
Climatic Change (2015) 132:61–76
DOI 10.1007/s10584-014-1191-3

Near-term prediction of impact-relevant extreme
temperature indices

H. M. Hanlon ·G. C. Hegerl ·S. F. B. Tett ·D. M. Smith

Received: 16 January 2013 / Accepted: 16 June 2014 / Published online: 12 August 2014
© Springer Science+Business Media Dordrecht 2014

Abstract A previous study of predictability of European temperature indices revealed sig-
nificant skill in predictions of 5/10-year average indices of summer mean and maximum
5-day average temperatures based on daily maximum and minimum temperatures for a
large area of Europe, particularly in the Mediterranean. Here, this work is extended to study
indices relevant to high heat-related impacts on energy use, human health and maize yields
in Europe. The skill of predictions of these indices is assessed using decadal predictions of
the number of days above critical thresholds of daily maximum, mean and minimum Sum-
mer temperatures. Following comparison of these predictions with observed conditions,
there is skill found in parts of Europe where the decadal predictions exceed that of using
observed climatology and persisting present conditions. Areas in the Mediterranean show
the most skill in near-term predictions, while skill is small in Northern/Central Europe.
There is even some evidence of skill on small scales. This system is determined to be
not appropriate for predicting indices in the UK as the model significantly overestimates
the trend in these indices. A further test studies the effect of initialising the decadal fore-
casts with observations. Simulations that include external forcing, such as greenhouse gas
increases, show better skill in predicting changes in the frequency of hot events than those
that do not, and the initialisation of forecasts with the model used here does not improve
this skill.

This article is part of a Special Issue on “Managing Uncertainty in Predictions of Climate and Its
Impacts” edited by Andrew Challinor and Chris Ferro.
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1 Introduction

Extreme temperature events, such as the 2003 European Heatwave (Schär et al. 2004;
Fink et al. 2004) and 2010 Russian heatwave (Barriopedro et al. 2011), have had a
severe impact on society and nature, in particular the impact on human health was
profound. In terms of impacts, it is not extreme seasonal temperatures, but increased
daily extreme temperatures which are most damaging (Dı́az et al. 2006; Fouillet et al.
2006; Grize et al. 2005; Pascal et al. 2006). Impacts of daily extreme temperatures are
now even more important to study. It has been shown that daily extreme temperatures
show an upward trend in mean summer daily maximum (Tmax) and daily minimum
temperatures (Tmin) in Europe over the past few decades, that has been attributed
in part to human influences (Christidis et al. 2012); and similarly, that the frequency
(Morak et al. 2013) and intensity (Zwiers et al. 2011) of extreme temperatures has
increased.

In light of how severe the impact of high temperatures can be, and because these
events may become more frequent in the future, it has become even more important to
determine how well we can predict the changing likelihood of such events to enable
improved capability for adaptation and planning for the future. Hamilton et al. (2012)
found seasonal forecasts of the number of daily extreme temperatures (outside the 10–
90 % range) had significantly better skill than persistence, though, lower than the skill in
predicting the seasonal mean especially in the extratropics. The summer season was the
most skillful in the northern hemisphere. A recent study by Eade et al. (2012) demon-
strated significantly skillful predictions of moderate (1 in 10) temperature extremes on
decadal timescales, especially for multi-year periods. These assessments of skill were per-
formed using the Spearman rank correlation coefficient and standardised root mean square
error.

In this study we build upon the work of Hanlon et al. (2013a) who found signifi-
cant skill, beyond observed climatology using the mean square skill score (Murphy 1988),
in predicting the summer average and hottest 5-day average daily maximum (Tmax)
and daily minimum (Tmin) temperatures in Europe with the Met Office Hadley Cen-
tre decadal prediction system (DePreSys). Hanlon et al. (2013a) determined that this
skill is due almost entirely to the forecast recreating the climate change signal rather
than from its initialisation. Subsequently, work shown in Hanlon et al. (2013b) found
similar results using four CMIP5 models (CanCM4, HadCM3, MIROC5 and MPI-ESM-
LR). However, for some models there was evidence of improved skill when initial-
ising with observations. In particular, the Max Planck Institute Earth System Model

ing both from the external forcing due to climate change and from initialisation with
observations.

