Climatic Change (2013) 118:73-87
DOI 10.1007/s10584-012-0676-1

Optimal mitigation strategies with negative emission
technologies and carbon sinks under uncertainty

Sabine Fuss - Wolf Heinrich Reuter + Jana Szolgayova -
Michael Obersteiner

Received: 29 February 2012 / Accepted: 23 December 2012 /Published online: 25 January 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract In recent years a body of literature has arisen on the topic of how to compose the
optimal portfolio of mitigation options. The focus has been mainly on options involving shifts
from high- to low- or even negative-carbon technologies. Natural sinks play an important role in
any attempt to stabilize atmospheric CO, and usually enter as a constant term in the overall
carbon budget. In this paper, we introduce natural sinks to the carbon management problem and
analyze the implications for negative emission technology deployment and the overall mitiga-
tion strategy. Amongst other sensitivity analyses, we also investigate the impact of uncertainty
in the carbon sink, which we find to raise the importance of negative emissions in the mitigation
portfolio significantly lowering the cost of the policy mix.

1 Introduction

One important ingredient for achieving stabilization targets of 450 ppm or lower, which has
moved to the centre of the debate over the past decade, is the option of deploying Negative
Emission Technologies (NETs) also known as Carbon Dioxide Removal (CDR) options
(Obersteiner et al. 2001). Azar et al. (2010), for example, test three different large-scale
energy models and find a significant proportion of biomass-based energy with carbon
capture and storage (BECCS) as part of an energy mix optimized to stabilize at 350 ppm.
While this is a promising avenue for future mitigation strategy, the question arises what the
interaction between NETs and other elements of the mitigation portfolio is.
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The importance of accounting for natural sinks when determining the optimal policy mix
to avoid temperature increases beyond 2°C has been widely discussed, e.g. in the context of
Reduced Emissions from Deforestation and Degradation (REDD). However, different mod-
els project rather different trajectories for global sinks, as can be observed through the
discrepancies between estimates in the IPCC’s Third and Fourth Assessment Reports for
terrestrial carbon sinks (Fischlin et al. 2007).

While a number of existing studies look at the opportunities of REDD and the implica-
tions of its implementation in much detail (e.g. Bosetti and Lubowski 2010), none of them
really considers its risk profile to determine the optimal composition of a mitigation portfolio
given the uncertainty surrounding these sinks (Fuss 2010). In this paper, we therefore model
the natural sink stochastically and as a function of atmospheric Greenhouse Gas (GHG)
concentration accounting for possible climate feedbacks. We analyze different emissions
targets and identify the best hedging strategies in the technosphere given the uncertainty in
the biosphere with explicit focus on their interrelation and potential climate feedbacks.
Finally, we focus the analysis on the potential for BECCS, which is by no means certain,
as estimates differ across the supply chain starting with sustainably harvestable biomass for
bioenergy and ending with the potential for safe and permanent storage.

2 Literature discussion

The relevant literature concerns both methodologies to find optimal mitigation strategies in
the face of uncertainty and the different options (e.g. abatement, BECCS) underlying such
strategies in the presence of natural (stochastic) sinks. In addition, the literature on the effect
of including sinks in mitigation optimization is discussed. Starting with the literature on
mitigation portfolios, it is important to note that previous analyses of optimal policy
portfolios have typically neglected NETs (e.g. Gerlagh et al. 2009). Evidently, this is in
the process of changing, as most global assessments now acknowledge the importance of
emissions turning negative in order to achieve the two-degree target. For example, the
Global Energy Assessment (GEA 2012) finds that almost zero or negative emissions are
needed in the second half of the century for all their scenarios. The new scenarios by the
International Energy Agency, ETP2012, (IEA 2012) also show a rapid deployment of
BECCS being essential for reaching the two-degree target with large potential in industry.
While these assessments are deterministic, the focus of this paper is on the effect of
uncertainty on the composition of the optimal mitigation portfolio.

