, metrics in which the contribution
of irreducible model-data discrepancies are incorporated into C through an explicit “dis-
crepancy term”. There is of course another possibility (M0), which is not to use any metric
at all and consider all the ensemble members as equally likely.
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In general, the choice of a metric will have a greater impact on results than the choice
of observations or the quality of individual models, so it is imperative to be clear which
type of metric is used in any individual study. Moreover, we should not expect them to give
similar results: in general, relative likelihoods based on an M1 metric will be larger (closer
to unity, meaning the metric has less power in discriminating between models) than those
based on an M2 or M3 metric because the M1 metric makes use of only a subset of the
observations available. This does not automatically mean that the M2 or M3 metrics are
preferable, because their additional power comes at the price of substantial and generally
un-testable additional assumptions.

3.1 Option M1: restricted metrics

The convention adopted in ensemble climate forecasting based upon climate change detec-
tion and attribution approaches, has been to assess model quality using only observable
quantities that models are capable of simulating directly. For example in reference (Stott
et al. 2006), model-simulated space-time patterns of response to greenhouse, anthropogenic
aerosol and natural (solar and volcanic) forcing were compared with observed large-scale
temperature changes over the 20th century using a regression analysis. In this example, �

contained the unknown scaling factors on the responses to these three forcing agents. Princi-
pal Component Analysis was used to retain only those spatio-temporal scales of variability
for which, after the best-fit � had been obtained, the minimum residual r2

min was consis-
tent with the expected residual due to internal climate variability (which, for large-scale
temperature changes, dominates observation error), based on a standard F -test for residual
consistency (Allen and Tett 1999). In Forest et al. (2002) only three parameters are varied
in an intermediate complexity model, also using principle component analysis to focus on
the large-scale response.

The interpretation of relative likelihoods here is straightforward: for these specific
variables (large-scale temperatures changes) the assumption is that there is a choice of
parameters � with which the model simulates the real-world warming response realistically,
and the likelihood of �1 being that “true” set declines with δr1 = r2

1 − r2
min. In terms of

classical statistical tests, this provides the basis for a test of the hypothesis that r2
min would

be this much smaller than r2
1 if �1 is in fact the “true” parameter-set.

Despite the attraction of being firmly grounded in classical linear regression and hypoth-
esis testing, the metrics used in ASK and FKM are open to criticism. First, they make very
limited use of the observations available, since few observable quantities satisfy the con-
dition of being statistically indistinguishable from the best-fitting available climate model
simulations. Second, large-scale temperature changes are generally not the most impact-
relevant aspects of a climate forecast. Applying relative likelihoods based on large-scale
temperature changes to constrain forecast changes in other variables requires the strong
assumption that the model-simulated relationship between large-scale temperatures and
these other variables is correct. Alternatively, it could be argued that for impacts studies,
relative likelihoods should include a comparison with observations relevant to the particular
application, such as rainfall and evaporation for hydrological impacts. However, choosing
to constrain the uncertainty range using observables that models cannot skillfully simulate
will simply discard many models, potentially resulting in a reduced uncertainty range as a
result of the inadequacy of the models and not a genuine reduction of the uncertainty.

It should be noted that the second criticism does not only apply to metrics restricted
to large-scale temperature changes: in general, relative likelihoods based on more com-
plex metrics will be dominated by model-data differences in a small number of observable
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variables and hence require an assumption that models that simulate the observations real-
istically in these variables are also more likely to be realistic in other respects, although
the use of an explicit discrepancy term can alleviate this problem. The key advantage of
restricted metrics, however, is that they are sufficiently simple that all such assumptions are
out in the open.

3.2 Option M2: renormalized metrics

If more observable quantities are included in the definition of the r2 goodness-of-fit statistic
than the best-fitting models are capable of simulating (for example, by including small-
scale temperature changes, or variables other than temperature that models simulate less
well), then relative likelihoods tend to be dominated by these poorly simulated quantities.
While this is clearly undesirable, there may still be information to be extracted from relative
goodness-of-fit in these quantities: for example, the best models may be capable of simulat-
ing them realistically but they are excluded from a restricted metric simply because we lack
an adequate representation of expected model-data differences in these quantities.