Following these previous studies, we apply the same methodology as Hanlon et al.
(2013a) comparing decadal hindcasts to observations and assessing the accuracy of them
compared to observed climatology and persistence. However, here we use indices which
are based on exceedance of temperature thresholds which are more directly relevant to
impacts and this paper investigates the usefulness of such decadal predictions for informing
adaptation decisions.

(MPI-ESM-LR, Raddatz et al. (2007), Marsland et al. (2003)), shows skill originat-
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2 Methodology for predicting extreme temperature indices

The procedure applied follows the methodology described in Hanlon et al. (2013a); now
termed H13. That paper presented a method to calculate decadal predictions for climate
indices from climate model simulations, and evaluates them based on a comparison to alter-
native prediction methods. Here, this methodology is adapted to assess the predictability of
more impact-relevant indices which count the number of days above a critical threshold.

2.1 Data

Observations The observed data originate from the Ensembles project observational
database (Eobs) (see Haylock et al. (2008) for more details). The data set is based on indi-
vidual station data which have been interpolated to a high resolution (0.5 ◦ latitude by 0.5 ◦
longitude grid) regular grid. As a consequence, there will still be some uncertainty in these
observations due to variations in the density of stations and interpolation methods, along
with any measurement errors. We have regridded these observations using area-averaging, to
the horizontal resolution of the model (3.75 ◦ longitude by 2.5 ◦ latitude) prior to computing
the indices, to allow a more direct comparison.

Models As in H13, we use the UK Met Office decadal prediction system (DePreSys) (Smith
et al. 2007, 2010) which employs the Hadley Centre coupled global climate model ver-
sion 3 (HadCM3) (Pope et al. 2000; Gordon et al. 2000)) at a horizontal resolution of the
atmospheric component of 3.75 ◦ longitude by 2.5 ◦ latitude. Further details of the model
are given in H13. We use a set of retrospective forecast experiments (hindcasts) compris-
ing a 9 member perturbed physics ensemble (hereafter referred to as PPE or the initialized
ensemble). For each ensemble member a different variant of HadCM3 is used which span
a range of different climate sensitivities from 2.6–7.1 ◦C and El Nino variabilities, in order
to sample model parameter uncertainty. This is achieved by applying different combina-
tions of perturbations to 29 parameters that control sub-grid scale atmospheric and surface
processes (Murphy et al. 2004).

Both the atmosphere and ocean components of the system were initialised every Novem-
ber from 1960 to 2005 with anomalies from the observed climatology added onto the model
climatology, and then run for 10 years (see Smith et al. (2007, 2010); also H13). The model
system has also been run without initialising with observed conditions (non-initialised
ensemble). Each individual member of the non-initialised ensemble ensemble is performed
with the same model variants as the corresponding member of the initialised ensemble, but
without assimilation of the observed state of the atmosphere or ocean. This ensemble is used
to diagnose whether the initialisation has improved the forecasts, or whether any forecast
skill we might diagnose originates from inclusion of external influences on climate, such as
increasing greenhouse gases.

2.2 Indices

We quantify the skill in the following impact-relevant indices:

– TX29: Number of days where Tmax exceeds 29 ◦C between 1st of April and 30th of
September.

– CDD: Cooling Degree Days, the cumulative sum of the number of degrees over which
the daily mean temperature exceeds 18 ◦C each day between 1st of April and 30th of
September.
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– TX25: Number of days where Tmax exceeds 25 ◦C between 1st of April and 30th of
September.

– TN18: Number of days where Tmin exceeds 18 ◦C between 1st of April and 30th of
September.

– CHDWN: Combined hot days and warm nights, the number of days where both Tmax
and Tmin exceed a set of thresholds. For this index two sets of thresholds where con-
sidered, Tmax > 30 ◦C with Tmin > 15 ◦C (low threshold) and Tmax > 35 ◦C with
Tmin > 20 ◦C (high threshold). Please note, a day is only counted in this index if both
the Tmax and Tmin values for that day exceed the corresponding thresholds.

Tmax above 29 ◦C has a detrimental impact on crop yields such as corn
(Schlenker and Roberts 2009) as the plants start to die as temperatures exceed this
threshold.

The cooling degree day index (CDD) is a measure of power consumption due to use of
cooling systems to regulate building temperature. It is an index that is averaged over a large
area to give an estimate of energy demand over that area during periods of high tempera-
tures. It does not attempt to predict the power required for small areas or individual buildings
in which thermostats may be set to a wide variety of temperatures for operational, comfort
or cost-saving reasons. There are less guidelines published for CDD in Europe than for win-
ter heating degree days (HDD) but as summer temperatures display a strong upward trend
this index may become more important in the future. Failure to meet increasing demand of
power for cooling systems during high-heat events could exacerbate the impacts of those
events.

