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Abstract The free text notes typed by physicians during patient consultations

contain valuable information for the study of disease and treatment. These notes are

difficult to process by existing natural language analysis tools since they are highly

telegraphic (omitting many words), and contain many spelling mistakes, inconsis-

tencies in punctuation, and non-standard word order. To support information

extraction and classification tasks over such text, we describe a de-identified corpus

of free text notes, a shallow syntactic and named entity annotation scheme for this

kind of text, and an approach to training domain specialists with no linguistic

background to annotate the text. Finally, we present a statistical chunking system for

such clinical text with a stable learning rate and good accuracy, indicating that the

manual annotation is consistent and that the annotation scheme is tractable for

machine learning.
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1 Introduction

Clinical text in primary care electronic patient records is a source of rich, detailed

information that could be of great use for health service planning and for the study

of disease. However, unlocking that information at scale for research purposes is

hindered by processing difficulties caused by the peculiarities of clinical language

use, and a lack of development data due to the presence of sensitive information.

The main short term goal of most research in the area is to achieve a reliable

language processing foundation to allow more complex tasks such as named entity

recognition (NER) to reach a sufficiently reliable performance level. Achieving this

goal would allow recognised semantic entities to be associated with presence,

absence, or degree of certainty, and other attributes such as history of a health

condition, etc. If such processing tasks reach a certain level of reliability, they could

be used to avoid manual information extraction from clinical text and the manual

de-identification that is currently required.

Most general practices in the UK use software packages to store and maintain

their electronic health records (EHR) in structured form. The data is collected in

several databases, the General Practice Research Database (GPRD)1 is one of the

largest, with high quality data and linkages to other UK datasets, hosted in the UK’s

Medicines and Healthcare Regulatory Agency. While great efforts are being made

to process, interlink, and reuse the structured part of primary care patient records

(see Fig. 1) with other secondary care data, very little has been done to exploit the

information in the free text notes. The details about symptom and disease typed in

by the general practitioners (GP),2 have not only the potential to enrich their

structured counterparts, but in many cases they can be the only source of relevant

information. The latter is well illustrated by structured (coded) data entries such as

Had a chat to patient and Telephone encounter, which carry no medical meaning,

and rely solely on the information recorded in the text of the examination record to

convey details about the patient encounter (see Table 1).

A few studies have successfully made use of UK primary care clinical notes

primarily using heuristics and rule-based algorithms taking advantage of regularities

of the data in particular sub-domains (Koeling et al. 2011; Shah et al. 2012).

However, such methods are difficult to transfer even to a slightly different type of

data or task. To avoid these kinds of obstacles, current research in Natural Language

Processing (NLP) focuses on more generic Machine Learning (ML) methods. To

date no significant advances have been made in employing such methods on primary

care clinical text, mainly because of its non-canonical language, which is different

from the edited text normally considered in mainstream NLP research. The

language is characterised by extreme brevity of thought and expression, numerous

1 The GPRD was renamed to Clinical Practice Research Datalink. http://www.cprd.com/.
2 General practitioners are the UK’s version of family physicians.
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medical terms and jargon, ungrammatical constructions, spelling mistakes, and

irregular and unorthodox usage of punctuation. These qualities of the data require a

test set with gold standard annotation (ground truth) if the off-the-shelf NLP tools

are to be evaluated fairly. Moreover, successful use of any machine learning-based

method requires an adequate quantity of annotated clinical text for training

purposes. Certain similarities exist between primary care text notes and some types

of secondary care data such as radiology reports. However, using tools trained on

such data would be at a significant cost mainly due to the greater variety of topics

and vocabulary used in general practices as a whole, compared to radiology reports

for instance.

Ideally gold standard datasets should be developed cumulatively in the order of

core NLP processes—tokenisation, word normalisation, sentence segmentation, Part

of Speech (POS) tagging, syntactic parsing. However, considering the challenging

qualities of the data and the limited time and funding at our disposal, a successful

first step had to aim to create a gold standard that contribute the most, regardless of

its place in the order. The output of various state-of-the-art tools specialising in each

task was analysed in order to make a decision. Even though their performance was

not measurable without a gold standard it could be seen it was below the accuracy

figures usually reported. However, due to their complexity the efforts needed to

develop the first three tasks significantly outweighed the potential benefits of their

Fig. 1 Patient record content diagram

Table 1 Examples of examination records from the GPRD consisting of a structured entry (left)
and a text note (right)

Telephone encounter tel from wife pt v scared re mri next wed- ok for small dose dz

Constipation NOS 1 BM 3 days ago following 5 days without any. now no BM last 3 days either.

breast fed baby ! o/e abd soft. no palpable faeces. try lactulose 2.5 ml bd

Cardiac failure therapy Hxnsyx settled ? feels abit better OE creps R base only. jvp not seen. IMP

better re fluid status, rate still ok. P cont w bloods 2/7, rv 1w

Had a chat to patient re. cough at night; see letter from Mr *****
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improvement. We established that state-of-the-art POS-taggers perform to a

reasonable level, reaching 0.82 F1-score evaluated on a small subset of our data

(Savkov et al. 2014). However, we suspected that due to the sparsity of the data it

would be difficult to improve their performance munch beyond this, especially

given the significant proportion of tokens occurring once or twice in the whole

corpus. Additionally, the chunking output showed more robustness and potential for

improvement than dependency and constituent parsing, which are heavily affected

by missing words and lack of sentence boundaries. Therefore creating a chunking

gold standard was considered the most beneficial option.