Both the PAGE (Policy Analysis of the Greenhouse Effect) model, which has been used
in the Stern Review (Hope 2006), and the Dynamic Integrated model of Climate and the
Economy (DICE) (Nordhaus 2008), for example, consider the impacts of climate change and
the effects of parametric uncertainty. In a stochastic version of DICE, Nordhaus (2008)
includes normal distributions of the growth rate of total factor productivity (TFP), the
sensitivity of temperature change to changes in GHG concentrations and the sensitivity of
reductions in output to temperature changes. He finds that uncertainty does not play a large
role for climate policy decisions, which is in contrast to the findings of PAGE and also our
findings.' In addition, our interest is more focused on the availability of NETs, which are
neither included in the stochastic DICE version nor in PAGE.

! Ackerman et al. (2010) amongst others point to possible reasons for this finding, which are related to the use
of a quadratic damage function and normally distributed temperature in DICE, which can lead to underesti-
mation of welfare losses from unmitigated climate change.
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In a very recent paper by Mclnerney et al. (2012), the DICE model with parametric
uncertainty is further explored for the impact that different decision criteria might have on
abatement and the robustness of mitigation strategies. They find that criteria giving more
weight to the mitigation strategy’s performance under worst-case scenarios lead to more
near-term abatement and higher robustness, i.e. strategies trade off a low drop in expected
performance against a large increase in the performance in the worst case scenario. The aim
of Mclnerney et al’s paper is thus rather on expanding methods for decision-making and
does neither explore NETs nor the importance of sinks and their associated uncertainties.

Bosetti et al. (2008) use the stochastic version of the regional hybrid integrated assess-
ment model WITCH to analyze the optimal mitigation portfolio given uncertainty about the
future stabilization target. They find a large hedging effect implying that overall mitigation is
much higher than in the deterministic case, with public R&D into energy efficiency and
investment into carbon-free technology (nuclear energy) being the main elements of the
mitigation portfolio. There are no strategies pertaining to carbon sinks and also no NETs.

Lemoine et al. (2012) have implemented a dynamic portfolio of abatement, R&D, and NET
policies under an exogenous CO, constraint and with stochastic technological change. Their
results show that near-term abatement is not sensitive to the availability of R&D policies, but if
NETs are expected to become available, near-term abatement will be reduced substantially In
this paper, we also include NETs, but we are less interested in strategies on R&D. Instead, we
focus on (a) the relatively unexplored effect that the inclusion of natural sinks and the
uncertainty that surrounds them has on robust and cost-minimizing mitigation strategies and
overall policy costs and (b) the impact of expectations about BECCS potentials.

Further on the different strategies, a considerable body of literature is currently emerging on
BECCS individually. BECCS was first put forth as an option by Obersteiner et al. (2001),
Kraxner et al. (2003) and later in the 2005 Working Group III Report of the IPCC. Even though
generally recognized as an option to potentially reduce emissions by up to 10 Gt of CO, per
year (IEAGHG 2011), certain caveats remain. These include uncertainties surrounding storage
potentials, issues of social acceptance and possible problems of leakage (van der Zwaan and
Gerlagh 2009). While the latter demonstrates that BECCS has its own risks, which do not apply
to NETs not using geological storage (by e.g. applying biochar to soils (Lehmann 2007)), we
adopt in this paper a relatively conservative number of 2,100 Gt CO, for the storage potential,
which we find not to be a binding constraint in the analysis, unless we substantially lower the
target or significantly lower the BECCS potential.”> In addition, any assessment of BECCS
relies heavily on the assumption of sustainable forestry and minimization of indirect land use
change effects due to increased demand for biomass (see e.g. Kraxner et al. 2012).

