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Abstract We present the greenhouse gas concentrations for the Representative Concentration
Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways
(ECPs). These projections include all major anthropogenic greenhouse gases and are a result of
a multi-year effort to produce new scenarios for climate change research. We combine a suite of
atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs)
through the historical period (1750–2005) with harmonized emissions projected by four
different Integrated Assessment Models for 2005–2100. As concentrations are somewhat
dependent on the future climate itself (due to climate feedbacks in the carbon and other gas
cycles), we emulate median response characteristics of models assessed in the IPCC Fourth
Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6.
Projected ‘best-estimate’ global-mean surface temperature increases (using inter alia a climate
sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both
RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels.
Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the
assumption of either smoothly stabilizing concentrations or constant emissions: For example,
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the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming
constant emissions after 2100 (including net negative CO2 emissions), leading to CO2

concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for
one supplementary extension, which illustrates the stringent emissions implications of
attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st

century followed the higher RCP6 scenario. Corresponding radiative forcing values are
presented for the RCP and ECPs.

1 Introduction

A set of scenarios known as Representative Concentration Pathways (RCPs) has been
adopted by climate researchers to provide a range of possible futures for the evolution of
atmospheric composition (Moss et al. 2008; Moss et al. 2010). These RCPs complement
and, for some purposes, are meant to replace earlier scenario-based projections of
atmospheric composition, such as those from the Special Report on Emissions Scenarios
(SRES; Nakicenovic and Swart 2000). The RCPs are being used to drive climate model
simulations planned as part of the World Climate Research Programme’s Fifth Coupled
Model Intercomparison Project (CMIP5) (Taylor et al. 2009) and other comparison
exercises. The four RCPs are based on multi-gas emission scenarios which were selected
from the published literature (Fujino et al. 2006; Smith and Wigley 2006; Clarke et al.
2007; Riahi et al. 2007; van Vuuren et al. 2007; Hijioka et al. 2008; Wise et al. 2009) and
updated for release as RCPs (Masui et al. 2011; Riahi et al. 2011; Thomson et al. 2011; van
Vuuren et al. 2011b). Because they were produced by four different Integrated Assessment
Models (IAMs), there are some inconsistencies in the relationships between emissions and
concentrations that could complicate the interpretation of the climatic consequences of the
four different scenarios. Furthermore, although concentrations drive traditional coupled
atmosphere-ocean climate models, CMIP5 also includes simulations by Earth System
Models (ESMs) with a full representation of the carbon cycle. These ESMs are optionally
driven by prescribed emissions of carbon dioxide. The CMIP5 exercise, therefore,
requires a set of historical and future pathways for both concentrations and emissions
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(see Appendix 1), ideally produced by a single model. Starting from these standardised
concentration datasets, forthcoming CMIP5 intercomparisons will allow our understand-
ing of the relationship between emissions and concentrations to be re-defined.

This study describes how the IAM emissions were processed to produce the RCP GHG
concentration values, including the compilation of historical GHG concentrations, the
harmonization of emissions towards common 2000–2005 emission levels, the projection of
best-estimate future GHG concentrations, and their extension beyond 2100. These
concentration pathways lead to radiative forcing values that span a range larger than that
of the SRES scenarios. In addition to the central contribution of the IAMs, this process was
only possible due to the wide range of contributions from the scientific community, in
particular regarding historical emissions, observed concentrations, and emission scenarios
for ozone depleting substances (ODSs) (see references in Table 1). An overview of the
multi-year process to develop the RCPs can be found in van Vuuren et al. (2011a).

The harmonized GHG concentration and emissions time series recommended for CMIP5
(Taylor et al. 2009) can be obtained from the RCP database website (RCP Database 2009)
available at http://www.iiasa.ac.at/web-apps/tnt/RcpDb and the CMIP5 portal (PCMDI 2009)
at http://cmip-pcmdi.llnl.gov/cmip5/. Extended GHG datasets until 2500 (for use in very long-
term experiments), and further background information on the generation of the harmonized
GHG concentration time series are provided at: http://www.pik-potsdam.de/`mmalte/rcps/.

This paper is structured as follows. First, we discuss the general approach taken to derive
GHG concentration data for the RCPs in Section 2.1. Historical GHG concentrations from
1765 to 2005 are discussed in Section 2.2. The harmonization of the emissions from the
IAMs is covered in Section 2.3, the assumptions used to calculate concentrations and
forcing time series for the RCPs over the 21st century are discussed in Section 2.4. The
extension of the RCPs beyond 2100 is discussed in Section 3. Section 4 presents the
resulting GHG concentration time series for the RCPs. Section 5 discusses the results,
including the inverse emission calculations for the extensions, and Section 6 concludes.

2 Methods

2.1 General approach

Each of the IAM teams can, in principle, provide both emissions and concentration data.
However, each of the models uses different historical and base year data for the recent past (years
2000–2005). In order to ensure a smooth transition in the climate model runs from the historical
period into the future, a harmonization step for emissions was performed here. Furthermore, it
was decided that a single model version of MAGICC (e.g. Wigley and Raper 2001;
Wigley et al. 2009; Meinshausen et al. 2011a) should be used to produce a more
consistent estimate of concentrations and carbon feedbacks, rather than basing the RCPs
on a variety of different model versions. GCAM that produced RCP4.5 (Thomson et al.
2011), for example, uses MAGICC5.3, as does AIM that contributed RCP6 (Masui et al.
2011). MESSAGE that produced RCP8.5 (Riahi et al. 2011) uses an updated version of
MAGICC4.2, and IMAGE that produced RCP2.6 (Van Vuuren et al. 2011b)1 uses

1 A note on the naming of the lower RCP pathway: In the literature, this lower pathway is both called RCP3-
PD and RCP2.6. “PD” reflects the unique characteristic of this pathway, i.e., its “Peak & Decline” shape—in
contrast to other mere stabilization scenarios. Historically, two candidates were discussed for this lower RCP,
RCP2.6 and RCP2.9 with RCP2.6 being finally chosen. Hence, both names, RCP3-PD and RCP2.6, can be
used interchangeably.
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Table 1 Historical mixing ratios of GHG concentrations used to extend RCP concentrations back in time

Historical mixing ratios Description

CO2 Data up to 1832 from Law Dome Ice Core data (Etheridge et al. 1998b)
in its 75 year smoothed version a. For 1832 through 1958 the Law
Dome 20-year smoothed data are used. This Keeling MLO record
(Keeling and Whorf 2004) b is used over 1959 to 1981 with 0.59 ppm
subtracted. 0.59 ppm is the mean difference between the Keeling MLO
dataseries and the NOAA/ESRL/GMD global estimates over 1982–1986
(Conway et al. 1994)c. The global NOAA/ESRL/GMD data in 1982 and
adjusted MLO values are the same at 340.56 ppm. Global NOAA data
for 1980 and 1981, but these are not used because they are less
consistent with MLO than for subsequent years. From 1982 to 2008,
CO2 concentrations were extended with NOAA global-mean datapoints
(Conway et al. 1994)c.

CH4 Observations up to 1850 are taken from the Law Dome Ice Core data
(Etheridge et al. 1998a)d; beyond 1850, the data compilation for the
NASA GISS model was usede: this data compilation uses concentration
estimates over 1850–1980 from Etheridge et al. (1998a) followed
thereafter by data from: NOAA/ESRL/GMD (Dlugokencky et al.
1994) for the period 1984 to 2003. From 2004 to 2008, the mixing
ratios are taken from the flask data results from the NOAA ESRL
Global Monitoring Divisionf.