We also considered adapting the methods for dealing with erroneous sentences

suggested by Foster (2007) in order to develop full syntactic annotation, but we

decided against it, because even if erroneous sentences are handled, sentence

boundary identification remains a problem. A method implemented by Fan et al.

(2013) follows this approach accounting for missing and spurious words by adding

special nodes in the annotation. It also simplifies the internal structure of some

phrases, making them flatter to avoid errors caused by ungrammatical expressions.

We see this approach as only slightly more complex than chunking, but still

probably less suitable for our data. Our analysis concluded that chunking identifies

enough syntactic structure to support NER, while it can be achieved through

sequence labelling, which reduces the negative effects of missing words and

sentence boundaries.

Here we present the Harvey corpus, a de-identified corpus of clinical text

annotated with syntactic chunks and semantic entities.3 Following previous research

in annotation of clinical text (Roberts et al. 2008; Fan et al. 2011), we developed a

set of annotation guidelines and trained four domain specialists to use them on

primary care text. Two specialists annotated the corpus data independently, after

which the third merged their annotations following a specific set of rules for

resolving annotation conflicts without adding new information. We evaluate this

annotation extrinsically by training a statistical chunking model and a semantic

entity recognition model using a widely used statistical tagger.

This article is organised as follows. Section 2 describes other corpora in the

biomedical domain and related research working with clinical notes. Section 3 gives

a detailed description of the GPRD and the specific qualities of primary care notes.

Section 4 describes the design and development of the corpus annotation, including

the scheme, guidelines, and the training of annotators. Section 5 outlines the process

of building the Harvey corpus, the data selection, the assembly of annotation layers,

and the final resource. Section 6 evaluates the corpus extrinsically by using it as

training and testing data in two practical tasks. Finally, Sect. 7 summarises the work

and considers possible future directions.

3 The corpus is named after William Harvey, the sixteenth century English physician and author of De
Motu Cordis, also known as On the Motion of the Heart and Blood, the first mature account of the blood

circulation process.
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2 Related work

In this section we summarise two areas of research relevant to this study. Firstly, we

present a list of corpora resources in and close to the clinical domain (Sect. 2.1), and

secondly, we present recent research giving concrete examples of the knowledge

contained in the GPRD data and illustrating the potential that could be unlocked by

better NLP tools (Sect. 2.2).

2.1 Related corpora

The term biomedical corpora is generally used to refer to text data collections from

the life sciences. They typically cover a very wide range of studies and types of

annotations, but generally keep to sources of scientific writing commonly found

through MEDLINE and PubMed. Processing such corpora using tools trained on

generic news text could be difficult due to the specific scientific, terminology-rich

language of their origin. Therefore they also focus on linguistic annotation that

allows the testing and development of core NLP tools better suited to that domain.

Given the similarities discussed above, we think it is important to review here some

corpora with more widely recognised impact in the field. In addition, Verspoor et al.

(2012) provide a link to a more comprehensive list of publicly available corpora in

the domain.4

GENIA (Ohta et al. 2002) and GENETAG (Tanabe et al. 2005) are two of the

best established and widely applied biomedical resources. They both contain protein

and gene annotation, providing a solid base for Information Extraction (IE)

research. GENIA was manually annotated by domain experts using an ontology

developed in parallel with the annotation process. Tanabe et al. (2005) describe

GENETAG, which was created using an automated approach to ensure a balance

between negative and positive examples. They used a Naı̈ve Bayes classifier to

determine the likelihood of a document containing a gene or protein name. The

selected sentences were tagged with the AbGene tagger (Tanabe and Wilbur 2002)

and finally the annotations were manually transformed by three domain experts. The

Colorado Richly Annotated Full-Text (CRAFT) corpus (Cohen et al. 2010) is a

more recent resource that contains 97 Open Access journal articles with syntactic,

coreference, and concept annotations. Initially coreference was annotated using a

modified version of the OntoNotes guidelines (Hovy et al. 2006), but later Verspoor

et al. (2012) added syntactic annotation following the Penn Treebank guidelines

(Bies et al. 1995) and the BioIE addendum (Warner et al. 2004). At the same time,

concept annotation was added, identifying all mentions of nearly all concepts from

nine prominent biomedical ontologies and terminologies (Bada et al. 2012).

During the past ten years a number of clinical corpora have been developed by

the NLP community, thereby facilitating many of studies in the area (see Table 2 for

a non-exhaustive list), and although data access is still a considerable problem,

shared tasks and challenges have played an important role in the development of the

field, providing relatively easy access to the same resources to a wider range of

4 http://compbio.ucdenver.edu/ccp/corpora/obtaining.shtml.
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scientists. Perhaps the most notable such group is the i2b2 series, which also

included a community annotation task. Uzuner et al. (2010b) present a set of

guidelines for the annotation of seven attributes associated with medications in

discharge summaries. The guidelines were developed through an iterative process

during which a group of medical students annotated a few discharge summaries and

provided feedback used for revision. The guidelines were used in the i2b2

community annotation experiment, comparing the inter-annotator agreement (IAA)

(measured in F1-score) of community annotator teams and expert annotator teams.