CDD is calculated by taking difference between the threshold value and daily average
temperature for all days in April to October and finding the cumulative sum, giving the total
number of degrees above the baseline threshold for that season. Here we have used 18 ◦C
(65 ◦F) as the threshold, which is the baseline regularly used across the US (National Cli-
matic Data Center 2012) based on guidelines for building design to ensure human comfort.
It is a rough measure of how much power will be required to cool buildings across large
areas (e.g. continents). Essentially, the threshold should be the temperature at which the
majority of thermostats are set to turn air conditioning on. This threshold maybe a little low
for some parts of Europe, for example, UKCP09 suggest 22 ◦C as a threshold for the UK
(Jenkins et al. 2008). Jenkins et al. (2008) found an increase in average number of CDD
defined in all regions of the UK from 1961 to 2006.

TX25 and TN18 are examples of more moderate thresholds for extremes. Despite not
being directly linked to dramatic impacts, they may still be useful. 25 ◦C is the tempera-
ture threshold above which increasing cases of health impacts occur in the UK, concurrent
with rising hospital admissions UK Department of Health/ NHS (2012). Results for these
additional indices are shown in the supplement.

We also looked at combined extremes of Tmax and Tmin with the CHDWN index, to
account for health effects that occur with combined high daytime and night time tempera-
tures. Two sets of thresholds were considered as the low threshold that would be appropriate
for the UK region (UK Department of Health/ NHS 2012) is not necessarily appropriate for
more southerly regions of Europe that are already adapted to high temperatures. For this
second case higher thresholds were chosen following recommendation in Fischer and Schär
(2010).

All indices described above are computed for all ten years of the decadal hindcasts with
start dates between 1979 and 2005 (inclusive). This time period is chosen to allow us to
correct the forecast with out-of-sample data for 30 years previous, and is constrained by
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reliable observations which are available from 1950. The skill is assessed based only on the
indices computed for runs with start dates between 1979 and 2000, as we require observa-
tions for ten years following the start date. We also calculate skill averaged across leadtimes
in order to assess if the forecasting system can skilfully predict changes over a longer time:
we calculate a pentadal average over the first five years of the forecast; and a decadal aver-
age over all ten years of the forecast. This average over leadtime is performed after the index
has been computed and bias corrected for each individual leadtime. Furthermore, we assess
the prediction of regional averages over land points only. The regions used in this study
are: Europe (35–65 ◦N latitude,10 ◦W–40 ◦E longitude), the British Isles (50–60 ◦N lati-
tude, 10 ◦W–2 ◦E longitude, hereafter termed ‘UK’ but this does still include Ireland), the
Mediterranean (35–50 ◦N latitude, 10 ◦W–40 ◦E longitude) and Central Europe (42–55 ◦N
latitude, 2 ◦W–20 ◦E longitude).

3 Processing and evaluating predictions

3.1 Bias correction

A bias exists between the modelled and observed extremes which is influenced by small
scale parametrised processes and local feedbacks, which are not always well captured by
the model and are different for extreme temperatures than for mean temperatures (Hanlon
et al. 2013a).

Following the index calculation, this mean bias of the observed index is removed, avoid-
ing the mean difference between the observed and modelled index, leading to much more
useful predictions (e.g. Hawkins et al. (2013)). For the regionally averaged indices the bias
correction is performed after calculating the regional average. Our bias correction method
follows the guidelines set by the World Climate Research Program (WCRP 2011): the bias
correction to an index is made by removing the mean index calculated over the 30 years
prior to the initialisation from a transient run with the same model variant and adding on the
mean index over the same time period calculated with observations. As shown by Eq. 1:

model bcy,l,m = model bcy,l,m − mean(transienty−30:y−1,0,m) + mean(eobsy−30:y−1) (1)

where, y is the year, l is the leadtime from the start of the run and m refers to each ensem-
ble member. For example, the index calculated for the run starting in November 1979 is
corrected with the mean over 1950–1979. The reason for correcting with prior data is to
allow the same method of bias correction to be used to correct a future forecast. Preventing
our skill assessment from being preconditioned with observations that occurred during the
in-sample time period, which would not have been available at the time.