N2O Nitrous Oxide (N2O) average mixing ratio data up to 1850 data is taken
from Flückiger et al. (2002) in its smoothed version using a 300 year
cutoff spline; thereafter, from 1850 onwards, the data compilation by
NASA GISS team is usedg. This includes the N2O measurements by
Machida et al. (1995) from 1850 to 1977 and NOAA/ESRL/GMD
Flask Datah over 1978–1999. From 2000 to 2008, our historical
dataseries are sourced from the NOAA/ESRL/GMD In-Situ
measurement data provided by G.S. Dutton, T.M. Thompson, J.W.
Elkins and B.D. Halli

C2F6 Historical C2F6 mixing ratios are determined from firn air as presented n
Worton et al. (2007), Fig. 2b, which includes model results over 1940 to
2001; before 1940, we linearly interpolated to zero levels in 1900.

CF4 An initial pre-industrial mixing ratio of 35 ppt is assumed until 1922,
based on Worton et al. (2007) and Deeds et al. (2008). From 1940 to
2003, the mixing ratio is determined from firn air, as provided in
Worton et al. (2007). In between, from 1922 to 1940 estimates are based
on model results which assume a constant rate of increase.

HFC-125 Our data is based on Oram et al. (1998) and Fig. 1–23 in WMO (2006),
linearly interpolated back to zero from 1980 to 1970.

HFC-134a Based on NOAA/ESRL/GMD data (Montzka et al. 1996a; Montzka et al.
1996b)j extended to July, 2008.

HFC-143a Based on Culbertson et al. (2004), Table 1 (interpolated end-of-year values
between 1978 and 1996); linear interpolation to zero from 1978 to 1970
and linear extrapolation from 1996 to 2000 to attain the average RCP
value.

HFC-23 Based on Oram et al. (1998) with extension until 2004 as provided in
WMO (2007) Fig. 1–23 and using average 1977–1987 growth rate of
concentrations (8.7%/year) for extending back to 1930.

SF6 SF6 is regularly measured at multiple NOAA/ESRL/GMD sites and by different
techniques. We base our 1961–2008 estimate on a record from firn air,
flasks, and in situ instruments from Butler et al. (1999); Geller et al.
(1997), and from Peters et al. (2004), linearly interpolated back to
zero from 1960 to 1950.
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MAGICC6 except for its carbon cycle. Thus, as a second harmonization step, we apply a
single climate and carbon cycle treatment, using the latest version 6 of MAGICC
(Meinshausen et al. 2011a, b)2 to derive concentrations and inverse emissions for the
RCPs.

By design, this study is concerned with providing a ‘reference’ starting point for further
analysis in model intercomparison exercises rather than providing a detailed uncertainty
analysis of the cause-effect chain from emissions to concentrations and global-mean
temperatures. We hence limited this documentation to a detailed description of the
chosen assumptions in deriving the RCP’s GHG concentrations, which can serve as the
starting point for multi-model ensemble analysis in the future. A detailed description of
the cause-effect chain as included in MAGICC6 can be found elsewhere (Meinshausen
et al. 2011a), including a representation of uncertainties (Wigley and Raper 2002;
Meinshausen et al. 2009).

The following subsections describe our four steps to yield harmonized GHG
concentrations and emissions for the RCPs from the native output of the four IAM
scenarios (see Fig. 1 below).

2.2 Historical concentrations

For comparing climate model outcomes with historical climate observations, it is ideal if
atmosphere-ocean general circulation models (AOGCMs) are driven with observations of

2 A research version of MAGICC6 with RCP default settings used in this study will be available from www.
magicc.org for the wider scientific community.

Table 1 (continued)

Historical mixing ratios Description

ODSs Taken directly from the WMO Stratospheric Ozone Assessment A1 scenario,
starting in 1950 (Daniel et al. 2007). These mixing ratio histories are derived
using results from global atmospheric measurements, analyses from firn air,
archived air, and industrial production and bank data (Montzka et al. 1996a;
Butler et al. 1999; Prinn et al. 2000; Metz et al. 2005; Clerbaux et al. 2007).
Pre-1950 estimates were loosely based on AFEAS production data and
consistent with the 1950 values for CFC-11, CFC-12, CFC-114, and CCl4.
Pre-1950 emissions were designed such that 1950 concentration values are
matched under the default lifetimes. For example, a linear ramp up of
emissions from 1938 to 1950 of HCFC-22 emissions has been assumed to
match 1950 concentration value (0.95 ppt). For CH3Br and CH3Cl, a pre-
industrial value of 5.8 and 480 ppt is assumed, respectively.

a ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law_co2.txt
b http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2
c ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_gl.txt
d ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/law/law_ch4.txt
e http://data.giss.nasa.gov/modelforce/ghgases/Fig1B.ext.txt
f ftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/month/
g http://data.giss.nasa.gov/modelforce/ghgases//Fig1C.ext.txt
h ftp://ftp.cmdl.noaa.gov/hats/n2o/flasks
i ftp://ftp.cmdl.noaa.gov/hats/n2o/insituGCs/CATS/global/insitu_global_N2O
j ftp://ftp.cmdl.noaa.gov/hats/hfcs/
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the historical atmospheric composition. Such a comparison can be helpful for assessing the
skill of climate models, or to determine the human-contribution to climate change. Building
on current literature, and with the help of a number of experts, we compiled a consolidated
set of 20th century global and annual mean GHG concentrations. Specifically, we compiled
concentrations of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), eight
different hydrofluorocarbons (HFCs, namely HFC-23, HFC-32, HFC-43-10mee, HFC-125,
HFC-134a, HFC-143a, HFC-227ea, and HFC-245fa), three perfluorocarbons (PFCs,
namely CF4, C2F6, and C6F14), and SF6, as well as concentrations of 16 ODSs (CFC-11,
CFC-12, CFC-113, CFC-114, CFC-115, Carbon Tetrachloride, Methyl chloroform, HCFC-
22, HCFC-141b, HCFC-142b, Halon-1211, Halon-1202, Halon-1301, Halon-2402, CH3Br,
CH3Cl). Building on this database of historical observations, we recommend sets of pre-
industrial control run concentrations, depending on whether the historical ‘20th
century’ run starts in 1765, or 1850 (or any year in between). Concentrations over
this 1765 to 1850 period are constant for the halogenated gases with natural sources,
i.e., CF4, CH3Br and CH3Cl, with 35 ppt, 5.8 ppt and 480 ppt, respectively. However,
the recommended concentrations for the long-lived GHGs, CO2, CH4, and N2O show a
small increase over that period, starting from the levels 278.1 ppm, 721.9 ppb, and
273.0 ppb in 1765 and increasing to 284.7 ppm, 791.0 ppb, 275.4 ppb in 1850,
respectively. The concentrations were compiled based upon data available as of mid-
2009 (see Table 1).

2.3 Harmonization of emissions

The harmonization of GHGs, tropospheric ozone precursors and aerosol emissions to
common historical levels is necessary as IAMs do not necessarily start with the same
historical emissions inventories, which is a disadvantage for comparisons of the
scenarios’ future climate effects. There are several reasons that different IAM scenarios
do not share the same historical emissions: besides the uncertainty in the historical
record, different IAMs 1) do not include the same set of human activities that lead to
emissions, 2) smooth short-term fluctuations differently and/or 3) assume different
emissions factors from emissive processes. In addition, the actual ‘real world’ activity
levels and emissions factors are inherently uncertain. The most appropriate harmoni-
zation method depends on the reasons that underlie the differences in historical
emission levels. Given the many different sectors and emissions factors in the IAMs, a
simple and transparent approach is followed here.