Next to BECCS and other carbon dioxide removal (CDR) techniques®, the role of account-
ing for and management of natural sinks have come to the forefront of the public debate about
mitigation since Marrakech 2001. Efforts to analyze the implications from land use and
management changes for carbon policy started even earlier (e.g. Ahlig et al. 1997) and forest
carbon sequestration in particular has been at the centre of continuing research (e.g. Stavins
1999, and Sohngen and Mendelsohn 2003). Marginal costs of carbon sequestration have been
found to be competitive and partially much cheaper than those of the options related to energy
technologies. Van’t Veld and Plantinga (2005) implement a dynamic model of optimizing

2 This number is the sum of the IPCC’s (2005) estimates for storage in oil and gas fields, saline formations and
coal beds. Note that subsequent estimates have been substantially higher (e.g. Dooley et al. 2005), so this can
be considered a conservative constraint.
3 In particular, we include into our analysis direct air capture, which has been studied more closely recently
(see e.g. American Physical et al. 2011).
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abatement and mitigation through sequestration under different expectations of carbon price
developments. They find that for increasing prices abatement is unchanged and that also the
absolute amount of sequestration in the mitigation portfolio might ultimately not be lower.
However, the timing of sequestration changes, as rising carbon prices represent an incentive to
delay, which is unique for sequestration activities. This is broadly in line with earlier findings by
Sohngen and Mendelsohn (2003), but at odds with the general “consensus” that sequestration
should happen as early as possible, which is due to that literature’s assumption on constant
carbon prices according to van’t Veld and Plantinga (2005).

Notwithstanding the findings from such deterministic analysis, many uncertainties remain
with respect to enhancing sinks, not only pertaining to management, but especially concerning
the nature and dynamic behavior of the sinks themselves. Le Quéré et al. (2009) analyze trends
and volatility in terrestrial and ocean sinks and find major uncertainties related to the former.
Canadell and Raupach (2008) emphasize the risk emanating from disturbances such as fire and
insect outbreaks having turned Canadian forests from a sink (before 2000) to a source of CO».
They point to the uncertainty about the future size and stability of the terrestrial carbon sink and
stock and also stress the uncertainty related to parameters underlying the analysis such as the
magnitude of the fertilization effect. As such properties have implications for the composition
of the optimal mitigation portfolio, we account for this by modeling sinks stochastically.
Furthermore, feedbacks® of decisions to sinks need to be taken into account: more GHG
emissions will lead to a certain degree of fertilization up to a specific point. Such effects on
the sink are modeled explicitly in the study at hand, but we also conduct sensitivity analyses to
shed more light on the implications that uncertainty around this effect have on the composition
of the optimal mitigation portfolio. Finally, geo-engineering has been suggested as a “savior of
last resort” in the context of global warming. One suggestion is to inject sulphur into the
stratosphere to achieve a temporary cooling effect (Crutzen 2006), which can be categorized as a
solar radiation management (SRM) strategy. As this is a very immature field with little data and
evidence on side effects such as eventual acidification of oceans due to high CO, absorption, we
have chosen to not consider such an option in our analysis.’

3 Model

In this paper we use a stylized model to analyze the optimal dynamic mitigation strategy in the
presence of NETs, CO, sinks and uncertainty. A global decision-maker plans abatement and NET
deployment bound by a cumulative emission target over the 21st century. The decision-maker
selects the most cost-effective policy plan with two available options: (1) abatement and (2)
deployment of NETs/CDR consisting of BECCS and Direct Air Capture (DAC). The technolo-
gies differ in their cost structure and mitigation levels. We assume abatement to be viable up to the
level of base emissions with its marginal cost depending on the fraction of base emissions abated.
For the deployment of NETSs, the marginal costs for each technology are constant, BECCS being
significantly cheaper, but its potential limited. DAC, on the other hand, is available at any
mitigation level. The CO, sink is modeled similar to Friedlingstein et al. (2006) to account for
the feedback between atmospheric CO, concentration, the change in temperature and the sink,
with additional stochastic shocks representing extreme events like forest fires, pests, etc (Moore
and Allard 2008). The probability of shock occurrence is modeled as being positively dependent

# Note that the feedback we are referring to are concentration-carbon feedbacks and not climate-carbon
feedbacks. For a thorough literature overview of the latter type, the reader is referred to Lemoine (2010a, b).
3 See in this context also the recommendations by The Royal Society (2009) to the IPCC.
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on the cumulative emissions. The focus of the analysis will be the role of NETs deployment in the
optimal policy plan and its interrelation with the stochastic CO, sink.