We do not apply a time-dependent bias correction both in order to correct as little as
possible, and because the model we use is anomaly initialised, leading to forecasts that are
less likely to drift than those with full field initialisation (Smith et al. 2013).

We correct the index rather than the daily data, as extremes show a different bias from
average days (for more discussion, see H13). For clarity, where the index is calculated
for each grid point individually the bias correction is also performed at each grid point
individually and where the index is a regional average the bias correction is done for the
regional average. Also, as each member of the perturbed physics forecasts are created
using a different variant of the model, we consider each member as a separate model and
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therefore bias correct each individually. The correction applied remains constant across
different leadtimes.

4 Evaluating forecast skill

As in H13, the average skill of the initialised decadal forecasts, compared to forecasts made
using an alternative method of prediction, the ‘reference forecast’. This is done by comput-
ing the Mean Square Skill Score (MSSS) (Murphy 1988), which compares the mean square
errors between each forecast and the observations by:

MSSS(f, y, x) =
(

1 − MSE(f, x)

MSE(y, x)

)
× 100 (2)

Where MSE, the mean square error is calculated as:

MSE(f, x) = 1

n

∑
(fi − xi)

2, (3)

fi is the ith value from forecast f, xi is the ith observed value, y is the reference forecast
and n is the number of forecasts (here the forecasts are the 10-year runs started every year).

In this study we use MSSS to estimate how accurately the ensemble mean of the ini-
tialised perturbed physics ensemble (PPE) DePreSys hindcasts recreate the corresponding
observed values, compared to alternative forecasts based on observational climatology, the
persistence of the previous year/decade value of the index from observations, and equiva-
lent climate model based hindcasts performed with no initialisation of observed values. This
follows the best practice guidance for use of the mean square skill score to assess decadal
predictions proposed by Goddard et al. (2013).

A forecast is deemed to be skillful if it is closer to the observed value than a reference
forecast. The first reference forecast we use is the average of the previous 30-years before
the start of the run. Prior climatology is a reasonable benchmark in this case as extreme
temperature indices fluctuate year to year as they are affected by weather variability. Also,
this method has the benefit of relying only on data available at the start of the run, allowing
a fair test of the system forecasting future years, for which no observations are available.
The calculations are also repeated, persisting observed conditions as the reference forecast.
Persistence refers to the value of the index from the year (or average of years) immedi-
ately prior to the start of the run. In both cases the skill score assesses if the model-based
forecasting system provides a better forecast than a forecast based on long-term average or
preceding observations only.

To determine whether initialising the forecast with observed conditions improves its skill,
the skill analysis is also performed using the non-initialised ensemble forecast as the ref-
erence forecast. This shows whether the ensemble which assimilates observations is more
skillful than the runs which did not use initial conditions based on the observed state of the
climate.

It should be noted that where the number of days observed and forecast by the benchmark
is equal to zero this score results in zero error for the reference forecast leading to degen-
erate skill scores (Eq. 2). Thus the MSSS is not useful for assessing very extreme cases of
indices based on count data, with no occurrences during the time period yielding the skill
score misleading. This is not surprising, as assessing very rare events is difficult with most
methods.
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The MSSS is calculated for the indices described in Section 2.2 for each leadtime,
where the leadtime refers to the time since the initialisation of the prediction. This MSSS
is also found for an average over leadtimes 0–4 and 0–9 years, in order to determine if a
decadal or semi-decadal average has more skill than that of a prediction for an individual
year.

4.1 Uncertainty assessment

Uncertainties arise from the limited ensemble size of nine members and limited number of
start dates, which we address in the same way as in H13, estimating the sampling uncertainty
by bootstrapping-with-replacement (Efron and Tibshirani 1993, Chapter 6) across these nine
members. The 10–90 % range from a thousand samples provides the error on MSSS. If the
score and its error are above zero then the forecast has more skill in predicting the index
than the reference forecast.

An additional method of estimating uncertainty on the MSSS is also performed, which
compares the MSSS computed for the forecast to the MSSS computed with a random fore-
cast, which should have no significant skill apart from coincidence (for detail, see H13).
The 90th percentile of a distribution of the random forecasts (normalized to have the same
mean and standard deviation as the real forecasting system) is taken as a cut off point.
Below which the MSSS is considered to not be significantly better than 90 % of the random
forecasts and hence not appropriate for use as prediction.