GHG Harmonization RCP GHG Concentr. ExtensionsRaw data

IAMs MAGICC6 MAGICC6

RCP Database

2000-2005 
Reference Emis. 

(1765-2100) GHG 
Concentrations

Historical <2000
Emissions 

Historical <2000
GHG concentr.

Emissions
(2000-2100)

Harmonized 
Emis. (1765-2100)

GHG Concentr. 
(1765-2300)

Aerosols; 
trop.  ozone ...

Each individual 
IAM using their own 
climate modules

Run MAGICC6
with default 
RCP settings, i.e. 
C4MIP carbon cycle 
emulation (Bern-CC) 
and mediam CMIP3 
AOGCM calibration

 

1) Emission-driven 
runs (2.6/8.5), and/or 
2) Iterative runs - 
transition towards 
stabilisation (4.5/6/8.5) 
3) Inverse runs after 
stabilisation (4.5/6/8.5) 

Post-2100 emission
extensions (2.6/8.5)

Concentration
extensions (4.5/6/8.5)

Harmonisation; 
Phasing out scaling 
from 2005 to 2050 

Harmonisation; 
Phasing out scaling 
from 2005 to 2050 

Harmonized GHG 
Emis. (1765-2300)

...

3 41 2

Fig. 1 Overview of methods to harmonize emissions, derive GHG concentrations and create the extensions
for the RCPs. See text for further details
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Reactive gas and aerosol emissions have been harmonized to year 2000 levels in a separate
exercise in the RCP creation process (Lamarque et al. 2010; Smith et al. 2011; Granier et al.
2011), namely for sulfate oxides (SOx), carbon monoxide (CO), non-methane volatile organic
compounds (NMVOC), nitrogen oxides (NOx), black carbon (BC), organic carbon (OC),
ammonia (NH3), and also for methane (CH4) because of its role in atmospheric chemistry.
Here, we extend this harmonization of the reactive gas emissions to year 2005 by using the
average growth rates in RCP8.5, RCP4.5, and RCP2.6.3 This harmonization, therefore,
enforces consistency among all RCP scenarios over 2000–2005 period.

For other GHGs, i.e. CO2, N2O, HFCs, PFCs, and SF6, we harmonized global and five-
region emission levels using simple scaling routines so that by construction, all four
harmonized RCPs share the same 2000 to 2005 emissions data. The five regions are
essentially the same as the four SRES regions with the ‘Africa&Latin America (ALM)’
region being split into ‘Middle East and Africa (MAF)’ and ‘Latin America (LAM)’ (see
http://www.iiasa.ac.at/web-apps/tnt/RcpDb for a country-by-country definition of these
regions). For fossil and industrial CO2 emissions, we used global inventory estimates from
Marland et al. (2008) to 2005. Extending the harmonization only to 2005 does not include
the substantial emission increase until 2008 or the zero growth rate in 2009 due to the
financial crisis (Olivier and Peters 2010). This was a conscious decision, partially because
RCPs are not meant to reflect short-term fluctuations. Net land-use CO2 emissions
estimated by the IAMs (on average 1.15 GtC in the year 2000) are lower than some other
emission estimates, e.g. the 1.41 GtC in year 2000 by Houghton (2008).4 To maintain
consistency with the underlying land-use patterns (Hurtt et al. 2011), and given the large
uncertainty in current global land-use related CO2 emissions of around ±0.5 GtC/yr
(DeFries et al. 2002; Canadell et al. 2007), we harmonized the emissions using the IAM
average (RCP2.6, RCP4.5 and RCP8.5). For fluorinated gases that are included in the
basket of gases controlled under the Kyoto Protocol (HFCs, PFCs, SF6), we used observed
concentrations, where available, and derived inverse emission estimates using default
lifetime assumptions (Table 2.14 in Forster et al. 2007) within the MAGICC6 coupled gas-
cycle climate model. For C6F14, HFC-32, HFC-43-10mee, HFC-227ea, and HFC-245fa, we
took available emissions data from either SRES (Nakicenovic and Swart 2000) (HFC-43-
10mee), EDGAR4 (EC-JRC and PBL 2009) (C6F14, HFC-227ea) or the non-harmonized
RCPs (HFC-32, HFC-245fa). For HFC-245fa, sparse observations exist (Vollmer et al.
2006), pointing to lower, but much faster increasing, emissions than we used here from the
original RCP4.5 estimates. This difference might be due to an overestimation of actual
emissions by RCPs and/or due to slower release factors in early applications of this foam
blowing agent than assumed by the IAMs. For ODSs, we use the emissions that were used
to derive, with a box model, the standard WMO (2007) A1 scenario concentrations. Further
details are provided in Table 2.

We employ a harmonization process whereby the original IAM emission data is adjusted
to the common 2000–2005 values and these adjustments are phased out afterwards.
Specifically, the longer term RCP emission levels are identical to those of the original IAM
emissions from 2050 onwards. In between, from 2005 to 2050, a multiplier, i.e., the ratio
between RCP harmonized emission levels and original IAM emissions in 2005, is linearly
relaxed back to 1 until 2050 (c.f. Van Vuuren et al. 2008).

4 1GtC/yr = 44/12 GtCO2/yr

3 RCP6 was harmonized as well, but its values were not used to determine the growth rates (or other
averages for harmonization) due to the later finalization date of this data set. Taking into account RCP6 does
not substantially change these results relative to other uncertainties.
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Exceptions to this approach are applied for land-use related CO2 emissions and some
fluorinated gases. Land-use related CO2 emissions turn negative in some regions, which is
why we chose to apply an additive shift of emissions rather than a multiplier. The difference
between original IAM emissions and the harmonized levels in 2005 is added to the original
IAM data and this offset is linearly reduced to zero by 2030. A scaling factor rather than an
offset until 2050 could have resulted in more pronounced negative emissions even in the
case of an upward adjustment in 2005.

For fluorinated gases, the SRES scenarios used an external set of emissions (Fenhann
2000). In contrast, the IAMs producing the RCP scenarios now include fluorinated gas
emissions in their modeling frameworks. For some fluorinated gas species, updated
information on their trends is available, which causes IAMs to project markedly different
future emissions compared to SRES. Some IAMs, however, include only a few aggregate
fluorinated gas categories. This leads to somewhat artificially narrowed spreads for some
fluorinated gas projections.

