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Abstract Climate impacts and adaptation research increasingly uses ensembles of
regional and local climate change scenarios. To do so, the ensembles are examined to
evaluate whether they describe a systematic difference between present states (and
impacts) and envisaged future states—and such differences are often characterized
as being statistically significant. This term “significance” is well defined by statistical
terminology as the result of a test of a null hypothesis that is applied to samples
of observations that are obtained with a defined sampling strategy. However such
a statistical null hypothesis may not be a well-posed problem in the context of
the evaluation of climate change scenarios. Therefore, the usage of terms such
“statistically significant scenario” may be misunderstood in the general discourse
about the certainty of projected climate change. We propose to employ instead
a simple descriptive approach for characterizing the information in an ensemble
of scenarios. Physical plausibility in the light of theoretical reasoning often adds
robustness to the interpretation of climate change scenarios.
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1 Introduction

Ensembles of climate change scenarios, say of future seasonal precipitation in North-
ern Germany, are sometimes described as being significant (http://www.climate-
service-center.de/031451/index_0031451.html.de; accessed 18 June 2012). In scien-
tific contexts, this term usually refers to an assessment of the likelihood of a given
outcome under an assumed set of conditions, with greater significance associated
with rarer outcomes under those assumptions.

A key element in determining statistical significance is a null-hypothesis Ho,
against which statistical rareness is assessed; significant results are those that occur in
the far tails of the distribution that prevails under Ho. To assess statistical significance
under Ho, scenarios are implicitly viewed as realizations of a random variable or
process, i.e., as members of a well-defined population of possible events. Decisions
regarding Ho are generally made on the basis of a test statistic t that summarizes
the available sample of realizations; this statistic is itself a realization of a random
variable T, where T represents the population of all possible outcomes of t under
repeated sampling. Note that generally the test statistic has been constructed so that
it has desirable optimality properties under an assumed set of conditions, although
this is not always the case.

How far in the tails, and which directions in the tails, provide information
regarding signficance is often a matter of social agreement that may or may not, in
part, be explicitly articulated as an alternative hypothesis Ha. In climate science, the
tail is often given by those events larger than 95 % of possible outcomes under Ho,
corresponding to a significance level of 5 % or less. The null-hypothesis is rejected
when the outcome t, as summarized by the test statistic on the basis of a collection of
scenarios p1, p2, ..., pn, is inconsistent with the statistical model proposed under Ho.
An underlying assumption that supports the interpretation of t is that the available
collection of scenarios p1, p2, ..., pn forms a sample of realizations of a random
process P, where the sampling process is understood. That is, the assessment of
the rarity of the outcome under Ho depends upon an assumption that the available
sample of scenarios is representative of a generating process, or population, P. We
will see later when we discuss ensembles of opportunity (Tebaldi and Knutti 2007)
that this is a non-trivial assumption.

It is understood that decisions concerning the null hypothesis are subject to error
with an error rate that corresponds to the selected significance level. Generally, tests
of hypothesis only operate with the user-specified error rate characteristics when all
assumptions are satisfied. In case of climate change scenarios (for example, simulated
differences between future and present precipitation), tests of the null hypothesis
that there is no change on average, Ho : �μP = 0, versus the alternative hypothesis
Ha : �μP > 0, are often applied to ensembles of scenarios constructed from mul-
tiple climate models. [We employ here one-sided tests for the sake of simplicity.]
Rejection of this null hypothesis means that the scenarios tend to be positive, but
it does not describe the range of behaviour seen in the scenarios particularly well,
since individual ensemble members could show precipitation reductions even if the
ensemble mean tends to be positive.

For clarification, we emphasize that we do not speak about the process of gen-
erating socio-economic and emission scenarios, but about ensembles derived from
such scenarios using climate and climate impact models. The issue here is exclusively
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the question, to what extent the assumptions of the statistical methodology used for
hypothesis testing are fulfilled or not.

2 Is hypothesis testing of scenarios well-posed?

The response to this question depends very much upon the context within which it is
posed.