The forecast skill is limited by inherent predictability, which varies with the index
and region studied. Predictability is further decreased by model uncertainty arising from
errors in the model inputs such as the initial conditions, boundary conditions, physical
constraints and the driving variables, the model structure, stochastic variability and under-
estimation of the observed variability due to small sample size. Some of this is removed
by bias correction, although the forecast will still be affected by errors in the climate
model.

Uncertainty in the values of climate model parameters is accounted for in our approach
by applying different perturbations to physical parameters in the initialised ensemble.
Although the small number of perturbed simulations (nine) may not capture the full uncer-
tainty. Structural uncertainty, arising from inaccuracies in the numerical solution of the
equations controlling the model, is not accounted for in this study as there is only one
model used. Previous papers studying skill of extreme summer temperatures in Europe
have shown that the findings are broadly similar across models, with some exceptions
(Hanlon et al. 2013b). In summary, our study accounts for important aspects of model
uncertainty, but cannot span the full possible range of climate model forecasting system
behaviours.

As the forecast skill is based on a comparison to observations there is also the possibility
of added uncertainty due to error in the observations. As discussed above, this may have
arisen by measurement error or during the regridding and area averaging process. However,
as the station density in Europe is high, we believe observation errors to be small so have
neglected it.

This study does not rely on expert judgement but verifies the accuracy and validation
of predictions using quantitative methods based on mean square errors between models
and observations. Any judgments made have related to the suitability of the methods for
this purpose. Where there has been more than one choice of method we have chosen
the most conservative, for example the bootstrapping procedure for sampling the model
spread.
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5 Results

5.1 Tmax > 29 ◦C

The regional decadal average forecasts show a steady increase in the number of days
exceeding the 29 ◦C threshold for the Europe and Mediterranean regions, consistent with
observations (Fig. 1, lower). The difference between the observed timeseries and the model
ensemble mean shows that the TX29 index is biased slightly low, even after bias correc-
tion. Despite this small bias the model captures most of the observed variability, with the
exception of a late 1990s decadal averages, increasing confidence in the prediction.

Fig. 1 Trend in decadal averaged TX29 (◦C/year, left) and CDD (days/year, right) of 1981–2010 computed
with observations (upper), initialised ensemble (PPE) mean leadtime 0–9 average (middle). Timeseries of
each index over 1981–2010 (lower) computed with observations (black lines), persistence (dashed black
lines) and initialised predictions (averaged over lead-times 0–9 years) are shown by the coloured lines and
non-initialised predictions by the dashed coloured lines (red is Mediterranean, Blue is Europe and Green is
UK). The shading represents the uncertainty from bootstrapped estimates of initialised ensemble spread
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An exception is the regional decadal average timeseries for the UK, which overestimates
the number of exceedances for these thresholds. The observations show very few occur-
rences where this threshold is exceeded and zero trend in this index (Fig. 1, lower left).
Hence this system is not reliably predicting changes in these indices over the UK.

Throughout most of Europe there is an increasing trend in the observed decadal average
of TX29 (Fig. 1, upper left). For grid points that show a decrease in the number of days
exceeding the 29 ◦C threshold, the trend is small compared to the increases seen elsewhere.
The spatial pattern of these changes is not recreated perfectly by the model, although it does
have similar large-scale features, for example, increasing trend in TX29 throughout Europe
with larger changes in Southern Europe than further North (Fig. 1, middle left).

It is unlikely that a global model would be skillful at a spatial scale equivalent to an
individual grid point due to the low signal to noise ratio of these indices at small spatial
scales. However, there are some grid points which do show the decadal average of the model
is more skillful than observed climatology (Fig. 2, upper right) and observed persistence
(Fig. 2, lower right), especially in Southern Europe. Then the skill scores obtained with runs
initialised with and without observations were compared, to determine if there is a benefit to
initialisation. For TX29 there is no evidence to suggest the skill here is due to initialisation
of the model (Fig. 2, middle right).

As the skill scores are not statistically significant across all grid points it is likely we are
asking too much of our Global model in this case. Hence, this analysis is likely to be more
robust when performed at a lower spatial resolution. So we take the regional average of the
index over 4 spatial domains of varying size, Europe, Central Europe, Mediterranean and
UK and repeat the skill analysis with these new averages (note that skill scores displayed
in the left-hand panels of Fig. 2 are calculated for the regional average of the index rather
than taking a regional average of the skill scores, as shown in the right-hand panels). There
should be more skill for the large area average index than that calculated for each grid point,
due to chaotic behaviour of the system and the model’s limited ability to resolve and recreate
small scale features.