The authors found that the IAA of the two teams is comparable, and concluded that

involving the community in fairly complex annotation processes is an accept-

able alternative to using domain experts. The second part of the task was to

automatically extract medication information (Uzuner et al. 2010a). The rest of the

i2b2 challenge corpora were provided to the community in order to promote

research in particular areas. Uzuner et al. (2007b) show the results of the

participating automatic de-identification systems, trained and evaluated on a corpus

of 889 de-identified discharge summaries. A subset of that corpus containing 502

summaries was also annotated with patient smoking status for the purposes of one of

the challenge subtasks (Uzuner et al. 2007a). Another i2b2 challenge was aimed at

identifying obesity and its comorbidities in clinical text using a corpus of 1237

discharge summaries (Uzuner 2009). A subset of this corpus was later annotated

with entities and relations pertinent to congestive heart failure as part of the

PhenoCHF corpus (Alnazzawi et al. 2014). The 2010 i2b2 challenge focused on

identifying medical concepts, assertions, and relations (Uzuner et al. 2011). The

organisers provided the participants with 871 discharge summaries annotated

accordingly. Finally, a corpus of 310 discharge summaries annotated with temporal

relations were provided for the latest i2b2 challenge (Sun et al. 2013). The data

annotation of all challenge corpora kept to using two independent annotators and an

adjudicator when possible. However, it is interesting to note that the adjudicators of

the last challenge corpus were also allowed to edit or remove annotations in cases

where the other annotators disagreed.

Other shared tasks have focused on document level annotation of clinical

corpora. The TREC 2011 and 2012 conferences Medical Records tracks used 17,264

clinical documents of various types from the University of Pittsburgh NLP

repository for a topic modelling task (Voorhees and Hersh 2012). Pestian et al.

(2007) present a small corpus of radiology reports annotated with ICD-9-CM codes.

The CLEF corpus (Roberts et al. 2008, 2009) is another prominent clinical text

resource built to assist the development and evaluation of an IE system as part of a

larger framework for the capture, integration and presentation of clinical informa-

tion. The corpus includes 565,000 de-identified records of 20,234 deceased patients

of the Royal Marsden Hospital oncology centre. An annotation scheme was

developed using a cyclic process of annotating, analysing and improving. The

records were first annotated by two medical domain experts and then the two sets of

annotations were adjudicated by a third medical expert.

Few studies have focused on dealing with core NLP issues such as POS tagging

and parsing of clinical text. Pakhomov et al. (2004) describe the annotation of 271

clinical notes (100,650 tokens across 7299 sentences) using the Penn Treebank
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guidelines Santorini (1990), achieving 87.95 % average agreement between three

medically trained annotators calculated using Cohen’s kappa (Cohen 1960). More

recently, Fan et al. (2011) presented two sets of 25 annotated progress notes from

Kaiser Permanente Southern California and the University of Pittsburgh Medical

Center, a subset of the i2b2/VA challenge. They were annotated with POS tags for

the purpose of developing and evaluating POS tagging models. The corpus

comprises 31,400 tokens in 3283 sentences annotated using a modified version of

the original Penn TreeBank part-of-speech tagging guidelines (Santorini 1990). A

subsequent study on part of the same data presented a set of guidelines for syntactic

parsing of ill-formed clinical sentences, and a Treebank of 1100 syntactically

annotated sentences from the i2b2/VA challenge (Fan et al. 2013). The presented

guidelines are an extended version of the original Penn TreeBank II bracketing

guidelines (Bies et al. 1995). They were modified to help the annotators handle the

non-canonical language of clinical text by flattening certain syntactic constructions,

introducing a mechanism for handling omitted words, and addressing other lesser

issues in clinical text. The authors report IAA F1-score reaching 0.93 on the final set

of 450 sentences and parsing performance F1-score reaching 0.81 using a statistical

model trained on mixed data (newspaper and clinical text).

2.2 Research using UK primary care data

The information in UK primary care records is an important medical research

resource, but so far only a small fraction of its free text part has been extracted and

used. Some of the first studies in this area show that the information in the free text

has great potential (Shah et al. 2012; Koeling et al. 2011).

The Freetext Matching Algorithm (Shah et al. 2012) is an automated method for

extracting information from free text. The algorithm uses dictionaries of Read code

terms (Bentley et al. 1996) and ‘‘regular’’ words, as well as spelling correction

software to make the language more canonical. Then it uses synonym look-up

tables and phrase patterns to identify diagnoses, dates, and selected test results. The

algorithm creates approximate matches between words and expressions in the free

text on one side, and Read and OXMIS5 codes on the other. It was tested on two sets

of 1000 records—one general and one associated with death—each taken from the

GPRD. The algorithm achieved 0.98 precision and 0.93 recall on the death related

dataset, and 0.92 precision and 0.77 recall on the other dataset. The authors also

presented a cause of death detection algorithm aided by the Freetext Matching

Algorithm to address the cases of cause of death recorded only in the free text. They

conclude that the algorithm has achieved sufficient precision and it may facilitate

research using patient record free text, particularly for extracting cause of death.