We assume a global decision-maker whose objective is to select in each period ¢ a policy
portfolio minimizing the cost of ultimately meeting an exogenous constraint e¢* on the
cumulative CO, emissions of the whole planning horizon. The options available are different
levels of abatement {a,},_,' and NET deployment {r,}/_' °. The maximum level of
abatement in each period is given by the business-as-usual (BAU) emissions ¢, the marginal
abatement and NET cost functions are denoted MAC (a, e, t), MNC (n, e, t) respectively.
The increase in cumulative CO, emissions in period ¢, ghgi, , is given by

gh!]mcn =€t — Q¢ — Ny — S+1 (1)

with S;.; denoting the sink capacity at the beginning of period 7 + 1, i.e. the end of period .
The sink is modeled following Friedlingstein et al. (2006) with the addition of random
shocks X; to account for extreme events (Moore and Allard 2008). The evolution of the
cumulative CO, emissions ghg, and sink S; is modeled by coupled difference equations

ghgir1 = ghgs + e — ay — ny — 8144 (2)
St+1 = St +ﬁghgmcht (3)

where (3 is the land (ocean) carbon sink sensitivity to atmospheric CO,. We model the
probability that the shock X; occurs as being positively dependent on the current cumulative
emissions ghg,, and the probability distribution of the shock X; is given by

; -1
1 — &, with probability & + (1 — a) (Z €i> ghg:
=1
Xt fm—

i=1

PNl (4)
1, with probability (1 — «) (1 - (Z ei> ghgt>

where ¢ is the size of the negative shock to the sink and « is a constant increasing the
likelihood of a negative shock.
The whole model can be thus formulated as

min E {i (14+7)" ( /0 " MAC(x, e, 1) dx + /0 " MNC(, e, t)dy)} (s)

a;ny ‘=

subject to”

s,H:%Ms[—i—(l—ﬁM)(e[—a,—n,) for t=1,2,..., T—1
ghgiy 1 = ghg + ey — ag — my — Sp44 for t=1,2,..., T—1
S1:0

ghgr =0

a, € [0, ¢ for t=1,2,..., T—1
Er-i[ghgr] < e’

© The controls are discretized down to 10 GtCO,, where rounding is always downwards, so as to avoid a
situation where the target is reached due to upward rounding.

7 Note that we abstain from assigning an absolute value to the initial sink, as such estimates are surrounded by
large uncertainty, and instead adopt an equilibrium view of the sink, where the initial value is normalized to
Zero.

@ Springer



78 Climatic Change (2013) 118:73-87

As formulated, the model is a stochastic optimal control model and can be solved
backwards. Each model run yields the optimal mitigation portfolio in each period condi-
tional on previous sink shocks and abatement and NET policies and also the associated
expected cost, which is later on referred to as portfolio cost. This enables us to derive the
expected values of respective mitigation options, assuming the decision-maker behaves
optimally and the sink capacity follows Eq. (3). At the same time, the different cost structure
of BECCS and DAC allows us to identify which technology is deployed and to which extent.
For the analysis of the results, we report expected abatement, BECCS and DAC levels in the
respective periods, and also the total levels for the whole planning period.

4 Data

In the analysis we consider three periods - 2010-2029, 2030-2049 and 20502099, chosen
so that they approximately correspond to the near-term, intermediate-term and long-term
periods for which the CO, emission goals are discussed. The Business as Usual (BAU)
emissions e, (in Gt CO,) for the respective periods were taken from the new RCP8.5
prepared for the Fifth Assessment Report of the IPCC.

e; = 820, e = 1171, e3 = 5721

While the new reference concentration pathway can be considered a revision of the A2
scenario with assumptions derived from the latter, RCP8.5 also takes into account enhance-
ments in land use and land cover change projections (Riahi et al. 2011). The cumulative CO,
emissions of the 21* century have to meet the specified constraint e*, cumulative emissions
being considered a robust indicator of total temperature change (Allen et al 2009; Matthews et al
2009; National Research Council 2011). We set the exogenous constraint in the baseline to
880 Gt CO,, which corresponds to a year 2100 CO, concentration of 435 ppm (Lemoine et al.
(2012), assuming a constant airborne fraction of 0.45 (Denman et al. 2007)), other levels are
used for sensitivity analysis and discussed later.