In the case of a single climate change scenario, produced under a specified
forcing scenario with a single climate model of a type that generates its own chaotic
internal variability, the question, for example, of whether a projected change in mean
precipitation is significantly different from zero, is a well posed question. Such a
hypothesis can be tested with a parametric test (von Storch and Zwiers 1999), a
non-parametric testing procedure, or by means of a Monte Carlo testing procedure
that involves additional sampling from the same climate model, e.g., by generating
multiple simulations with that model from randomly selected initial conditions.
Regardless of the method, the inference that is drawn in this case applies directly to
the climate simulated by the model, is conditional upon the selected forcing scenario,
and provides information about the future of the climate to the extent that the model
is reliable and future forcing evolves according to the forcing scenario. In this case the
null-hypothesis Ho reads: On average, precipitation does not increase in realizations
of model A using scenario B. Note that this hypothesis can be tested locally at the
model grid-point scale, regionally or even globally.

However, our primary concern is with the more general case in which potential
future change is described with an ensemble of climate change scenarios that are
derived from multiple climate models and perhaps with multiple forcing scenarios.
Such ensembles of opportunity encompass variation between ensemble members
that is due not just to natural internal variability in the climate system as simulated by
climate models, but also model and forcing scenario differences. Here, an appropri-
ate formulation of a null-hypothesis and of the underlying random processes is much
more of a challenge than in the previous simpler case.

To explain the concern we will consider two examples, one based on an ensemble
of scenarios for future rainfall amount in Northern Germany, and a second based
on an ensemble of stream flow projections for the Peace River in British Columbia,
Canada. We begin with the rainfall projections as a typical example of projected
change in a weather variable. To be specific, we consider n scenarios of possible
future climate change at a given location for, say, seasonal summer rainfall amounts
p1....pn (as shown in Fig. 1) . Let us assume that the projected change pi > 0 in m
cases and that pi < 0 in n − m cases. In a world without forced change it would be
reasonable to expect equal numbers of increases and decreases. That is, we would
expect the null hypothesis Ho : E(m/n) = 0.5 (with E() denoting the expectation of
a random variable) to be true at all locations. If the pi are drawn independently (from
an imaginary infinite population P of possible scenarios) and if Ho is true, then m has
a binomial distribution B(m; n, 0.5) where the probability for each pi being positive
is 0.5. This is a simple test (the sign test; Conover 1971), but good for explaining
concepts. If we make the necessary assumptions, then we can determine an m∗ so
that

∑
k≥m∗ B(k; n, 0.5) ≤ 5 %, and we would reject the no-change null-hypothesis

against the alternative hypothesis of precipitation decrease at less than or equal to
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Fig. 1 Number of scenarios exhibiting a positive change in summer rainfall amounts at the time
horizon 2071–2100 vs. 1961–1990. The grid boxes have a size of about 50 km. Red refers to m = 0
positive changes (all changes are negative), while green represents m = 3 or 4 positives changes (out
of 11); see color code on the side (Meinke et al. 2010)

the 5 % sigificance level when the actual number m, derived from our specific sample,
is less than or equal to m∗. This is because m ≤ m∗ would be observed in 5 % or fewer
cases when the probabilities of a negative and positive outcomes are equal.

Figure 1 shows the number m of positive changes for Germany amongst the
eleven scenarios available in the Norddeutscher Klimaatlas (Meinke et al. 2010). This
ensemble of regional climate scenarios is composed of 11 high resolution regional
climate simulations: four simulations from COSMO-CLM operating at ∼20 km
spatial resolution and driven with ECHAM5 global simuations (2×A1B, 2×B1);
three simulations from REMO at ∼10 km spatial resolution using ECHAM (A1B,
A2, B1); four simulations from RCAO/SMHI at ∼50 km spatial resolution using
HadAM3H and ECHAM4/OPYC3 global driving simulations (1×A2 and 1×B2
for each global model)). The variable considered is summer rainfall amount on
grid boxes of about (50 km)2. Red boxes (the majority) indicate that m = 0 of the
11 cases exhibit an increase; the small green area in the Baltic Sea southwest of
Bornholm represents two boxes with m = 4, i.e., four scenarios project an increase
whereas seven project a decrease in summer precipitation. The uniformity of the
pattern is not uncommon in these eleven scenarios; for the winter season, the
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map is almost completely reversed, with m = 11 almost everywhere. For n = 11,
the 5 %-critical value of the binomial distribution is m∗ = 2 (with B(2; 11, 0.5) +
B(1; 11, 0.5) + B(0; 11, 0.5) = 3.3 %). Thus in the often used parlance, the ensemble
of 11 Norddeutscher Klimaatlas scenarios is almost everywhere “significant” at less
than the 5 % level (with m ≤ 2); only about three (green) boxes exhibit values of
m = 3 or = 4 that are “not significant”.