For HFC-227ea, current emission levels provided in the RCPs were uncertain as
emissions for this gas in both RCP4.5 and RCP8.5 were only available as an aggregate
together with HFC-125. Large uncertainties in HFC-227ea emissions result from the fact
that there were no ambient air measurements that could constrain anthropogenic emission
estimates in mid-2009, a fairly unique situation for a GHG - and only recently remedied
(Laube et al. 2010). Bottom-up emission estimates (e.g. EDGAR4 data by EC-JRC and
PBL 2009) seem to overestimate actual HFC-227ea emissions estimated from ambient
measurements (Laube et al. 2010). The overall radiative forcing contribution of both gases,
HFC-245fa (see above) and HFC-227ea, is rather small, so any future revisions will likely
have a minor effect on aggregate radiative forcing levels. For the RCP4.5 and RCP8.5
scenarios, a simple approximation has been used to estimate future emissions of HFC-
227ea and HFC-125. The reported GWP-weighted aggregate emissions (HFC-227ea plus
HFC-125) were multiplied by scaling factors from the RCP2.6 scenario, which was the only
scenario with separate projections for these two gases. RCP6 emissions for HFC227ea were
taken from RCP2.6. EDGAR4 data (EC-JRC and PBL 2009) were used for historical
harmonization values for HFC-227ea and a constant scaling factor was applied. Similarly,
for HFC-245fa and SF6, a ‘ramped’ scaling until 2050 would have led to a considerable
change in growth rates compared to the near-monotonic increase of emissions until 2100
reported for RCP8.5. Thus, a constant scaling factor was applied over time, which led to
higher RCP8.5 emissions by 2100 than projected by the original IAM scenario (see Fig. 2).

The net effect of the harmonization procedure for the long-lived GHGs and ODSs is in
some years moderate, but is generally small and negligible in the long-term. Over all years,
the highest upward shift in GWP-weighted (100 year time horizon) (IPCC 1996) aggregate
emission levels is 11.5% for the RCP6 scenario, which is due to a substantial upward shift
of landuse CO2 emissions from 1.3 to 4.4 GtCO2/yr in year 2005 (+226%). A 4.1% upward
adjustment of the RCP2.6 scenario in 2005 resulted as well from the harmonization of
landuse CO2 emissions from 2.8 to 4.4 GtCO2/yr in year 2005, in addition to small upward
corrections of CH4 and fluorinated gases (see Fig. 2). Harmonization reduced the RCP8.5
emissions slightly, by 2.1% in 2005. The aggregate emission levels of RCP4.5 faced a small
upward shift by 2.1% in 2005. By construction, the harmonization procedure had only
negligible effects on post-2050 emission levels (<0.3%) given that only a few fluorinated
gases were adjusted after 2050.

Note that these induced shifts of emission levels are within the uncertainty of current
emission estimates. Nevertheless, due to the cumulative effect on radiative forcing levels for
long-lived gases, the harmonization procedure will result in slightly different concentration
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and temperature projections (which is intended as part of increasing the comparability
between the different scenarios). To ensure a smooth transition of concentrations from
historical runs for shorter-lived substances, the harmonization is an essential step for
consolidating the scenarios from four different IAMs for a climate model inter-comparison.
Otherwise, a consistent comparison of the resulting climate consequences across the
scenarios would be hindered.

Some other limitations of the harmonized emissions arose. The ODS projections (WMO
2007) do not incorporate the effects of the accelerated HCFC phase-out accepted by the
Parties to the Montreal Protocol in 2007. In the absence of specific mitigation policies, this
acceleration would be expected to lead to somewhat lower future HCFC emissions (Velders
et al. 2007). and higher HFC emissions (Velders et al. 2009). Furthermore, NF3 (as well as
several less abundant fluorinated gas compounds) are not included in the RCPs even though
they may have small positive radiative forcing effects (Prather and Hsu 2008; Prather and
Hsu 2010).

2.4 Calculation of GHG concentrations

In most of the experiments for the CMIP5 intercomparison exercise, AOGCMs and ESMs
will be driven by historical and future GHG concentrations, not emissions, as shown in
Appendix 1 and further described in Taylor et al. (2009). We derive concentrations from the
harmonized emissions with a single model, MAGICC6, in order to ensure consistency
between and within the different RCPs. Although various versions or parts of MAGICC are
used in many IAMs (see above), we chose MAGICC not as a model in its own right, but
because of its ability to closely emulate the full range of C4MIP carbon cycle and CMIP3
AOGCMs (Meinshausen et al. 2011a). We now summarize the various gas-cycle
parameterizations, before providing more detail on the chosen carbon cycle and climate
response settings. Our assumptions regarding non-GHG forcing agents are detailed in
Appendix 2.

MAGICC uses gas-cycle parameterizations of different complexity to project concen-
trations and radiative forcing for CO2, CH4, N2O,3 PFCs, 8 HFCs, SF6 and 16 ODSs (see
listing of individual species in Section 2.2). For CO2, MAGICC includes a global carbon
cycle model with three land carbon pools, an ocean carbon scheme, and multiple
temperature-dependent terrestrial and oceanic fluxes, as well as a parameterization for the
CO2 fertilization effect. The model is designed to closely emulate higher complexity carbon
cycle models regarding seven aggregated carbon pools and fluxes, as well as atmospheric
CO2 concentrations, as described in detail in Meinshausen et al. (2011a). The model does
not yet include a nitrogen cycle or interactions between the carbon cycle and nitrogen cycle
– reflecting the state of carbon cycle models in C4MIP in 2006 (Friedlingstein et al. 2006).
The chosen carbon cycle calibration is further described below.

For projecting CH4 and N2O concentrations, parameterizations from Ehhalt et al. (2001)
are used—including simplified temperature-dependent tropospheric OH-chemistry param-
eterizations. Both CH4 and N2O lifetime includes a dependency of its lifetime on its own
abundance. Further details regarding how these processes are treated in MAGICC6 can be
found in Meinshausen et al. (2011a). Stratospheric sinks for all fluorinated gases and ODSs
are assumed to become enhanced slightly with rising global mean temperatures (15% per
degree Celsius warming) leading to shorter lifetimes at higher warming levels—due to a
strengthening Brewer-Dobson circulation (Butchart and Scaife 2001). As the lifetime of
CH4, tropospheric OH-related sinks of flourinated gases are made dependent on the
parameterized changes in the OH abundances.
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Previous applications of MAGICC6 have not used a single set of best-estimate
parameters to calculate concentrations, radiative forcings and global mean temperatures
from prescribed emissions, but instead used an array of parameter sets to project a range of
climate responses by emulating CMIP3 GCMs (Meehl et al. 2005) and to project a range of
CO2 concentrations by emulating C4MIP carbon cycle models (Friedlingstein et al. 2006)
as described in Meinshausen et al. (2011a). Alternatively, historically constrained joint
distributions of parameters were used (Meinshausen et al. 2009). To calculate a single set of
concentrations for driving climate models (the motivation for the design of the RCPs), we
need a single “best” set of model parameters for MAGICC. Many temperature projections
will ultimately be produced by the CMIP5 models. However, the importance of having a
‘best-estimate’ future temperature projection within MAGICC6 is that many gases’
concentrations are influenced by temperature or climate feedbacks.

We chose parameters for MAGICC6 that would closely reflect the median of the
distribution in global-mean temperature projections that is spanned when emulating the
GCMs and carbon cycle models that took part in CMIP3 and C4MIP, respectively.
Specifically, we chose an emulation of the C4MIP Bern-CC carbon cycle model (Joos et al.
2001) as ‘best-estimate’ for the carbon cycle behavior. This is both because the Bern-CC
model (and earlier versions of this model) has been used for the consolidated concentrations
of IPCC SRES scenarios presented in the Third Assessment Report (see Appendix II in
Houghton et al. 2001) and because the projected CO2 concentrations from the Bern model
are roughly in the middle of the range of C4MIP results (Friedlingstein et al. 2006).