The land (ocean) carbon sink sensitivity 3 representing the feedback between atmospheric
CO, concentration, the temperature and the sink, is from Friedlingstein et al. (2006), who provide
numbers for the so-called “gain factor”, which estimates the effect of climate-induced changes in
the carbon budget on the rate of increase of atmospheric CO,. We use the average of the land and
ocean factors reported in the paper as the sensitivity estimate for the feedback between atmo-
spheric CO, concentration, the temperature and the sink, i.e. 5=0.4261. The levels of the sink
shock parameters («, §) are varying between the model runs, as their impact on the robustness of
results is tested.

As for the discount rate, we assume a rate of 5 % per year in the base case. However, we
acknowledge the huge debate surrounding discounting in climate mitigation analysis and test for
a range of 0—10 %.

For the functional form of the abatement cost, we assume that its average cost depends on
the fraction of BAU emissions abated. For its estimation, marginal abatement cost curves
(MAC) have been taken from the literature (van Vuuren et al. 2009), where several bottom-
up and top-down approaches were compared with the IPCC AR4 results. They show that -
especially at low costs - there are hardly any differences in MACs and they fit an exponential
function, which we use as the MAC function:

3

MAC(ay, e, t) = 0.95 e”% US$ (6)
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This implies that it is possible to reduce emissions in 2030 by around 50 % at 100 US
$/tCO, compared to the baseline.

A second type of cost function applies to the deployment of NETs. We represent
NETs as BECCS and DAC. We assume that DAC is available at any level, its marginal
cost according to American Physical Society et al. (2011) being estimated to amount to
550 USS$ for a scenario considered to be realistic. The potential of BECCS, on the other
hand, is constrained. According to Hoogwijk et al. (2005), the final energy supply
based on bioenergy from land-based feedstocks (without biofuels) for the Al scenario
ofthe IPCC in 2030 is 41 EJ/year, in 2050 itis 132 EJ/year and in 2100 it is 225 EJ/year. For
the calculation of BECCS constraints, we assume that no more BECCS can be installed
than can be served by fully exploiting these biomass potentials. This gives us (seeing that a
power plant produces approximately 7 GJ/tCO, captured (Rhodes and Keith 2005)%) the
maximum negative emission potential of BECCS for electricity deployment as 5.85 GtCO2/year
in 2030, 18.8 GtCO,/year in 2050 and 32.1 GtCO,/year in 2100.° For the costs, Gough and
Upham (2011) report an upper-limit BECCS cost of 105 US$/tCO,. While presenting a
review of many expert opinions, they conclude that care needs to be taken not to overestimate
the BECCS potential mainly because the cost of connecting bio-processing infrastructure with
CO, storage sites is not well researched and also because scenarios of global bioenergy
potential remain contentious. The latter is largely due to the difficulty of fully accounting for
competition for land, which again depends on other uncertain parameters, and which could
change the cost for BECCS (Rhodes and Keith 2005).

The implications for DAC are that, even if its marginal costs fall significantly, “coherent
CO, mitigation would result in DAC deployment only after nearly all significant point
sources of fossil CO, emissions are eliminated, either by substitution of non-fossil alter-
natives or by capture of nearly all of their CO, emissions” (American Physical Society et al.
2011). The marginal NET cost function MNC (n,, e,, f) thus becomes:

ifng < 117, GtCO5 and, t = 1
) 105 US$ ifn, <377 GtCO, and t =2
MNC (i, e1,1) = ifn, < 1605 GtCO, and , ¢t = 3 (7)

550 USS$ else

It should be noted that, as not all parameterizations could benefit from a full
calibration to empirical work, the relative effects of the various variables are analysed
and extensive sensitivity analyses with respect to the numbers of the key parameters
is conducted in order to ensure the robustness of our results. The goal of the analysis,
therefore, is not to provide specific levels of the policy variables, but rather to assess
the robustness of the optimal portfolios and identify the crucial parameters affecting
them.