Koeling et al. (2011) annotated the records of 344 women in the year prior to an

ovarian cancer diagnosis, and developed a method for automatic symptom detection

in free text notes. The study was aimed at finding the incidence of five common

5 The Oxford Medical Information System (OXMIS) was an earlier terminology system used in primary

care computer systems from 1987. Practices switched over to the Read code system at different times in

the 1990s (Shah et al. 2012).

530 A. Savkov et al.

123



symptoms of ovarian cancer. The estimated incidence of of each symptom in the

manually tagged text was at least 40 % points higher than the structured data alone.

The automatic method developed for the study was able to extract a significant

proportion of this information (0.46 recall) with high precision (0.96). The

automated approach was intended to aid medical researchers who wish to validate

studies based on codes, or to accurately assess symptoms, using information

automatically extracted from free text.

3 GPRD data

We have created the Harvey corpus by annotating de-identified data from the

General Practice Research Database, a database of longitudinal primary care

medical records. The database contains comprehensive observational data from

general practices, which makes it a valuable resource for a broad range of research

areas, such as clinical epidemiology, disease patterns, disease management, research

outcomes, and drug utilisation. Its data is gathered from primary care medical

records where GPs and other health workers input information on events regarding

their patients as structured data and free text. Structured data varies among the

several software systems certified by the National Health Service (NHS), however, a

Read code (Bentley et al. 1996) and a term associated with it are always present in

each record (see Fig. 1). The Read codes are a clinical terminology system used in

NHS primary care.6 The system goes beyond the expressive power of diagnosis

encoding, being able to encode a wide range of patient phenomena, not specifically

restricted to clinical terminology, such as administrative items, social circum-

stances, ethnicity, and religion.

The language and content of the free text is related to the role of GPs in the NHS.

They are the gatekeepers to specialist care, charged with basic care for patients, and

initial assessment and recommendation for specialist treatment. They are organised

in small practices of several practitioners set up independently from the hospital

system. Apart from the correspondence with specialists, GP notes are mainly

intended for use within the same general practice they were created at.

The free text notes discussed in this study were obtained under a license with a

programme of research The Ergonomics of Electronic Patient Records funded by

the Wellcome Trust. They fall into three major categories: letters to and from

specialists; test and scan results; and general notes of a patient visit or interaction

(see Fig. 1). The letters are usually very descriptive and detailed, grammatically

well written, and generally meant to clearly communicate a message between a

specialist and a GP. The test and scan results primarily contain result values, but

sometimes also additional comments. The general notes are about various patient

interactions—telephone encounters, home visits, hospitalisation, etc.—but mostly

they are about interaction with patients at a general practice. These kinds of notes

6 The UK government has committed to migrating the primary care system to SNOMED CT by the end

of 2016 and the whole NHS system by the end of 2020 (National Information Board 2014). Mapping

tables between the standards can be found at https://isd.hscic.gov.uk/trud3/.
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are often divided into a part that describes what the patients said about their

problems, and a part that records the GP’s train of thought during examination,

which might variously include observations, conclusions, reflection on alternatives,

and proposed further action. The two parts are commonly separated by a phrase or

an acronym that roughly means ‘‘on examination’’.

The general notes, as illustrated in Table 1, are written in a sub-language

characterised by extreme brevity and telegraphic style of expression. The quality

and presence of punctuation varies from completely missing to well placed commas

and sentence markers. Spelling mistakes, abbreviated words or jargon, and frequent

ungrammatical constructions are also present. Additionally, parts of the data have

been redacted during the de-identification process, and replaced with tilde character

strings. These characteristics make the notes challenging to fully comprehend for

someone without medical training, and difficult to process by conventional NLP

tools.

4 Annotation design

When developing a new annotated corpus, one of the key decisions is whether to

adopt an existing annotation scheme and guidelines or design new ones. Even

though there is an established chunk annotated corpus, namely the CoNLL-2000

shared task corpus (Tjong Kim Sang and Buchholz 2000), there are no established

guidelines for its chunk annotation scheme. Picking a particular annotation

scheme for semantic entities also seems difficult as even though there are quite a

few annotated resources, they are usually quite specific and dependent on the task

they were designed to support. Perhaps the only exception to this is TimeML (ISO

2008), which was used in a number of cases as a basis for the scheme definitions and

guidelines for temporal events.

Another important issue is the choice of annotators and their background.

Roberts et al. (2009) present evidence that clinically trained annotators are better

than linguists and computer scientists at annotating clinical records with semantic

relations. However, there is no clear evidence that this is true for linguistic

annotation such as chunking. On the other hand, Fan et al. (2013) uses linguist

annotators for a syntactic annotation of malformed POS-tagged sentences.

Ultimately the choice of annotators depends on the amount of effort and training

that they would need to achieve comparable results. Our intuition was that chunking

should be relatively easy to teach to medical students with basic understanding of

grammar, while teaching linguists clinical vocabulary and some basic contextual

knowledge seems like a difficult task. Therefore we chose to train fourth year

medical students with substantial medical knowledge and sufficient experience with

GP notes as annotators. However, achieving good results depended also on keeping

the annotation as simple and clear as possible to minimise the required linguistic

training. Therefore, we chose to develop our own scheme and guidelines for the

Harvey corpus, based on a widely used annotation scheme.