Initialised predictions of TX29 for the Europe and Mediterranean regional averages are
significantly more skillful than observed climatology and random noise at all leadtimes and
for the 5-year and 10-year averages (Fig. 2, upper left). The 5 and 10-year averages of TX29
for the Central Europe region are more skilful than observed climatology but this is not
consistently true for all the individual years (Fig. 2, upper left). The UK regional average
does not show any skill for TX29, as the model overestimates the trend in these indices
when averaged over the UK. This region is less prone to exceeding the 29 ◦C threshold than
more southerly regions, so predicting these very rare events is a challenge.

Forecasts based on initialised predictions of TX29 for Europe and Mediterranean are
significantly more skilfull than those based on persisting preceding 5-year and 10-year aver-
ages (just 10-year average for Central Europe region) but this is not consistent across the
individual leadtimes (Fig. 2, lower left). As there is no significant improvement in the skill
of these initialised predictions compared to predictions that are not initialised, the skill is
due to the forcing of in the model, not the initialisation of the model with observations
(Fig. 2,middle left).

5.2 TX25, TN18 and CHDWN

We also studied other daily temperature based indices, including TX25 where the daily
maximum temperature exceeds a more moderate threshold of 25 ◦C and TN18 where the
daily minimum temperature exceeds 18 ◦C. Similar figures, as displayed above for TX29,
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Fig. 2 Mean Square Skill Score of the TX29 computed with the initialised ensemble (PPE) mean compared
to observed climatology (upper), non-initialised ensemble (middle) and persistence (lower). for all leadtimes
and 0–4, 0–9 yr average leadtimes. Each symbol represents the individual score for each regional average,
which have associated error bars (Europe is blue, Mediterranean is red, Central Europe is orange and UK is
green). The smaller grey symbols in the left hand panels show the MSSS obtained by a random forecast. The
right hand panels show a map of the scores calculated for each grid point for the 0–9 leadtime average, any
grid points for which the score is not statistically significant are shaded grey

for these further indices are shown in the supplementary material as they are not directly
relevant to a specific impact but do highlight some interesting features.

The more moderate Tmax index TX25 shows more grid points (mostly in cen-
tral/southern Europe) with significantly skilful scores (see supplement). The regional
average of TX25 shows more skill for Central Europe than TX29 but the other regions sim-
ilar skill scores. The likely reason for these differences is that the trend in TX25 is larger
than TX29 giving a stronger signal.
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TN18 has a weaker trend, especially in the UK, and the model predictions are biased
higher than observations rather than lower as seen for TX25 and TX29. This has resulted
in lower skill scores for TN18 across the regions with only skill displayed for Europe
and Mediterranean regions, none for the smaller regions Central Europe and UK (see
supplement).

The variation in indices based on Tmin (eg.TN18) rather than those based on Tmax (eg.
TX29 and TX25) is an interesting feature and is likely due to different physical processes
governing daytime/night-time temperatures. Tmax is usually recorded during day when
temperatures are driven by the incoming short-wave solar radiation. Where as, Tmin is usu-
ally recorded during the night and is governed by the outgoing long-range radiation which
allows the surface to cool. The amount of incoming solar radiation which reaches the earth
is dependent on the level of cloud cover and the radiative cooling during the night. Both
are affected by the amount of moisture in the atmosphere, so these processes can be further
affected by land surface-atmosphere interactions involving water exchange. The difference
in skill for these two variables could be a result of the model reproducing one of these pro-
cesses better than the other, hence it is important to consider these variables separately and
to not assume skill in one index implies skill in the other.

Analysis of the combined hot days and warm nights index has shown very few occur-
rences of the relevant thresholds being exceeded across all the regions. The main issue with
indices that have very few occurrences arises when assessing the skill of predicting an event
that does not occur often, in either the model or observations. It is possible to obtain a very
high skill but all that explains is that the index is mostly zero in both datasets. It yields no
evidence as to whether the model could skillfully predict a future change.

Due to there also being a lack of spatial consistency across the region and large variation
in the vulnerability at smaller scales, the CHDWN index is not considered further in this
study. The decadal prediction system is not designed to look at such small scales, so trying
to predict this index with the model would not be appropriate. To study the predictability of
such an index relevant to human health impacts, it would be beneficial to use a prediction
system with considerably higher spatial resolution or an additional downscaling method. For
more detailed analysis and figures showing the climatology and trend in this index please
refer to the supplement.