& This value follows from three parameters: the net efficiency, which is 28 % (HHV), the carbon intensity per
ton of biomass, which is 24 kg/C per GJ, and the carbon capture rate—equal to the fraction of fuel carbon
captured as CO,—being 44 % in Rhodes and Keith (2005),

° Note that an alternative way of handling maximum BECCS potential would be to consider ecological
impacts for different deployment levels. While not practical for the purposes of our modeling. Smith and Torn
in this issue provide a good example of such an implementation.
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5 Results

The base case uses the data introduced in Section 4 and ignores any shock to the sink, i.e. the
values for the shock size (§) and the probability of a shock (o) are zero. We would expect the
NETs deployment to be sensitive to changes in the perception of future costs, i.e. the discount
rate the decision—maker employs, as NETs are quite expensive and thus will be shifted into the
future the more one discounts future cost. A variable often discussed is the feedback effect of the
carbon sink to the CO, in the atmosphere (Higgins and Harte 2012), i.e. 3. The higher this
factor, the less mitigation is needed in total. As NETs are an expensive option to mitigate
emissions, we thus expect the NETs deployment to fall with an increase in the feedback effect.
Connected to both uncertainty in the climate agreement negotiation process (Bosetti et al.
2008), but also scientific uncertainty with respect to e.g. climate sensitivity (Caldeira et al.
2003), we also do not know the “true” cumulative emission constraint the decision-maker must
target. A lower target would increase the deployment of NETs as more mitigation is needed in
total. On the other hand, due to the uncertainty in the sink, NETs can act as a reversal option in
the last period in case of overshooting the target because of a shock. Finally, the size and
probability of occurrences of sink shocks are uncertain in the literature so far. Due to the
argument above, we expect NETs deployment to rise in the last period with increases in either
the probability or the size of shocks to the sink.

Our baseline results, as summarized in Table 1, without any shock to the sink (i.e. §=0
and a=0) show that totally 4,260 GtCO, are mitigated by abatement and 1,605 GtCO, by
NETs. All mitigation by NETs occurs in the last period and by deployment of BECCS
(1,605 GtCO; is the maximum amount of BECCS in the third period). Abatement on the
other hand is split between the three periods (first period: 140 GtCO,, second period:
360 GtCO,, third period: 3,760 GtCO,). The corresponding MACs of the last unit mitigated
are increasing from 4.7 $US per tCO, in the first period to 443.4 $US per tCO, in the third
period, which is just short of the $550/tCO, that would bring forth DAC. In the third period
the abatement option is used for the first 2,879 GtCO,, afterwards deployment of BECCS is
cheaper and employed to the maximum potential (1,605 GtCO,). Finally, abatement is used
until the MAC rise up to the cost of DAC.

These baseline results are now tested for their sensitivity to changes in key parameters. We
begin by assuming different levels of discount factors in Eq. (5). The results using discount rates
of 0%, 2.5 %, 5 %, 7.5 % and 10 % are shown in Fig. 1. There are two main points of interest at
the extreme values of the scale: if the discount rate increases, it is optimal to shift more and more
mitigation into the last period, even above the point where the relatively expensive DAC is
deployed. For example, at a discount rate of 10 % the optimal portfolio consists of abatement of
60 GtCO, in period 2 and 3,880 GtCO, in period 3, BECCS of 1,605 GtCO, and DAC of

Table 1 Values for baseline scenario

2010-2029 2030-2049 2050-2099 Total
Baseline Emissions [GtCO2] 820 1,171 5,721 7,712
Abatement [GtCO2] 140 360 3,760 4,260
NETs [GtCO2] 0 0 1,605 1,605
Sinks [GtCO2] 203 383 381 967
Atmospheric GHG [GtCO2] 477 905 880
MAC last abatement unit [$/t CO2] 4.70 17.00 443.40

Prices are $§ MACs per t of CO,, all other values in GtCO,
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Fig. 1 GtCO, mitigated for different discount rates in time periods 2010-2029, 2030-2049, 2050-2099