The choice of suitable annotation tool was a more technical, but nonetheless

important issue. We chose BRAT (Stenetorp et al. 2012), because of its clean and
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simple web-based interface, flexibility, and centralised data storage. It allowed us to

give remote access to our annotators, while preventing them from copying the text

they were annotating.7 It also logged the time stamp of all annotations, which

allowed us to roughly track the time periods the annotators were working for.

This section describes in detail the design and refinement of the annotation

scheme and guidelines. We developed them in a fashion similar to the CLEF corpus

and guidelines (Roberts et al. 2009) which adheres to the principles of language

resource annotation for information retrieval formulated by Boisen et al. (2000).

First, we developed a draft version of the scheme and guidelines (see Sects. 4.1,

4.2), and then we refined them incrementally with the help and feedback of two

medical students who became our first annotators (see Sect. 4.3). Finally, we trained

another medical student to both be able to annotate text and adjudicate the

annotations of the other two (see Sect. 4.5).

4.1 Annotation scheme

The greatest challenge in the initial design of the annotation scheme was to find the

appropriate balance between encoding enough information to support further

research, and achieving clarity, simplicity, and conciseness in the guidelines. The

annotation scheme had to capture as much syntactic structure as possible, while not

‘‘inventing’’ elements that were not there in order to create canonical structures.

Adopting chunks as the main units of annotation was a logical solution as Abney

(1991) defines them as ‘‘the parse trees that are left behind after we have unattached

problematic elements’’. In other words, chunking trades the levels of the parse tree

closer to the root (the longer range relations) for better quality in the levels closer to

the leaves (shorter range relations). But while chunking sacrifices information in

standard grammatical text, it is appropriate for clinical notes, because there is less

tree structure to be lost.

To our knowledge the only available comprehensive chunking guidelines were

presented by Bharati et al. (2006), but they were designed for Indian languages and

annotators with linguistic background. A more popular approach to chunking, is the

pruning of full parse trees, as suggested by Abney (1991) and implemented by

Tjong Kim Sang and Buchholz (2000) on a subset of the Penn TreeBank (Marcus

et al. 1993) for the CoNLL-2000 chunking challenge. Given these circumstances we

developed a new annotation scheme and a set of matching annotation guidelines

acknowledging the telegraphic language style and many omitted words in the data.

We also considered the background of the annotators, as they were expected to be

native English speakers with limited understanding of linguistic theory and

terminology such as parts of speech and syntax.

After the preliminary discussions we designed an initial annotation scheme and

applied it to a few records to be able to discuss problems and possible

improvements. The initial set of chunk types comprised of noun phrase chunks

(NPs), adjectival phrase chunks (APs), main verbs (MVs), and prepositional phrase

7 We implemented a small modification to the BRAT source that prevented the users from directly

copying the text on their screens.
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chunks (PPs). After a few iterations we made several alterations to the set of

annotation types in order to make them clearer and simplify the task. Base noun

phrase chunks were introduced because they allowed more flexible analysis than full

noun phrases. Prepositional phrase chunks were excluded as many of them can be

reliably recognised using pattern matching on top of NPs. The AP definition was

altered to include only comparative expressions and predicative expressions such as

brown and better in My dog is brown and Patient’s tummy feels better.
On another note, producing language resources such as the Harvey corpus

requires significant amount of money, time, and labour, which prompted us to look

for more annotation types that could be added to the scheme in order to make the

annotation process more cost efficient. We introduced four types of semantic

annotation as we thought they were likely to be useful in future research.

Quantity, frequency, and time of occurrence are important pieces of information

not only for symptoms and diseases, but also for drug prescription and

administration. They may contribute to symptom and disease recognition, and they

are also useful for healthcare related research, such as studying drug side effects.

Quantitative expressions (QE) cover all forms of the various quantities recorded in

the data, such as pulse 90, 20 ml, etc. They should not be mistaken for identification

numbers or any other non-quantities. The only quantities that are not annotated as

QEs are units of time, e.g. 1 h. We define temporal expressions (TE) as words,

phrases or clauses that contain information related to time. They can manifest as a

reference to a specific moment in time (in two days), the duration of an event (for
two hours), or an event’s frequency (twice a day). Even though using TimeML for

clinical text was popularised with the last i2b2 challenge (Sun et al. 2013), we

thought it would be overcomplicating the annotation scheme given that we did not

intend to keep any connection between the records in the corpus. Location is also an

important aspect of the information contained in the corpus. The location of the

patient encounter (home vs. clinic) might be important, as well as the locus of a

symptom (joint pain) or a disease (lung cancer). We introduced locative expressions
(LE) to mark these two types of locations in the corpus. Finally, there are a number

of expressions, such as o/e, that mark the border between patient narrative and the

GP’s train of thought—we call them on examination expressions (OE). The ability

to recognise such markers could provide contextual information. For example,

speculative diagnoses before the marker are likely to be associated with the patient

and after the marker with the GP. In this paper we refer to all four semantic

annotation types described above as expressions or Named Entities (NE) even

though very few of them contain any names.