5.3 Cooling degree days (CDD)

From investigation of the TX29 and CHDWN indices, it is clear that the predictions made
with a global model of this resolution should consider indices which are relevant when the
average over a large spatial scale is taken. A good example of such an index is heating degree
days, as used to estimate energy consumption in Winter. It is calculated based on the number
of degrees the daily mean temperature is below an absolute temperature threshold and this
is averaged over a large area for the season. However, as this index is already regularly used
and understood for Europe, and because we are concerned with hot temperature extremes
in this study, we investigate Cooling Degree Days (CDD). CDD is an index widely used
to estimate power consumption in the US during warm seasons, calculated as the sum of
degrees where the daily mean temperature exceeds an absolute temperature threshold (of
18 ◦C (65 ◦F)).

The trend of the index calculated with observed temperatures is slightly negative in the
1950–1980 period (Fig. 3 middle left) to largely positive in the 1980–2012 period (Fig. 3,
middle right). This change in trend can also be clearly in the time series for the regional
average CDD (Fig. 3, lower left) for the Mediterranean, Central Europe and Europe regions.
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Fig. 3 Cooling Degree Days (CDD) computed with observations. Upper plots show maps of climatology
of CDD index (1950-1980 (left) 1981–2012(right)). Cooling degree days is the cumulative sum of degrees
above a daily threshold (Tmean greater than 18 ◦C) (Upper plot). Middle plots show maps of the trend in
CDD over the two periods (1950–1980 (left) 1981–2012(right)). Lower plot shows a timeseries of CDD over
1950–2012 computed with observations. Red is the regional average over the Mediterranean region, Blue is
Europe, Orange is Central Europe and Green is the UK

The climatology of the two periods maintain the same spatial pattern, the later period
(1981–2012) showing a slight increase in average CDD (compare Fig. 3 upper left and upper
right). The index remains small in magnitude for UK across both periods compared to more
southerly regions. The initialised predictions show similar trends (see Fig. 1, right panels).

Similar to the TX29 index there are some grid points that show significant skill when
compared to observed climatology (Fig. 4, upper right) and persistence (Fig. 4, lower right),
these are mostly in Southern Europe. As there is no statistically significant skill consistently
across grid points, relying on information from a single grid point would not be advised
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Fig. 4 Mean Square Skill Score of the index cooling degree days (CDD) computed with the initialised
ensemble (PPE) mean compared to observed climatology (upper), non-initialised ensemble (middle) and per-
sistence (lower), for all leadtimes and 0–4, 0–9 yr average leadtimes. Each symbol represents the individual
score for each regional average, which have associated error bars (Europe is blue, Mediterranean is red, Cen-
tral Europe is orange and UK is green). The smaller grey symbols in the left hand panels show the MSSS
obtained by a random forecast. The right hand panels show a map of the scores calculated for each grid point
for the 0–9 leadtime average, any grid points for which the score is not statistically significant are shaded grey

here either. Also, comparison of skill with the non-initialised ensemble shows no benefit
here coming from initialisation of the model with observations (Fig. 4, middle right).

Regional average CDD is significantly skilful compared to observed climatology for the
European and Mediterranean regions at later lead-times and also the 5 and 10 year aver-
ages (Fig. 4, upper left). This is most likely due to the steady positive trend in the Southern
Europe providing a strong signal, the magnitude of which is recreated well by the model.



74 Climatic Change (2015) 132:61–76

In the other regions the magnitude of this index and the trend are smaller and therefore
harder to resolve from variability. So the only other area we see with statistically significant
skill is the 10-year average for Central Europe. Comparison with the non-initialised ensem-
ble runs shows that this skill is coming purely from the trend rather than the initialisation
(Fig. 4, middle left). Alternatively, when the skill compared to the observed persistence of
CDD is considered (Fig. 4, lower left), it is found that the only case in which the model
is more significantly skilful is for the 10-year averages for Europe and the Mediterranean.
Which suggests, in this case, observed persistence (the previous year’s value) may be a
better predictor for the index than the decadal model prediction.