A simple approach to incorporating more observations into the r2 statistic than would be
allowed under a restricted metric is simply to renormalize model-data differences in subsets
of the observable quantities (putting temperatures in one subset, for example, and precipi-
tation in another) by the average error in either the best-fit or some reference model. This
means that equal weight is given, by construction, to relative errors in different subsets of the
observations. This approach, used in Piani et al. (2005) and Stainforth et al. (2005), allows
more observations to be used but lacks a clear methodological justification, so it should be
regarded at best as an ad hoc method to be used until a more complete understanding of
expected model-data differences is available.

3.3 Option M3: explicit discrepancy terms

The most sophisticated approach to incorporating a wide variety of observations into mea-
sures of model quality is the “discrepancy term” used in Murphy et al. (2007), Sexton et al.
(2012), Rougier (2007), and Collins et al. (2012) to estimate likelihoods of individual mod-
els in a perturbed physics ensemble. Rather than excluding observable quantities that the
best-fitting models are unable to simulate, as with M1, or simply renormalizing model-data
differences to downweight these terms as in M2, the discrepancy term in M3 attempts to
include all the sources of model-data differences into C, including a representation of “irre-
ducible” errors that are common to all members of the ensemble. The result is to inflate the
expected covariance in observables that the models are known to simulate poorly, which
has the effect of reducing the weight given to these quantities in the overall measure of
goodness-of-fit.

Specification of the discrepancy term presents a challenge in practice. To date, the
approach taken to estimating the discrepancy term has been to use the statistics of an
independent ensemble. For example, in deriving a discrepancy term for the analysis of a
perturbed-physics ensemble, Sexton et al. (2012) use the CMIP3 experiment. Goldstein
et al. (2008) show that this approach is justified subject to rather limited assumptions
about the properties of this second ensemble. One assumption that is required, how-
ever, known as “second-order exchangeability”, is that errors are equally probable in
any two members of the multi-model ensemble. However, it is generally expected that
some models will be substantially more realistic than others (through higher resolution,
more advanced representation of physical processes and so on). In practice, therefore,
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the set of second-order- exchangeable models of similar expected quality is likely to
be rather small. Use of a multi-model ensemble to estimate the discrepancy term incor-
porates information about model disagreement into the analysis, allowing less weight
to be given to model-observation disagreement in variables on which model disagree
among themselves. The discrepancy term is also used to allow explicitly for uncertainty
in the forecast arising from errors common to all members of the perturbed-physics
ensemble.

It is worth emphasizing that explicit discrepancy terms play two roles in an ensemble cli-
mate forecast: one is allowing for structural uncertainty in the simulation of the observable
quantities that are used to constrain the forecast, while the second is allowing for structural
uncertainty in the forecast itself. Although they are generally justified together, these roles
are not necessarily inseparable.

4 Sampling in perturbed physics and multi-model ensembles

Independent of the climate model ensemble generation technique and the method used
to assign a quality measure to individual members of the ensemble, there are different
sampling methods to generate the climate forecast. In general, the theoretical justification
of certain metrics has typically been associated with particular approaches to ensemble
sampling, but the theoretical constraints are sufficiently weak that an equally coherent jus-
tification could be given for any combination. Hence it is useful to distinguish ensemble
sampling approaches from model metrics.

4.1 Option S0: unrestricted ensembles

The most widely-used approach for the treatment of uncertainty in climate forecasts is
the multi-model ensemble or ensemble-of-opportunity, typified by model intercomparison
studies in which simulations from multiple modeling groups, are contributed to a central
repository and the spread of the ensemble is interpreted as a measure of forecast uncertainty.
These include for instance the CMIP3 (Meehl et al. 2007) and CMIP5 (Taylor et al. 2012)
global modeling intercomparison projects, as well as regional downscaling experiments
such as CORDEX (Jones and Asrar 2011). Ensembles-of-opportunity could in principle be
combined with any of the three metrics described above. In practice, however, the major-
ity of studies that use formal metrics of model quality also use a more systematic approach
to ensemble sampling. The ensemble-of-opportunity approach has been criticised for pro-
ducing forecast spreads that are potentially misleadingly narrow if all modelling groups are
individually tuning their models aiming to produce a best-fit model (Kiehl 2007).