For obtaining a ‘best-estimate’ climate response (which in turn influences concentrations), the
intention is to have a set of climate parameters (such as climate sensitivity, vertical ocean
diffusivity, etc.) that resembles the median of the AOGCMs that took part in CMIP3. We first
emulated 19 of the CMIP3 AOGCMs by using calibrated MAGICC parameters, which span a
climate sensitivity range between 1.9 K and 5.7 K (see Table B3 in Meinshausen et al. 2011a). We
ran these emulations for the SRES A1B, B1 and A2 and ‘Constant year 2000 concentration’
scenarios, taking into account a complete set of radiative forcing agents (including e.g. indirect
aerosol effects). In these emulations, we used the default Bern-CC emulation setting for the
MAGICC carbon cycle. We then took the median for each scenario across these 19 global
mean temperatures and ocean heat uptake time-series. Thereby, we created pseudo-AOGCM
datasets, to which a standard least-squares optimization routine could calibrate a “best”
set of 10 climate parameters of MAGICC. This is the same procedure as described in
Meinshausen et al.(2011a), except that we fix the climate sensitivity at its best-estimate
value of 3 K (Meehl et al. 2007; Knutti and Hegerl 2008). This fixed climate sensitivity is
very close to the average of 2.88 K from emulating AOGCM CMIP3 models without a
fixed climate sensitivity (see Table 4 in Meinshausen et al. 2011a).

Apart from deriving the default MAGICC climate response parameter set for creating the
RCPs, one additional amendment has been implemented in MAGICC6 to serve this RCP
process. Inverse emissions are now routinely calculated for all 31 considered GHGs (CO2,
CH4, N2O, 3 PFCs, 8 HFCs, SF6 and 16 ODSs). This is of interest when concentration
time-series are prescribed for designing the ECPs. For CO2, these inverse emissions can be
compared to the allowable emissions derived from ESMs in the course of CMIP5.

3 Post-2100 extension

The RCP emissions scenarios produced by the IAMs span the period 2005 to 2100. Most IAM
research focuses on the 21st century and there is little research addressing comprehensive
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scenarios beyond 2100. Conducting multi-century climate change analyses, however, requires
input data beyond 2100. We designed extensions to the RCPs, the Extended Concentration
Pathways (ECPs), using simple rules that have been developed in a series of stakeholder
consultations among scientists in the IPCC WG1, WG2 and WG3 communities, including
representatives of the IAM groups, representatives of CMIP5, and the wider scientific
community. It should be noted that these extensions do not represent fully consistent scenarios,
but are simple ‘what-if’ thought experiments that represent the underlying ideas behind each
RCP, which are produced for the purposes of providing a common set of input data for long-
term model comparison projects. The rules used for the extension of emissions and/or
concentrations of the RCPs are shown in Table 3. No explicit assumptions relating to
population or economic development have been made for these stylized ‘what-if’ extensions.

Generally, there are three options for the design of a simple extension (with multiple
combinations of these possible): I) the forcing and concentrations can simply be kept
constant (as done for the SRES scenarios in CMIP3 and assessed by the IPCC Forth
Assessment Report, AR4), II) emissions can be adapted over time, e.g. to yield a smooth
stabilization at another level than where concentrations are in year 2100, or III) emissions
can be kept constant. The two intermediate scenarios RCP4.5 and RCP6 are extended by
concentration stabilization, albeit with stabilization achieved in 2150 to avoid disconti-
nuities in the implied emissions. For the lowermost RCP, RCP2.6, emissions were kept
constant after 2100. The extension of the highest RCP, RCP8.5, represents a mixture of
constant emissions until 2150 and constant concentrations after 2250 (see Table 3). As a
result of now including a low mitigation pathway RCP2.6 and due to these extension
choices, the ECPs span a much wider range of post-2100 forcing pathways than considered
in previous studies, such as CMIP3 assessed in IPCC AR4.

Several alternative extensions were considered for each RCP. For RCP8.5, the full range
of possible extensions ranged from a constant forcing that results from simply keeping
concentrations constant after 2100 to very high levels that result from assuming that
emissions stay constant until 2300. After consultations with the respective expert groups an

Table 3 The RCPs and their simple extension rules beyond 2100 assumed for all GHGs.

RCP scenario
2005-2100

Extension 2100 to
2300

Extension rulea

RCP2.6/RCP3-
PDb

ECP3-PD Constant emissions after 2100.

RCP4.5 ECP4.5 Smooth transition towards concentration stabilization level after
2150 achieved by linear adjustment of emissions between 2100
and 2150.c

RCP6 ECP6

RCP8.5 ECP8.5 Constant emissions after 2100, followed by a smooth transition to
stabilized concentrations after 2250 achieved by linear
adjustment of emissions after 2150.b

RCP6 Supplementary
Extension SCP6to4.5

Adjustment of emissions after 2100 to reach RCP4.5
concentrations levels in 2250 and thereafter.

a Note that for all extensions, land-use CO2 emissions are assumed zero consistent with frozen land-use
patterns (Hurtt et al. 2011) beyond the 21st century—with a linear interpolation between 2100 and 2125.
Reactive gas emissions and aerosols are assumed constant after 2100 (see Lamarque et al. 2011)
b See footnote 1 regarding the interchangeably used names RCP2.6 and RCP3-PD
c Sudden adjustment of emissions for ODSs in 2150 (ECP6 & ECP4.5) and 2250 (ECP8.5), when
concentrations stabilize
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intermediate extension was selected. This extension avoids a possible discontinuity in
emissions trends (that would arise from keeping concentrations constant), and avoids issues
of resource availability that a higher extension might raise. Keeping emissions constant
would have resulted in CO2 concentration of around 3000 ppm by 2300. The adopted
RCP8.5 extension (ECP8.5) leads to a CO2 stabilization after 2250 at roughly 2000 ppm, or
more than 7-times pre-industrial CO2 concentrations. The total forcing of this ECP8.5 is
hence approximately twice as high as the next highest ECP (ECP6) (see Fig. 4 below). This
high forcing for ECP8.5 is significantly above the highest forcing level that was considered
in CMIP3 on the basis of IPCC SRES scenarios (i.e., approximately 700 ppm in A1B).

Another alternative extension was considered for RCP2.6, as one may question whether
negative emissions can be sustained over very long time periods (in view of finite CO2 storage
capacity). An alternative extension, in which emissions would converge back to zero between
2,150 and 2,200, would lead to CO2 concentration of about 380 ppm rather than 360 ppm by
2300. However, in consultation with experts it was concluded that a continuation of the 2100
emission levels cannot be excluded for reasons of physical constraints of sequestration &
storage options and would better reflect the character of the RCP2.6 pathway.

In addition to the four standard ECP extensions, we present one supplementary
extension, which might be of particular use to investigate irreversibility and the path-
dependency of the climate system response to different GHG abundances.5 This extension
starts from RCP6 in 2100 and merges with the concentrations of the next lower scenario,
ECP4.5, by 2250. This is similar to other forcing and temperature overshoot scenarios in
the literature (Hare and Meinshausen 2006; Wigley et al. 2007; Lowe et al. 2009). Between
2100 and 2250, we adjusted emissions of this supplementary extension (called SCP6to4.5)
by following simple linear and continuous trajectories in order to obtain the desired
stabilization concentration level of ECP4.5 by 2250. We chose for transparency linear
segments of emissions, i.e., a 50-year long phase of stringent reductions (with an annual
reduction of fossil CO2 emissions equivalent to 2.5%/year of 2100 levels) to reach a
negative emission floor, which had to be more than twice as negative as under the RCP2.6
scenario (-3.8 GtC/year). Smoother emission trajectories would be possible, although they
would imply higher annual reduction rates and/or more negative emission levels than
presented here. After 2250, when concentrations are equal by design, the implied inverse
CO2 emission levels of the SCP6to4.5 overshoot pathway are consistently lower than those
of ECP4.5 (see Fig. 3). This is because of temperature-induced feedbacks and inertia effects
in the carbon cycle. In summary, only by assuming a long period of strong reductions and
deeply negative CO2 emissions, were we able to ‘make up’ for the higher RCP6 emissions
during the 21st century in order to reach ECP4.5 concentration levels by 2250.