6 Conclusions

To summarise the results of this study, we find that climate model-based near-term predic-
tions have skill that exceeds that of forecasts based on observed climatology and persistence
for indices of hot extremes over parts of Europe, and the European and Mediterranean
regional averages. Less skill is found for the Central Europe region with only the decadal
average of daily maximum temperatures greater than 25 ◦C and 29 ◦C, and CDD, showing
significant skill. There is no significant skill found for the UK indices as the observations
mostly lie outside the range of the model and the model overestimates the trends in the UK
indices. So to conclude, it would be appropriate to use this model to predict the exceedances
of these thresholds for the Mediterranean and Central Europe for the next ten years, but not
for the UK.

Predictions of rarer events are less skillful than predictions of more moderate events,
hence the predictability of the exceedance of absolute thresholds can vary with location
depending on how rare an extreme it is in those areas. It is still possible to obtain skillful
predictions for more moderate extremes for the UK region, as demonstrated by H13 and
Eade et al. (2012).

There is no significant improvement of the skill in the prediction of these indices due to
initialisation with this model. However it has been previously shown that initialisation in the
MPI model has increased the skill in predictions of European summer temperatures (Matei
et al. 2012) and temperature extremes (Hanlon et al. 2013b).

H13 considered several aspects of the methodology for deciding how best to evaluate
the decadal predictions of extreme indices. We have found the same issues important in this
study also. Firstly, the model prediction needs to be bias corrected for each index as this is
more effective than applying the correction to the daily data. Secondly, the skill should be
computed for the index in question, rather than relying on skill assessments on mean climate
conditions (eg. regional average, seasonal average Tmean). Performing the skill assessment
for each case individually, allows for the skill to vary depending on the capabilities of the
model which vary with spatial scale, location, variable and how rare the event is. Following
this advice also mean that the conclusions made in this paper should not be transferred to
more local scales, they are valid for the regional averages over which they have been com-
puted. However, that does not mean knowledge of the performance of the global model for
the large scale cannot be helpful for more local scales. This method can help inform which
global model may be the most appropriate to drive downscaling/impact models and in turn,
the same skill assessment method could also be used to assess those downscaled results.

Following on from this study, to better quantify/constrain the uncertainty on these results
there are several improvements that could be made to the methodology. Firstly, study a wider
range of models to better quantify the model uncertainty or learn which models are most
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skillful for particular cases. It would also be interesting to study how well the large-scale
circulation is reproduced as this strongly affects the extremes (Kenyon and Hegerl 2008).
As such, the multi-model average does not necessarily give a more skillful result than an
individual model (Hanlon et al. 2013b). Larger ensembles would provide a better sampling
of the variability and therefore a better quantification of the uncertainty. It would also be
advantageous to repeat the study with a higher resolution model, possibly a regional model
or employ some downscaling techniques to better recreate the physical processes at smaller
spatial scales so more precise predictions can be made.

Acknowledgments HMH, GCH and SFBT were supported by the UK Natural Environment Research
Council through the EQUIP project (grant NE/H003525/1). DMS was supported by the joint DECC/Defra
Met Office Hadley Centre Climate Programme (GA01101). We acknowledge the E-OBS dataset from the
EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D
project. Along with the UK Met Office Hadley Centre for the DePreSys dataset. Also, Edinburgh Compute
and Data Facility (ECDF) for providing computer resources. In addition, we would also like to thank fellow
EQUIP members, Chris Ferro, Tom Fricker and Emma Suckling, along with two anonymous reviewers for
providing useful advice.

References

Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R (2011) The hot summer of 2010:
redrawing the temperature record map of Europe. Science 332:220–224

Christidis N, Stott PA, Jones GS, Shiogama H, Nozawa T, Luterbacher J (2012) Human activity and
anomalously warm seasons in Europe. Int J Climatol 32(2):225–239

Dı́az J, Linares C, Tobı́as A (2006) Impact of extreme temperatures on daily mortality in Madrid (Spain)
among the 45-64 age-group. Int J Biometeorol 50(6):342–348

UK Department of Health/ NHS (2012) Heatwave Plan for England 2012, http://www.dh.gov.uk/en/
Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance

Eade R, Hamilton E, Smith DM, Graham RJ, Scaife AA (2012) Forecasting the number of extreme daily
events out to a decade ahead. J Geophys Res 117(D21110)

Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman And Hall
van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research

and results from the ENSEMBLES project http://ensembles-eu.metoffice.com/index.html. Accessed 12
Apr 2012
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