We consider the two groups of annotations—syntactic chunks and semantic

entities—to be two separate almost independent sets of annotations. Therefore, it is

inevitable that annotation embedding will occur in some cases, and we had to

provide a set of rules to govern this. Sequential taggers can assign only one label per

token, therefore if there are parallel annotations there should be complex tags,

which would greatly increase the size of the tagset as all combinations should be

accounted for. In some cases such increase might be an acceptable trade-off,

however, in our case the relatively small size of the corpus and its expected sparsity
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make a large tagset undesirable. To ensure that no embedding is done within the

same tagset we introduced the following rule:

1. Rule of structure simplicity: no chunk annotation can be embedded in another

chunk annotation, and no expression annotation can be embedded in another

expression annotation.

Embedding annotations from different groups gives us the opportunity to make

assumptions about the annotations, which may be helpful during the annotation

process. We assume that all annotations should be representable as syntactic

constituents and therefore if their boundaries overlap, one of them must contain the

other. We introduced the following rule to reflect this assumption:

2. Rule of compatibility: embedding may occur only when the annotation borders

coincide or when one of the annotations is inside the other (inclusive border

indices)

Figure 2 illustrates the correct and incorrect use of embedded annotations according

to the rules defined above. The embedded annotations in the first sentence contradict

the rule of simplicity: an AP is embedded in a NP, and a QE in a TE. The embedded

annotations of the second sentence partially overlap each other without any of them

fully containing another annotation. The annotations in the third sentence show the

correct way of embedding complying with both rules.

4.2 Annotation guidelines

We developed a document to describe the annotation types and explain how difficult

cases should be treated, to ensure consistency. The goal was to design it as a training

manual with enough examples so that it could be used as a reference during

annotation too. It was meant to address the expected lack of linguistic knowledge of

the annotators by giving a short introduction to English grammar.8

After an introduction to the project goals and expectations, the first part of the

guidelines introduces the reader to basic grammar. It describes the concepts of

phrases and parts of speech, concentrating on verbs, NPs, and APs in particular. The

second part provides detailed definitions of the annotation types, along with

examples and special cases that can be used as a quick reference manual during

annotation. The last part of the guidelines helps increase the quality and consistency

of the annotation by giving practical advice on some common issues and detailed

instructions on how to handle particular situations—they urge the annotators to be

confident in their opinion, while not annotating text they do not understand. The

annotators are also encouraged to consider the likely content of redacted text in their

analysis, and to annotate acronyms and abbreviations whenever they can be

identified as chunks or expressions. Key issues such as punctuation, conjunctions,

and embedding of annotation are also discussed in the final part of the guidelines, as

well as basic usage of the BRAT platform.

8 Some linguistic theory and explanations were simplified to make them more accessible to annotators

without a linguistic background.
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BRAT allows the annotators to work with a web-based interface from a remote

location (see part of the annotation window in Fig. 3), while preventing them from

downloading any of the data. Finally, the guidelines describe the adjudication

process and the role of the third annotator, which follows the example of Roberts

et al. (2008) in restricting their duties to resolving annotation conflicts without

adding or removing any information. The annotators are considered to agree when

both of them have provided the same borders and tag for an annotation. In cases

where only one annotation has been provided, it is considered to be correct as it is

the only one available. The judge should intervene only in cases where candidate

annotations overlap, using their own judgement to select the better annotation.

4.3 Inter-annotator agreement

Inter-Annotator Agreement (IAA) was used as a quality metric and a source of

feedback during the annotation development (see Sect. 4.5). The standard IAA

evaluation metrics like Cohen’s kappa (Cohen 1960) and Krippendorf’s alpha
(Krippendorff 2003) cannot be used, because both metrics rely on computing the

probability of agreement or disagreement by chance, which are negligible due to the

relatively unrestricted position and length of each annotation. Roberts et al. (2008)

approached the issue by calculating the proportion of correct annotations with

respect to the total number of annotations:

Fig. 3 BRAT annotation showing labelled spans

Fig. 2 Examples illustrating
correct (line three) and incorrect
(lines one and two) use of embedded
annotations
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IAA ¼ matches

matchesþ non� matches
ð1Þ

Other studies (e.g. Alnazzawi et al. 2014) use an arguably more suitable ap-

proach adopting traditional information retrieval metrics as suggested by Hripcsak

and Rothschild (2005). Similarly we adopted the MUC-7 test scoring rules (Chin-

chor 1998), which reflect the particular word span issues of our task (see Eqs. 2, 3).

Five of the original six basic MUC-7 categories were used to calculate the scores.

The NON-COMMITTAL category was not included in the calculations as it does not

apply to our data.

Precisionstrict ¼
Correct

Correct þ incorrect þ partialþ spurious
ð2Þ

Recallstrict ¼
Correct

correct þ incorrect þ partialþ missing
ð3Þ

We calculate strict and relaxed IAA, depending on the treatment of partial

annotation matches. For example, door and the door in Fig. 4 are counted as

incorrect NP annotations in strict mode (see Eqs. 2, 3), while the relaxed calculation

counts them as correct (see Eqs. 4, 5) as long as one of the annotations completely

contains the other. Overlapping annotations, such as city bus and bus driver, are
considered mismatches by both calculation methods.