Similar to this SCP6to4.5 extension, we considered an alternative ECP6 extension with
comparatively less stringent post-2100 emission reductions, basically assuming that the
RCP2.6 emissions path is followed 100 years later, i.e., in the 22nd century. Specifically,
2020–2100 RCP2.6 emission trajectories were assumed for 2120 to 2200—with linear
interpolation between 2100 RCP6 and the extension by 2120. We kept emissions constant
after 2200. Following that alternative, radiative forcing would have declined to 4.5 W/m2

only 350 years later, i.e., by 2450.
The conclusion from this alternative RCP6 extension and our SCP6to4.5 supplementary

extension is that once high 21st century emissions increase radiative forcing levels to 6 W/m2,

5 An optional extra extension is provided online as addition to the RCPs and extensions described in this
paper, i.e., an extension that brings concentrations back to RCP3-PD levels after 21st century emissions
followed RCP4.5. See http://www.pik-potsdam.de/~mmalte/rcps/.
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it seems very difficult to return to lower levels quickly. Any 4.5 W/m2 overshoot scenario of
the sort considered here will imply higher global warming levels for considerable periods of
time, i.e., centuries,—and rests on the assumption that stringent post-2100 emission
reductions are feasible. A similar conclusion could be drawn for extensions that connect
RCP8.5 to ECP6 or RCP4.5 to ECP3-PD long-term concentration levels5.

For the fluorinated gases within the basket of gases that are controlled under the Kyoto
Protocol (HFCs, PFCs, and SF6), projections are inherently uncertain, as new applications
are constantly being developed (apart from the fact that new fluorinated compounds are
designed). For the purpose of designing the SCP6to4.5 extension, a question arises how to
bridge the gap between the lower ECP6 fluorinated gas concentration levels towards the
higher ECP4.5 ones. Partly because this gap is very small, only 2% in terms of the total
radiative forcing difference between ECP6 and ECP4.5, and partly for simplicity, we
modify only the emissions of the representative forcing agent HFC-134a in order to ramp
up the aggregate forcing from HFCs, PFCs, and SF6.

4 Results: RCP GHG concentrations

This section presents the resulting GHG concentrations for the RCPs and ECPs, as well as the
aggregate total radiative forcing. Total radiative forcing here includes all anthropogenic forcing
agents as listed in Table 2.12 in IPCCAR4WG1 (Forster et al. 2007), including—inter alia—direct
and indirect aerosol forcings. See Appendix 2 for assumptions in regard to non-GHG forcings.

In the lowest of the four RCPs, the total radiative forcing peaks at approximately 3W/m2 and
declines thereafter (Fig. 4), (motivating the alternative name for the RCP2.6 pathway, which is
RCP3-PD, where PD stands for “Peak&Decline”). CO2 concentrations reach a maximum level
of slightly above 440 ppm in the year 2050, and then decline to below today’s levels by 2300
(~360 ppm) (see Table 4). CO2-equivalent concentrations (not shown),6 comprising the net
effect of all anthropogenic forcing agents (including aerosols), peak at around 460 ppm just
before 2050, declining in tandem with CO2 towards 360 ppm by 2300, at which time this
scenario’s projection for the net effect of non-CO2 forcing agents is close to zero—similar to
the best-estimate non-CO2 forcing estimate for current times (Forster et al. 2007). The
aggregate forcing of all long-lived GHGs controlled under the Kyoto-Protocol, expressed as
CO2 equivalent, declines from 503 ppm CO2eq in 2050 towards 407 ppm by 2300 in RCP2.6.

RCP8.5’s radiative forcing levels by the end of 2100 are around 8.5 W/m2 under our ‘best-
estimate’ set of model parameters with forcing levels increasing further thereafter—up to
12 W/m2 by 2250, when concentrations stabilize (Fig. 4). Transient scenarios with such high
radiative forcing levels and CO2 concentrations have never before been investigated in model
CMIP intercomparison exercises. Across almost all gases, RCP8.5 concentration levels are by
far the highest. For example, CH4 concentration stabilizes around 3500 ppb—more than twice
as high as the next highest scenarios, RCP4.5 and RCP6, which approximately stabilize at
1,500 ppb (slightly below today’s levels of nearly 1800ppb). The only exceptions are ODS
concentrations: RCP4.5, RCP6 and RCP8.5 share the same emission assumptions (WMO
2007, A1 Scenario), but the longer-term ODS concentrations are slightly lower in RCP8.5
due to slight decreases in stratospheric ODS lifetimes via expected changes in stratospheric

6 available at http://www.pik-potsdam.de/~mmalte/rcps/.

Fig. 3 Emissions for the four RCPs and the supplementary extension SCP6to4.5, which starts from the
RCP6 scenario and merges with the ECP4.5 concentrations by 2250. The shaded areas denote times of higher
emissions (grey shading) and compensating lower emissions (beige shading)

�
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circulation rates, outweighing initial decreases in tropospheric sinks due to lower OH
concentrations (see Section 2.4 and Fig. 5d).

RCP4.5 and RCP6 are both stabilization scenarios, with constant concentrations after
2150. By stabilizing CO2 concentrations at 543 ppm, RCP4.5 comes very close to a
doubling of pre-industrial CO2 concentration (278 ppm)—and is hence only slightly
higher than the SRES B1 scenario and its constant extension after 2100 with 540 ppm
CO2 (see Bern-CC (reference) case in Appendix II.2.1 in Houghton et al. 2001). The
RCP6 scenario stabilizes 200 ppm higher, at 752 ppm CO2 (see Fig. 5).

5 Discussion

5.1 Ensemble results compared to our default concentration and temperature projections

In the above text we selected a specific (‘best-estimate’) set of MAGICC parameters to use
in producing a standard set of RCP concentrations. Starting from the harmonized emissions,
we can also produce concentrations (and forcing and temperature projections) using 19
individual CMIP3 climate and 9 C4MIP carbon cycle emulations. How does our default set
of results compare with the distribution of results from these 171 (=19×9) cases?

We perform this comparison using the highest and the lowest RCP scenarios. The results are
shown in Fig. 6. Not surprisingly, because the responses to external forcings in all climate
models are largely linear, the ‘best-estimate’ results are similar to the median of the individual
model results, even in the high forcing RCP8.5 case. The ideal test of our projections, although
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impractical, would be for the CMIP3 GCM model ensemble to be run again for the RCP8.5
scenario and ECP8.5 extension. Since the post-2100 ECP8.5 forcing case falls well outside the
MAGICC SRES calibration range, it would provide a rather stringent test for MAGICC.