An alternative approach to treat uncertainty in the forecasts consist of constructing a
perturbed physics ensemble. In this case, as shown in Stainforth et al. (2005), it is possible
to generate a very broad range of behaviors. Therefore, this type of unrestricted ensembles
might in principle produce a misleadingly wide range of uncertainty, unless formal methods
are used to constrain the ensemble.

A specific issue with the interpretation of ensembles-of-opportunity is whether the
models in such an ensemble represent approximations to the real world each subject to
independent errors, or whether the real world should be regarded as interchangeable with
a member of the ensemble (Annan and Hargreaves 2010). This has practical implications,
since the “truth-plus-error” interpretation implies that as the ensemble size increases, the
ensemble mean should converge steadily closer to the truth, as the impact of independent



Climatic Change (2015) 132:15–29 23

errors cancel out, whereas the “exchangeable” interpretation implies no such convergence.
On climate timescales model errors cannot be assumed to be mutually independent, so the
mean of a large ensemble is no more likely to be closer to the truth than the mean of a small
ensemble simply by virtue of the ensemble size. Hence, with some exceptions (Tebaldi
et al. 2004), analyses of ensembles-of-opportunity have tended to treat them as if ensemble
members were interchangeable with the real world (e.g. Räisänen and Palmer 2001).

The two interpretations discussed above assume that climate models are adequate
representations of the Earth climate system, and model inadequacies represent small pertur-
bations around the true system. There is of course a third possibility, whereby the climate
models structural uncertainties are severe enough to invalidate their use as climate forecast-
ing tools, particularly at spatial and temporal scales relevant for impacts studies (see for
example Risbey and O’Kane 2011). In that case, uncertainties estimated using any of the
approaches discussed here do not necessarily represent the true uncertainty range, and fore-
cast users should consider this possibility particularly when using the forecast for decision
support.

4.2 Option S1: range-over-threshold approaches

The simplest generalisation of measuring forecast uncertainty as the spread of the climate
model ensemble, be it a multi-model or a perturbed physics ensemble, is to provide forecast
ranges spanned by models that satisfy some formal criterion of goodness-of-fit to obser-
vations. This is the approach traditionally taken in the detection and attribution literature,
and it produces classical confidence intervals, not formal probability statements. In essence,
given the ensemble of models with a very broad range of behaviour, a subset is selected that
fit the data as well or better than would be expected in, say, 90 % of cases due to known
sources of model-data difference.

The advantage of range-over-threshold approaches is transparency and testability. The
hypothesis, that no model can be generated that yields a forecast outside a given range while
simultaneously satisfying a given criterion of goodness-of-fit to observations, is clearly
testable and does not depend on how models or model-versions were sampled in the first
place. This is correct provided that the initial ensemble is broad enough and densely sampled
enough to span the range consistent with relevant observations.

4.3 Option S2: Bayesian approaches

The simplest approach to generating an explicit probabilistic climate forecast is the
Bayesian weighted ensemble. Under this approach, individual members of the climate
model ensemble, usually a perturbed physics ensemble but can include sampling of model
structure uncertainty as well, are weighted by their likelihood with respect to observations,
and a posterior distribution for forecast quantities of interest is derived using Bayes theo-
rem. In this framework, the posterior distribution provides credible intervals, and represents
the investigators’ degrees of belief regarding the relative probability of different forecast
outcomes in the light of these observations.

A limitation of this approach is that, when the constraints provided by the observations
are weak (meaning that the likelihood function is only weakly dependent on the parameters),
results can be highly sensitive to the prior specification of parameters. For example, Frame
et al. (2005) noted that different prior specifications which had all been used in the literature
resulted in a range of estimates of the upper bound on climate sensitivity spanning a factor
of three or more.
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One response, is to argue that certain priors reflect investigators’ beliefs better than oth-
ers, and to explore sensitivity to results over “reasonable” choices of prior (Sexton and
Murphy 2012; Annan and Hargreaves 2006). Determining what is deemed reasonable, how-
ever, is not straightforward, particularly when a prior has to be specified over a model
parameter, such as a diffusivity, whose physical interpretation may itself be ambiguous.