175 GtCO, in period 3. Thus the cost of the last unit mitigated by NETs in Period 3 will be
$550/t, given the assumptions of the model. At the opposite end, without discounting, it
becomes optimal to deploy BECCS already in the second period and shift more and more
abatement towards the first periods. In our example the abatement quantities in period 1, 2 and 3
are 340 GtCO,, 600 GtCO,, 3,240 GtCO, respectively'® and the BECCS deployment in period
2 and 3 is 377 GtCO, and 1,605 GtCO, respectively at a discount rate of 0 %. This implies that
without discounting about 40 % of the emissions are already mitigated in the first period and
even 80 % of the new emissions in the second period.

Furthermore, we investigate the sensitivity of our results to changes in the sink’s
sensitivity to atmospheric CO,, 3. While there seems to be a general agreement that
CO, fertilization does have a positive impact on the sink, the exact number for the
sink’s sensitivity to atmospheric CO, is uncertain. The results of the sensitivity
analysis with respect to (3 displayed in Fig. 2 illustrate that the deployment of
BECCS (and DAC) is indeed very much dependent on this sensitivity. For the value
taken from Friedlingstein et al. (2006) or higher, NETs occupy a relatively stable
share in the mitigation portfolio, which is equal to the maximum BECCS potential.
The amount of abatement, on the other hand, decreases as the sink takes up more of
the emissions. However, when the feedback effect is smaller, the amount of CO,
abated with NETs increases, i.e. deployment of DAC starts and increases (for a 3 of
0.3 deployment of DAC is 35 GtCO,, for 0.2 it is 215 GtCO2 and for § of 0
deployment of DAC is 695 GtCO,). The lower the sink’s sensitivity (3, the larger
these increases are. This result is not surprising, as it implies that the amount of
“free” mitigation through uptake by natural sinks decreases and NETs have to make
up for the difference.

19 The MACs of the last unit abated in the respective periods are: $45.86/t CO,, $114.38/t CO, and $189.41/t
CO,.
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Abatement (a;) NETSs deployment (n:)
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Fig. 2 GtCO, mitigated for different values for [ (sink’s sensitivity to atmospheric CO,) in time periods
2010-2029, 2030-2049, 2050-2099

In Fig. 3 we compare the optimal portfolios with different cumulative emission targets.
We look at targets that correspond to year 2100 CO, concentration of 390 ppm, 435 ppm,
490 ppm and 550 ppm'', i.e. 88 GtCO,, 880 GtCO,, 1,500 GtCO, and 2,900 GtCO,
respectively. In terms of NETs deployment we see that if the decision-maker aims for the
least stringent cumulative emissions target (2,900 GtCO,), NETs are not part of the optimal
portfolio anymore. All mitigation is done through abatement, where especially in the
medium and long term the amount can also be reduced. At the other end of the spectrum,
if the decision maker aims for the lowest target (88 GtCO,), the optimal portfolio in the last
period contains the maximum amount of BECCS (1,605 GtCO,) plus some 1,035 GtCO, of
DAC, as we need so much abatement in the last period that DAC becomes cheaper than the
marginal unit of abatement. Independently of the target, period 1 abatement changes from
140 GtCO, for the 88 and 880 targets to only 80 GtCO, for the 1,500 and 2,900 targets.

The present value (PV) of the portfolio cost increases exponentially with the stricter
cumulative emissions targets. As can be seen in Fig. 3, the costs of the portfolio aiming at the
88 GtCO, target is 22 times higher than for the portfolio aiming at the 2,900 GtCO, target,
and 2.5 times higher than for the 880 GtCO, target.

As many results regarding NETs deployment depend on the potential for BECCS, we
perform a sensitivity analysis regarding this variable. The results are shown in Fig. 4, as the
BECCS potential introduced in Section 4 is multiplied with 0.5 to 1.5 in every period. We
see that even though BECCS is used only in the third period, its potential has a direct impact
on the optimal abatement already in the first and second periods. An increase of 50 % in the
potential of BECCS is reflected in an over 40 % (20 %) decrease in the first (second) period

' According to the best estimate of the National Research Council (2011) those concentrations would lead to
temperature changes of 1 °C, 2.5 °C, 4 °C and 6 °C if there are no additional emissions.
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Fig. 3 GtCO, mitigated and PV of optimal portfolio costs in bill. US$ for different cumulative emission
targets (¢”) in time periods 2010-2029, 2030-2049, 2050-2099

abatement. Thus, an underestimation of the real potential would lead to unnecessary high
abatement in the first periods, resulting in a lower BECCS deployment in the third period.