Precisionrelaxed ¼
Correct þ partial

Correct þ incorrect þ partialþ spurious
ð4Þ

Recallrelaxed ¼
correct þ partial

correct þ incorrect þ partialþ missing
ð5Þ

We calculate the F1-score as the harmonic mean of precision and recall.

4.4 Refinement

Inspired by the guideline development and refinement process described by Roberts

et al. (2008), we set up a similar iterative process of annotation, evaluation, and

refinement of the annotation scheme and guidelines. The plan was to send out small

batches of 25–50 records to the annotators and analyse their results to improve the

guidelines to a sufficient level. Our aim was to create a set of guidelines that would

allow anyone to learn and produce a reasonable quality annotation with minimal in-

person training. Such training was avoided initially in favour of independent self-

training, because we believed that teaching by example might prevent the annotators

from learning the appropriate linguistic generalisations.

Fig. 4 Two different annotations of
the same text
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The two domain specialists (annotators A and B) annotated fifty records remotely

over the course of two weeks during the first annotation round. The agreement

achieved only 0.35 F1-score, which is the lowest score measured throughout the

experiments. An error analysis identified a few problems with the guidelines,

including an ambiguity in the definitions of NPs and APs, which led to a many

errors as they comprise a dominant part of the annotations. The two annotation types

needed to be made more clearly distinguishable from one another. The basic

grammar section had to be simplified, gerund definitions had to be added, and on-

examination expressions needed to be specified as markers between text sections.

The error analysis conclusions were also confirmed by feedback from the

annotators. They suggested the examples in the guidelines should be improved

and expanded. This prompted us to create an interactive tutorial using the BRAT

platform showing definitions of all annotations with made-up examples, while

testing the annotators against a solution key. During this refinement round very little

was changed regarding the definitions of semantic entities, as the annotators did not

feel confident in creating embedded annotations and annotated them sporadically.

The updated guidelines led to significantly better results in the second annotation

batch. The agreement in all chunk categories and the on-examination expression

improved, as well as overall agreement, which reached 0.43. However, there were

considerably more instances of the other expression annotations, which decreased

agreement in those specific categories even more.

Next we organised a workshop on the guidelines before the second refinement

stage in order to gather more feedback from the annotators regarding unclear or

insufficient information in the guidelines. We engaged the annotators in a series of

discussions about each annotation type, stressing the relevant grammar points using

non-medical examples and attempting to lead them to a correct understanding of the

annotation through asking the right questions.

During the workshop it became obvious that the guidelines needed to explain the

different roles of participles because the annotators experienced difficulty in

distinguishing passive voice from adjectives, and continuous verb forms from

gerunds. They also continued to avoid embedding different types of annotations,

because the embedding rules were not clearly explained or illustrated by examples

in the guidelines.

The third annotation batch had a steady overall improvement to 0.50 agreement

in all categories except APs. The APs continued to be a confusing concept for the

annotators, so APs were redefined to be as simple as possible, and an extensive

range of examples was added. We also noted that even though certain aspects of the

annotation improved and became more consistent, others worsened significantly in a

way that could not be attributed to an ambiguity or lack of information in the

guidelines. This made us look for other reasons why the annotators could be making

errors. The BRAT platform log showed that the annotators worked on small 5–10

record subsets at a time, with breaks of at least a day between them. This confirmed

a suspicion that the annotators were not fully concentrating when doing parts of the

annotation, which often made them inconsistent. It became clear that it would be

difficult to preemptively list all possible wrong interpretations of the guidelines and

adjust the guidelines accordingly or warn the annotators about them. Thus even
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though the IAA results were improving, a change of training approach was required.

We decided that the annotation scheme and guidelines had reached a stable level

and our efforts should focus on setting up a productive environment for the

annotation process.

4.5 Annotator training

The observations we made during the first three annotation rounds suggested that

the circumstances of the annotation process could be just as important as the

training instructions. The annotators were always advised to work on as many

records as possible in a single session, but during the first three batches they did not

follow that advice, which resulted into many short annotation sessions with low

consistency. Another observation, made by the annotators themselves, suggested

that their understanding of the annotation deteriorates over time, for example during

the 2-week gap between the second and third annotation batches. They also

consistently found that the first few records in every session would take them more

than the usual time and effort.

We addressed these issues by setting up the annotation sessions in a university

computer lab rather than at home, with one of the authors present to answer

questions, restricted to the general interpretation of the guidelines. The new setup

aimed to increase annotator concentration, while also introducing some training into

the process by making them generalise their questions in order to receive answers. A

week before the fourth annotation round, a short tutorial was organised to refresh

their skills and to address some of the error patterns from the previous annotation

rounds. The new annotation strategy resulted in a jump in the overall agreement to

0.76 F1-score, and a general increase in all separate categories, most notably in the

chunks. Three out of the next four annotation sessions yielded similar results within

5 % points (see Fig. 5), which demonstrated that the annotators had achieved a

sufficient level of consistency to start producing annotation for the corpus.