An option for combining the testability and reproducibility of range-over-threshold
approaches with the probabilistic interpretation of the conventional Bayesian approach is to
use ‘objective’, or rule-based, priors to specify parameter distributions. For example, Allen
et al. (2000), Stott and Kettleborough (2002), Gregory et al. (2002), and Frame et al. (2005)
sample parameters to give approximately uniform prior predictive distributions in the quan-
tities used to constrain the forecast. When the constraints are approximately Gaussian and
independent, as is the case in the examples considered, this is very close to the use of a Jef-
freys prior (Jeffreys 1946; Jewson et al. 2009; Rowlands et al. 2013; Lewis 2013) to specify
parameter distributions.

5 Implications for uncertainty quantification

In this section, we illustrate the effect of the choice of sampling-metric combinations on
the quantification of the forecast uncertainty. For our illustration we use the model data
and an example of a metric M1 described in detail in Rowlands et al. (2012). In this work
the metric evaluates the distance between the simulated and observed large scale spatio-
temporal temperature anomalies, over the period 1961-2010.

Figure 1 shows how the unceratinty range of projections of temperature and precipita-
tion changes depends on the combination of M1 with two sampling strategies (S0 and S1) ,
when applied to two climate model ensembles: an ensemble of opportunity (CMIP3) and a
perturbed physics ensemble (climateprecition.net). Projections for precipitation vs. temper-
ature changes are shown for the global mean and three sub-continental regions. As expected,
M1 based only on large scale spatio-temporal temperature anomalies, works well at con-
straining the global mean warming projections since the range of temperatures (horizontal
axis) spanned by the unrestricted climateprediction.net ensemble (colored crosses, S0-M0)
is much wider than the range-over-threshold ensemble (grey diamonds, S1-M1) in the top
right panel of the figure. However, using a metric based on the models’ ability to simu-
late large scale spatio-temporal temperature patterns is not equally effective in all regions.
For instance, for the climateprediction.net ensemble, the range-over-threshold for South-
ern Asia and Western North America temperature projections is better constrained than for
Northern Europe. This can be explained by the fact that for climateprediction.net models
there is a strong relationship between global and regional warming projections for the first
two regions while the relationship is weaker for the third region(not shown). In the case
of the CMIP3 unrestricted ensemble (circles, S0-M0), the uncertainty range is not reduced
when applying the metric M1 (solid grey circles, S1-M1), possibly because this multi model
ensemble is, by construction, tuned with the observations used to build the metric M1
(Sanderson and Knutti 2012), so imposing this constraint does not add new information to
costraint the uncertainty range.

The figure also illustrates that the metric M1 is not very effective at constraining pro-
jections for precipitation changes (vertical axis) for the regions shown. In these modeling
experiments, the model projections for large scale temperature changes used to compute M1
do not have a strong relationship with simulated changes in precipitation for those particular
regions(not shown), therefore model performance in large-scale temperature changes does
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Fig. 1 Illustration of metric-sampling combinations. Projections for precipitation vs. temperature changes
are shown for the global mean and three sub-continental regions as indicated in the panels. CMIP3 ensem-
ble of opportunity: S0-M0 (all circles), S1-M1 (solid grey circles). Climateprediction.net perturbed physics
ensemble: S0-M0 (colored crosses), S1-M1 (grey diamonds). The metric M1 evaluates the goodness of fit of
large scale spatial and temporal temperature anomalies over 1961-2010. For the PPE the color of the crosses
corresponds to the number of parameters that have been perturbed in each model version, from red indicating
no perturbed parameter to dark blue indicating 19 parameters perturbed simultaneously

not provide useful information to constrain the uncertainty in projections on precipitation
changes.