In summary, our default carbon cycle/climate model settings are shown to reflect well the
median emulated responses of both the AOGCM and carbon cycle response. The implied
relation between emissions and concentrations may, of course, change with the next generation
of models. It will be useful to compare the climate and carbon-cycle responses from the next
round of climate model experiments with those presented here, which are, necessarily,

Table 4 GHG concentrations for pre-industrial, historical, RCP and ECP/SCPs

GHG Forcing Agent (Unit) Scenario 1765 1800 1850 1900 1950 2000

CO2 (ppm) Pre-Ind/Historical 278 283 285 296 311 369

CH4 (ppb) 722 742 791 880 1,147 1,751

N2O (ppb) 273 274 275 280 289 316

HFCs, PFCs, SF6 (ppt HFC-134a-eq)
a 0 0 0 0 4 81

ODS (ppt CFC-12-eq) a 0 0 0 2 22 999

2005 2050 2100 2150 2250 2300

CO2 (ppm) RCP2.6/ECP3PD 379 443 421 399 371 361

RCP4.5/ECP4.5 379 487 538 543 543 543

RCP6/ECP6 379 478 670 752 752 752

SCP6to4.5 379 478 670 689 543 543

RCP8.5/ECP8.5 379 541 936 1429 1,962 1,962

CH4 (ppb) RCP2.6/ECP3PD 1,754 1,452 1,254 1,245 1,253 1,256

RCP4.5/ECP4.5 1,754 1,833 1,576 1,542 1,542 1,542

RCP6/ECP6 1,754 1,895 1,649 1,511 1,511 1,511

SCP6to4.5 1,754 1,895 1,649 1,517 1,542 1,542

RCP8.5/ECP8.5 1,754 2,740 3,751 3,648 3,481 3,481

N2O (ppb) RCP2.6/ECP3PD 319 342 344 342 340 340

RCP4.5/ECP4.5 319 351 372 379 379 379

RCP6/ECP6 319 355 406 427 427 427

SCP6to4.5 319 355 406 418 379 379

RCP8.5/ECP8.5 319 367 435 490 527 527

HFCs, PFCs, SF6 (HFC-134a-eq ppt) RCP2.6/ECP3PD 127 599 862 874 886 888

RCP4.5/ECP4.5 127 483 654 748 748 748

RCP6/ECP6 127 426 565 606 606 606

SCP6to4.5 127 426 565 658 748 748

RCP8.5/ECP8.5 127 839 1,402 1,614 1,702 1,702

ODS (CFC-12-eq ppt) RCP2.6/ECP3PD 1,004 567 267 147 53 34

RCP4.5/ECP4.5 1,004 646 252 128 128 128

RCP6/ECP6 1,004 653 250 120 120 120

SCP6to4.5 1,004 653 250 129 129 129

RCP8.5/ECP8.5 1,004 652 229 94 20 20

a Note that the representative gas HFC134a-eq for the group of HFCs, PFCs and SF6 concentrations, and
CFC-12 eq for the group of ODS gases are here only given for illustrative reasons and for optional use in
GCMs/ESMs. Annual data for individual gas concentrations are provided on http://www.iiasa.ac.at/web-
apps/tnt/RcpDb and http://www.pik-potsdam.de/~mmalte/rcps/
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calibrated to existing model experiments. The allowable CO2 emissions for these pathways
could, for example, be lower (or higher) than those found here, if positive carbon cycle
feedbacks were higher (or lower) in the CMIP5 generations of ESMs compared with C4MIP
models. Similarly, including a nitrogen cycle in the MAGICC and other carbon cycle models
will affect future forward and inverse projections (Thornton et al. 2007, 2009).

5.2 Inverse emissions for the long-term extension pathways

The extensions of the RCPs and the generation of the supplementary pathway were made using
the simple rules given in Table 3. While these extensions are simply thought experiments, we
examine here the implied emissions from the SCP6to4.5 scenario to illustrate some key points
relevant to future long-term scenarios. The inverse emissions that correspond to this overshoot
scenario imply a period of substantial net negative CO2 emissions of -13.9 GtCO2/year—
between 2150 and 2230 (see Fig. 3). This value is larger in magnitude than the negative
emissions level in the RCP2.6 scenario (−0.93 GtC/yr=−3.41GtCO2/yr), but there are
scenarios in the literature that imply similarly negative emission levels already by 2100. For
example, Calvin et al. (2009) show scenarios with slightly larger negative emissions levels by
2100 of -10 to -15 GtCO2/year in 2095. In addition to sustained net negative emissions in
SCP6to4.5, the reduction rates assumed between 2100 and 2150 are rather substantial, similar
to the steepest segments of RCP4.5 and RCP2.6 – but extended over a longer time period.

As highlighted in Fig. 3a, CO2 emissions for the SCP6to4.5 have to be reduced below
the RCP4.5 emissions by approximately the same amount as the extra cumulative emissions
that were emitted during the 21st century by RCP6. On the timescales of interest here, CO2

does not have finite lifetime (Archer and Brovkin 2008), but is simply being re-distributed
between the different active carbon pools. This is largely why cumulative CO2 emissions
are a crucial quantity for long-term temperature and atmospheric concentration responses
(Kheshgi et al. 2005; Allen et al. 2009; Matthews et al. 2009). For this reason, cumulative
emissions for the RCP4.5-ECP4.5 pathway and the RCP6-SCP6to4.5 pathway are roughly
of the same size (see Fig. 3b).

For other long-lived GHGs such as N2O, the need to compensate for initially higher
emissions with lower emissions later on is still apparent, although cumulative N2O
emissions are a bit higher under the SCP6to4.5 pathway compared to RCP4.5-ECP4.5 —
even though both paths ultimately stabilize at the same N2O concentration levels by
design (see Fig. 3 e&f). For CH4, with its much shorter atmospheric lifetime (Forster et
al. 2007), the ultimate concentration depends almost solely on emissions over the final
few decades rather than on long-term cumulative emissions.

5.3 Limitations

The challenge this study faces is to synthesize gas-cycle and climate response character-
istics from a broad body of literature into a single-best set of data and model parameters to
produce a common starting point for future model intercomparison exercises. By design, we
therefore do not intend to fully represent uncertainties, but rather seek to produce
concentration scenarios that reflect ‘middle-of-the-road’ carbon cycle and climate model
responses, representative of the IPCC AR4 state of knowledge. While some parts of our
approach can thereby be based on recent intercomparison exercises, in particular C4MIP
and CMIP3, other assumptions relate to earlier community efforts, such as the OxComp
workshop (Ehhalt et al. 2001). Uncertainties pertaining to future OH concentrations, CH4

lifetimes, N2O concentrations or the effect of the inclusion of a nitrogen cycle will result in
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different ‘reference’ pathway recommendations if this exercise were to be repeated in a
couple of years from now. Furthermore, uncertainties arise as well from second-order
effects of tropospheric ozone and aerosols, for example. To the extent that our non-GHG
modeling assumptions deviate from current generation chemistry modeling results (see e.g.
Lamarque in this issue for a comparison of tropospheric ozone levels), indirect effects via
global-mean temperature and gas-cycle feedbacks will impact derived GHG concentrations
presented here, although this indirect second-order effect is likely limited.

Regarding the RCP extensions, we reiterate that these ECPs are highly stylized and are not
the result of detailed analyses of resource limits, but are instead presented in order to provide a
range of concentration and forcing pathways for use in climate model experiments. In contrast
to the simple stabilization of concentrations after 2100 used for CMIP3, the current ECPs
provide a wider range of forcing pathways in which to test long-term model responses.