Should it therefore be said that “the ensemble is significant for Northern
Germany”? Unfortunately, such a statistical interpretation is fraught with difficulty.
One issue related to the application of the sign test, which is discussed increasingly in
the climate science community, is whether the scenario members can be considered
to be independent (cf. Woth 2005; Tebaldi and Knutti 2007; Abramowitz 2010).
This is nevertheless a minor issue in relation to the broader question—what is the
population of potential scenarios that we are referring to? In what sense is the
ensemble p1, ...pn representative? What is P? The difficulty is that the test makes
an inference about non-observed cases, namely additional scenarios that could, in
principle, be drawn from P by running additional climate models and considering
additional forcing scenarios. However, we would be challenged to describe the
statistical sampling strategy that led to the available ensemble (Tebaldi and Knutti
2007).

To explore this difficulty further, one might ask whether the inference for
Germany applies to:

a) “All climate scenarios”—in which case, we would have to determine what is
meant by “all”. This presumably means climate scenarios produced with all
conceivable models, all conceivable emission scenarios, and all conceivable
downscaling approaches, plus an understanding of how the available 11 sce-
narios were selected from that broad population. Moreover, this would need
qualification. All emission scenarios that are deemed valid by contemporary
economists? Or all followers of a certain school of thought? All climate models?
Note that in the IPCC Special Report on Emissions Scenarios (Nakicenovic and
Swart 2000) probabilities or relative likelihoods were not assigned to the various
scenarios that were described.
There is likely no way to make an assertion about “all climate scenarios”,
because that set is simply not definable. Nevertheless, there have been attempts
to quantify uncertainty from models, forcing scenarios and downscaling, for
example, using complex hierarchical Bayesian models (cf. Murphy et al. 2007,
2009), and serious thought has been given to the basis for the interpretation of
statistics calculated from multimodel ensembles (cf. Rougier et al. 2010).

b) “Climate scenarios based on a specif ic emissions scenario”—in which case we
would want to make statements that are specific to individual emission scenarios.
This is the approach that was used by the Intergovernmental Panel on Climate
Change (IPCC) in its 4th Assessment Report (IPCC 2007), in which it assessed
a likely range for global projections of future change under each of several
different emissions scenarios. The IPCC was also confronted by the question of
the interpretation of the available ensemble of models, and thus the assessments
of global projections included an aspect of expert judgement that drew on
physical understanding as well as the spread of available ensembles of climate
change simulations.
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c) “Climate scenarios based on a specif ic emission scenario and produced with a
restricted class of models”—this is closer to being a tractable problem if the class
of models is sufficiently restricted, albeit still a very large problem. For example,
one might consider models that share the same code, but in which parameter
settings have been varied systematically using a well designed sampling scheme,
such as is used in the climateprediction.net-project (Allen et al. 2000) (see also
Murphy et al. 2004).

d) “All available climate scenarios”—in which case this is no longer a problem of
statistical inference because the population is completely known. Therefore we
can simply state: summer rainfall decreases in most locations in all n = 11 cases,
with some exceptions at a few locations in m = 3 or four cases. No attempt
is made to quantify statistically how additional, so far unknown scenarios,
would play out. Nevertheless, the lessons learned from the responses to forcing
simulated by a limited collection of physically based climate models under a
limited range of forcing scenarios, together with our understanding of physics
and how changes in the composition of the atmosphere affect the planet’s energy
balance, should provide considerable insight about the general nature of the
responses that can reasonably be expected from other physically based climate
models and under other forcing scenarios.