In the context of impacts studies, it is important to remark that a metric that evaluates
warming patterns does not provide information about absolute errors and biases in models.
In other words, even though it might make sense to constrain the range of uncertainty in
projections using an observable that can be adequately simulated by at least some of the
models (warming patterns in this case), that does not imply that models which pass the
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test according to one metric are realistic at simulating more relevant quantities for impacts
studies, such as absolute values of variables (as opposed to their anomalies).

6 Discussion and conclusion

The simple example above illustrates clearly that the choice of ensemble sampling strat-
egy and goodness-of-fit metric has a strong influence on the forecast uncertainty range.
As it is well known, the uncertainty in projections for unrestricted ensembles is signif-
icantly different depending on the modeling strategy (CMIP3 vs climateprediction.net).
When observations are used to constrain uncertainty ranges, the result depends not only on
which observations (and what temporal and spatial scales) are used to construct the metric,
but also on the relationships between that information and the forecasted variables. In our
example, comparison with observations is restricted to large scale temperature warming pat-
terns which in principle the best models in the ensemble can simulate realistically. Even in
this case we see that the M1 metric used to quantify model quality can constrain the uncer-
tainty range in global mean temperature changes, but it fails to constrain it in precipitation
changes.

The proliferation of approaches to uncertainty analysis of climate forecasts is clearly
unsatisfactory from the perspective of forecasts users. When confronted with a new fore-
cast with a nominally smaller range of uncertainty than some alternative, it would take
considerable insight to work out if the difference results from arbitrary changes in metric,
or ensemble sampling, or from new information that reduces the uncertainty in the fore-
cast. While it is undesirable to impose a common approach, it may be useful for studies to
attempt some form of self-classification. The typology proposed in this review is intended
to provide a starting point to this end, with the expectation that this classification will evolve
in time to incorporate perhaps new approaches applicable to other types of ensembles gen-
erated using for instance pattern scaling (Mitchell 2003; Watterson and Whetton 2013) or
stochastic parametrisations (Palmer 2012).

Such a classification could serve as a guide for those attempting to use climate forecasts
for impact studies and formal decision analysis in the climate change context. Especially
for the latter, the assumptions about the decision criterion employed in the analysis are nat-
urally related to the assumptions underlying the generation of the climate forecast. Scenario
analysis, robust control (Lempert 2003), or info-gap (e.g. Hall et al. 2012) frameworks do
not rely on probabilistic information or even ranges, but focus on the impacts of decision
options and system response under a range of possible futures. However, the applicability
of these types of analysis to future decisions rests on a sufficiently comprehensive coverage
of the space of possible future climate states.

Climate ensembles providing a range of possible futures can be utilised in decision anal-
ysis using the MaxiMin (pessimistic), MaxiMax (optimistic) or Hurwicz (mixture) criteria
(Lange 2003), which only rely on information about the worst and/or best possible out-
comes. The expected utility decision criterion (e.g. see Fishburn 1982) is widely used in
cost-benefit (e.g. Nordhaus 2008), cost-risk (e.g. Schmidt et al. 2011), and cost-efficiency
(e.g. Held et al. 2009) analyses in the climate change context as the current standard of
normative decision theory. It requires information about the climate forecasts in the form
of probability density functions (pdfs), and naturally relates to Bayesian ensemble sam-
pling approaches. However, among many other shortcomings, the expected utility criterion
is unable to represent a situation in which the decision maker is ambiguous about the exact
pdfs representing (climate) uncertainty (see e.g. Lange and Treich 2008). One possible solu-
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tion to this shortcoming is the use of imprecise probabilities (e.g. Klibanoff et al. 2005,
2009), where climate information would be given not as a single pdf, but as a set of possible
pdfs.

We close this discussion by remarking that, when considering climate forecasts for
impacts studies, it is important to keep in mind that, as discussed in Section 4 the possible
range of climate changes might not be fully explored if the analysis relies solely on climate
models’ projections. Changes other that the ones currently projected by climate models are
plausible, particularly at impacts relevant spatial scales. Therefore decision makers should
use a variety of scenarios for their planning, and not restrict their analysis exclusively to
model projected ranges of uncertainties (Risbey 1998; Brown and Wilby 2012).
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