6 Conclusions

The historical, 21st century and extended GHG concentration and harmonized emission data
presented here are a result of a wide collaboration across scientific communities. In order to
obtain a single set of best-estimate projections for future GHG concentrations for the four
RCP scenarios, we used an emulation of the median response of both climate and carbon
cycle models that took part in the previous climate model inter-comparison exercises CMIP3
(Meehl et al. 2005) and C4MIP (Friedlingstein et al. 2006). The derived concentration results
are generated as the starting point for the CMIP5 inter-comparison exercise (Taylor et al.
2009), which will be evaluated in the forthcoming IPCC Fifth Assessment Report. While the
inverse emission results here can also provide a yardstick for comparison, it can be expected
that the forthcoming CMIP5 generation of ESMs will diagnose ‘allowable’/inverse emissions
that differ from the harmonized emissions presented here. This is because of limitations in the
extrapolation of previous model's emulation results, and partly because of new process
parameterizations within the new generation of climate and carbon cycle models.

While the provision of concentration pathways for use in model inter-comparison
exercises is the end point for the RCP scenario production activity, this is still just the
beginning of the overall scientific effort to investigate climate change, its impacts and
mitigation options under different scenarios (Moss et al. 2010). With respect to the IPCC
WG1 community, the harmonized concentrations and emissions data provided here are a
starting point for model experiments that will enable a deeper understanding of the earth
systems’ response to the anthropogenic perturbations that are driving climate changes.
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Appendix 1. RCP GHG data within CMIP5

Table 5

Appendix 2. Non-GHG forcing agents

Apart from the harmonized global GHG emissions and concentrations presented in this
study, the ESMs and the scientific communities of IPCC WG1 and WG2 will be provided
with a series of other input data sets: tropospheric & stratospheric ozone and aerosol
abundances (Lamarque et al. 2011), land-use patterns (Hurtt et al. 2011), and solar forcing
recommendations (Lean and Rind 2009). For the concentration calculations described here,
these non-GHG forcings, including aerosols, tropospheric ozone precursors, solar irradiance
and volcanic aerosols, were included since temperature and chemical feedbacks have an
influence on atmospheric GHG concentrations and their fluxes (see Methods 2.4). To the
extent possible, CMIP5-consistent assumptions in regard to the non-GHG forcings were

Table 5 Contribution of RCP and ECP GHG data presented in this study to the CMIP5 experiments. For a
detailed description of the CMIP5 experiments, see Taylor et al. (2009)

CMIP5 Code CMIP5 - Experiment RCP and ECP GHG data (This study)

3.1 Coupled-model, pre-industrial control Pre-industrial GHG concentration default values.

3.2 Historical (1850–2005) ensemble Historical mixing ratios (see Section 2.2 and Table 4).

3.3 AMIP (1979–2008) ensemble with
imposed SST and sea ice

Historical mixing ratios (see Section 2.2 and Table 4).

7.2, 7.3 Historical runs forced by individual
agents

Historical mixing ratios (see Section 2.2 and Table 4).

4.1, 4.2, 4.3,
4.4

Projected responses to concentrations
based on RCP2.6, RCP4.5, RCP6
and RCP8.5 (2005–2100)

Consolidated GHG concentration time series; harmonized
emission time series for comparison with allowable
emissions inferred from ESM runs.

4.1-L, 4.2-L,
4.3-L

Extension of RCP2.6, RCP4.5, and
RCP8.5 through year 2300

Consolidated GHG concentration time series for respective
ECP scenarios; furthermore, we provide emissions for
all extensions for comparison with ‘allowable’ emissions
derived from CMIP5 ESM runs.

Coupled carbon cycle-climate models (ESMs) only

ESMs only:
5.2 & 5.3

Emission-driven historical and RCP8.5
simulations

Harmonized GHG emission time series.

ESMs only:
5.4 & 5.5

Diagnosis of carbon-climate feedback
components in prescribed CO2

experiments (following “idealized”
or more “realistic” pathways) in
which CO2 surface fluxes are
saved and allowable emissions
computed.

The low RCP2.6 as well as RCP6 and RCP4.5 together
with the supplementary extension SCP6to4.5 could offer
qualitatively different CO2 emission behavior compared
to emissions derived under continuously increasing CO2

concentrations of RCP8.5 used in ESM experiments
5.2 & 5.3.

Supplementary data provided for potential use.

– The stabilization extension ECP6 of RCP6, currently not
envisaged as part of CMIP5 could offer data for
additional experiments beyond 2100.

– The Supplementary extension SCP6to4.5 could offer GHG
concentrations for additional post-2100 experiments of
potential interest to WGII as well as the 5.4/5.5 ESM
experiments.
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taken, although it should be noted that our IPCC AR4 based forcing parameterizations of
different non-GHG compounds differ from chemistry-climate model runs in relation to
tropospheric ozone, for example (Lamarque et al. 2011), and will as well differ from
new insights generated by CMIP5 set of models. For the emission-driven ESM runs in
CMIP5, some of them will generate CO2 emissions resulting from land-use patterns
endogenously, so these emissions will differ from the harmonized IAM emissions used
here. For radiative forcing due to solar irradiance changes we followed the CMIP5
recommendation of repeating solar cycle 23 into the future—although we keep solar
forcing constant after concentrations are stabilized. Solar irradiance data by Lean and
Rind (2009) (see at http://www.geo.fu-berlin.de/en/met/ag/strat/forschung/SOLARIS/
Input_data/CMIP5_solar_irradiance.html) is used here as recommended for CMIP5.
The irradiance data has been converted into radiative forcing by dividing by 4
(geometrical) and multiplying by 0.7 to take into account albedo. Furthermore, the data
is normalized to have an average of zero for the 22 years around 1750.

Concerning volcanic forcings, CMIP5 leaves it to the modeling groups as to how to treat
volcanic stratospheric aerosols in the control run and 21st century runs. One problem is that
an artificial cooling and reduction of sea level rise will occur in response to the first
volcanic events in the historical run (1850), if the control run brought the model in
equilibrium without volcanic eruptions. Here, we use a specific setup for volcanic aerosols,
which is one—but not the only—option of how GCMs can deal with volcanic forcing for
CMIP5. Specifically, we assumed the average volcanic aerosol loadings over the last 100-
years (around −0.2 W/m2) to be applied in both the control run and the future runs from
2006 onwards, or equivalently, to shift the volcanic forcing series such that control run and
future forcings, as well as the mean over the historical period are zero (see Taylor et al.
2009 for a further discussion of 2011; Meinshausen et al. 2011a). Analogously, GCMs
could apply a stratospheric volcanic aerosol loading in their control runs, as well as in the
post-2005 projections.

For the historical 20th century run (1765–2005), we derived monthly volcanic radiative
forcing from optical thickness of volcanic stratospheric aerosols as used in the NASA GISS
model (available from http://data.giss.nasa.gov/), using an optical thickness τ to radiative
forcing conversion of −23.5 W/m2/τ. We extended with zero forcing from 2001 to 2005,
resulting in a nominal positive forcing of 0.2 W/m2 after being shifted by the 100-year
historical mean. Furthermore, we scaled the resulting volcanic forcing by 0.7 in order to
obtain a best fit with historical temperature observations using our simple climate model—
which compensates for a potential limitation in simple and intermediate complexity models
to accurately model responses to volcanic eruptions using the standard forcing assumptions
(Tomassini et al. 2007; Meinshausen et al. 2009). Other forcings are assumed according to
IPCC AR4, as listed in Table 2.12 in Forster et al. (2007), such as stratospheric water
vapour changes due to methane oxidization.
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