These concerns of interpretation are not restricted only to scenarios of future
weather conditions, but also to scenarios of more complex aspects of the future
climate, such as future stream flow in large river basins. The possibility that there
may be change in future hydrological regimes is of concern both for users of rivers
and from an ecological perspective. Figure 2 shows a collection of projections
of change in the annual hydrograph (flow regime) of the Peace River in British
Columbia (BC) at the Bennett Dam, which generates a large proportion of BC’s
electricity. These scenarios (see Schnorbus et al. 2011) were produced by first
statistically downscaling an ensemble of 23 global climate model simulations for
the Peace River basin, and then driving a hydrologic model of the basin with the
downscaled projections to obtain simulated stream flow in the Peace River. The
23 global climate model simulations come from eight models that participated in
CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php), and with one exception,
three simulations from each model were used, one simulation forced with each of the
SRES A2, A1B and B2 emissions scenarios. The figure shows that for this particular
river system and gauging site, winter flow is projected to increase in all scenarios, that
the timing of peak flow advances in most (but not all) scenarios, and that summer
flow is reduced. These are changes that are consistent with warming and winter
precipitation increase in a basin that in the present climate, is dominated by winter
snow storage (i.e., a nival flow regime). Some aspects of these changes would be
considered to be “significant” if the sign test were to be applied naively, as discuss
above, but as with precipitation change in North Germany, this would be misleading.
The projected changes that are shown in Fig. 2 are physically plausible, and do cover
a considerable range of uncertainty, but clearly not all uncertainties (e.g., uncertainty
that results from the choice of downscaling technique or hydrologic model is not at
all represented in Fig. 2—and we are again challenged to understand the sampling
process that lead to the selection of these 23 scenarios from a hypothetical population
of such scenarios.

http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php
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Fig. 2 Median monthly discharge for the Peace River at Bennett Dam showing: a historic (1961–
1990) and future (2041–2070) discharge, and b the 2050s anomaly. Historic discharge (black line) is
presented as the full ensemble median (23 runs × 30 years) and each future discharge value is the
median of each GCM run (1 run × 30 years). Anomalies represent the future monthly median minus
the historic ensemble monthly median. From Schnorbus et al. (2011), Fig. 4.4

3 Concluding remarks

The question arises why the term “statistical significance” is used. Presumably, one
reason is that such “significance” is often confounded with importance. The lay and
statistical usages of “significance” are often mixed in the overall discourse on climate
change. For many, this terminology may indicate a certainty when this may not, in
fact, be the case. This shrouds the character of scenarios as scripts of possible future
change, which should be used by stakeholders to examine possible consequences and
possible countermeasures (Schwartz 1991). Among lay-people, this may also con-
tribute to the common blending of the term “projections” with the term “predictions”
(Bray and von Storch 2009), in spite of the careful distinctions made in IPCC reports.

Even if statistical testing were completely appropriate, the dependency of the
power of statistical tests on the sample size n remains a limitation on interpretation.
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In our case with a few localized green boxes, the fact that precipitation increased in
m/n ∼ 27 % of scenarios implied that there was insufficient evidence to rejected the
no-change hypothesis Ho even though precipitation decreased in the remaining 73 %
of scenarios. On the other hand, if this proportion of the n = 676,339 climatepredici-
tion.net HadSM3 simulations (as of 13 December 2011; http://climateprediction.net/)
had shown a decrease in the region, rejection would have occurred at a significance
level effectively equal to 0 %. However, in both cases, the result would be that
27.3 % of scenarios point to an increase in rainfall amounts, and 72.7 % to a
decrease. We would suggest that the strength of discrimination, such as in recurrence
analysis (von Storch and Zwiers 1988), is an important adjunct to testing for the
identification of robust information. This would also help to lay greater emphasis
upon the magnitude of the projected change as well as its variability between
ensemble members. Depending on a variety of factors, a “significant” change might
be so small as to be totally irrelevant from an impacts perspective.

Nevertheless, given the conceptual problems discussed above, it is perhaps best to
simply express the state of knowledge in a descriptive manner such as the following:
Using n scenarios constructed with the models A, B, ..., emissions scenarios S1, S2,
..., and so on, we find rainfall amounts decrease in most grid boxes for all scenarios,
and that in the remaining few grid boxes, they decrease in most (72.3 %) but not all
scenarios. One may additionally add that previously computed scenarios, possibly
using much coarser grids and less advanced models, would have resulted in similar
or consistent projections. Such an approach might be criticized in some quarters as
underselling the utility of scenarios, but it is our view that there is greater risk in
communicating quantified uncertainty when the basis for that quantification is not
clear. We should be clear that they are scenarios, and not forecasts. Regardless of
how the information in an ensemble of scenarios is communicated, their core utility
is that they provide planning tools based on the principles of physics and on possible,
plausible and internally consistent ideas (in the sense of Schwartz 1991) about
future.

Of course, assessments that are expressed using calibrated language using terms
such as “confidence” and “likelihood”, and that may be informed by different
combinations of expert judgement and quantitative analysis, may also often be useful
(IPCC 2007). Physical plausibility in the light of theoretical reasoning often adds
robustness to the interpretation of climate change scenarios.
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