If BECCS potentials are higher than in our baseline, i.e. for multipliers of 1.25 or 1.5, the
present value of the portfolio costs as shown in Fig. 4 decrease as we deploy more BECCS
up to the new maximum. But this decrease is relatively small compared to the increase if the
BECCS potential is lower than in the baseline, i.e. for multipliers of 0.5 or 0.75. In this case,
the PV of the costs almost doubles because of the increased deployment of DAC in the last
period.

To conclude, we investigate the reaction of our optimal portfolio to changes in the size (0)
and probability () of a shock to the carbon sink. The respective total emissions to be
mitigated by the two options are shown in Fig. 5. It can be seen that with increasing shock
size, more mitigation needs to be carried out to get to the target in the last period in total. The

00 Abatement w0 NETs Expected Costs
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BECCS potential ( rclatlvc, to baseline)

Fig. 4 GtCO, mitigated and PV of optimal portfolio costs in bill. US$ for different BECCS potentials in
relation to baseline assumption in time periods 2010-2029, 2030-2049, 2050-2099
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Fig. 5 GtCO, mitigated over the whole planning horizon and PV of the optimal portfolio cost in bill. US$ for
different values of the shock size (d) and shock probability («)

larger part of this increase is achieved through NETs deployment. As the potential of
BECCS is already fully exploited in the baseline case, the increase can here only happen
via a deployment in DAC. With a higher probability of a shock to the sink, this increase with
the shock size gets steeper. The PV of the optimal portfolio costs is depicted in Fig. 5. In line
with our expectations, the costs increase with the probability and the size of a shock to the
carbon sink.

6 Conclusion

In this paper, we have addressed the question of how the optimal mitigation portfolio, in
which negative emission technology is available to achieve ambitious stabilization targets, is
affected by the inclusion of natural sinks conducting a number of sensitivity analyses to
account for uncertainty in the underlying parameters.

Results that were shown to be robust across all sensitivity runs indicate that abatement is
generally used in all periods, whereas BECCS only in the long-term. Thus, not having
BECCS at full disposal for large-scale deployment now might not preclude following the
optimal strategy. Furthermore, near-time optimal abatement changes with the expectations of
BECCS potentials in the future. Further research to decrease the uncertainty surrounding
these potentials is therefore necessary. Another central result of our paper is that sink
uncertainty has a positive impact on the cost-optimal adoption of negative emission tech-
nologies. If we compare the baseline to the case where shocks are applied to the sink, NETs
deployment increases. This implies that neglecting sink stochasticity leads to underestimat-
ing the necessary mitigation needs and NETs in particular.

While the qualitative results appear to be stable across different sensitivity analyses of
key parameters, there is substantial uncertainty about the true value of climate sensitivity of
the sink to the concentration of CO, (f3). Future research should look into inclusion of
uncertainty about this sensitivity and also about the impact of learning about carbon cycle
feedbacks on the structure and temporal deployment of mitigation. Obviously, the result will
be influenced by risk preferences, the availability of NETSs to offset larger amounts of emissions
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in the last period and the possibility to overshoot in the medium term. Finally, other sources of
uncertainty such as the cost of abatement have not been explicitly modeled in this paper, but
would be of interest for future research seeking to identify and quantify further tradeoffs within
the mitigation portfolio. The same is true for stranded assets as multiple bio-options are
deployed over the century. Lastly, the modeling exercise abstracts from issues pertaining to
social inertia and public acceptance in particular: specifically pipelines and storage in connec-
tion with fossil-based emission sources have been met with significant resistance from residents
in affected areas (Wallquist et al. 2012).
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