Fig. 5 Inter-annotator agreement during the training period
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The training of the third annotator (referred to below as annotator C) started

when annotators A and B had almost completed their training. The selected domain

specialist was given a short introduction to the project and the guidelines before

being assigned the first annotation batch. The annotation quality of the first batch

appeared encouraging although it was hard to evaluate it using IAA as the

annotation quality of the other annotators was low at the time. After the first batch,

annotator C was given two more annotation rounds with feedback and took part in a

workshop along with the other annotators at the end of the training phase.

Unfortunately annotator A exited the project for personal reasons, and due to

scheduling issues (the annotators were still students) was replaced by annotator C
for the last three annotation batches of the corpus (see Fig. 6a). We trained a fourth

annotator (annotator D) to both annotate and adjudicate as we did with C, although
we used a slightly more hands-on approach with more detailed error feedback.

Table 3 shows the IAA between C and D during their training period. The results

are much higher than had been achieved by A and B in the development stage, but

they are also lower than their results after the guidelines were completed (see

Fig. 5).

In Table 4 we present the pairwise IAA of all annotators on a small dataset. None

of the annotators had seen the data before they annotated it. While still being the

lowest, we note that the agreement between C and D has improved significantly

after training. In fact, they score better when paired with the other annotators. The

complete agreement between A and C on expressions may seem odd, but it can be

Table 3 IAA between annotators C and D on their training annotation batches

Strict Relaxed

Precision Recall F1-score Precision Recall F1-score

Chunks 0.65 0.64 0.65 0.82 0.80 0.81

Expressions 0.50 0.56 0.53 0.69 0.78 0.73

All 0.57 0.57 0.57 0.71 0.71 0.71

The results in all are calculated as micro-averages

(b)(a)

Fig. 6 a IAA for the nine annotation batches of the corpus, in the order they were annotated; b IAA of
the annotation types across the whole corpus
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explained by the fact that there are only 15 observations in the dataset. Such a low

density is not unusual for the whole corpus as we will show in Sect. 5.3.

5 The Harvey corpus

The Harvey corpus is a collection of linguistically annotated de-identified 750

primary care notes (around 17,656 words, 22,914 tokens) with three layers of

linguistic annotation. The first layer contains POS tags automatically assigned by

cTAKES (Savova et al. 2010). The second and the third layers consist of manually

annotated syntactic chunks and semantic entities. The rest of this section provides a

description of the data selection process (Sect. 5.1), a more detailed explanation of

the text processing and data manipulation that produced a single coherent data

structure (Sect. 5.2), and an analysis of the annotation statistics (Sect. 5.3).

5.1 Data selection

The Harvey corpus data was randomly selected from three GPRD data samples

obtained for PREP. These samples were compiled by selecting a number of patients

with relevant diagnoses and retrieving all their records for the preceding year.

Therefore, even though the Harvey source data has some diversity, it is not

representative of the entire GPRD. Additionally, before the random selection, the

data was filtered to remove all notes under five tokens, notes containing only test

results or image attachments, and communication with specialists. The latter records

were filtered out because the language of the letters is quite formal and detailed,

which makes it completely different to of the notes.

5.2 Data assembly

The Harvey corpus consists of a set of records, each one about a patient encounter.

Each record consists of a Read code term, followed by a sequence of tokens. The

records were tokenised in two stages—before and after the annotation. The first

stage used simple, conservative rules to tokenise regular use of punctuation, while

the second stage involved tokenisation rules that were more specific to the patterns

in the text. The second stage also integrated information from the manual annotation

layers to identify additional token borders. We evaluated different statistical POS

tagging models on one hundred records manually annotated with the PennTreebank

tagset by one of the authors. The model from the cTAKES NLP system (Savova

et al. 2010) was selected for the tagging of the Harvey corpus as it achieved the best

performance on this test set. Our choice was further supported by the observation

that the model correctly tags some idiosyncratic medical abbreviations such as c/o
(complains of). Finally, syntactic chunks and expressions were manually annotated

as described in Sect. 4.
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5.3 Data analysis

Compared to popular clinical and biomedical corpora, the Harvey corpus is quite

small (see Tables 2, 5), but still comparable to the those with linguistic annotation

in the clinical domain (Pakhomov et al. 2004; Fan et al. 2011, 2013). On average,

semantic entities are longer than chunks, which is to be expected from their

definitions. QEs normally contain a quantity and a unit of measurement; TEs are

very variable, ranging from short jargon expressions such as 2/7 (meaning two

days), to full adjunct constructions like a month before cancer diagnosis; and OEs

are dominated by the three character abbreviation O/E. LEs tend towards a single

token average, because they typically occur as modifiers to a head noun in

compound nouns such as abdomen pain, or abbreviated in one token—ULQ (upper

left quadrant). Syntactic chunks tend to be short and frequent as a consequence of

the telegraphic nature of the notes. The average number of tokens per chunk is

below 1.5, which is indicative of a large proportion of single token chunk

annotations. While this is to be expected from MVs and APs, the frequency and

brevity of NPs certainly reflects the qualities of the data and its language (see

Fig. 7a).

Another important aspect of the data is the gap between the frequency of NPs and

the other annotation types. The figures in Table 5 suggest that only NPs and MVs

are likely to occur more than 5 times in a single record.

The IAA shows a continuation of the positive trend from the training stage across

the nine batches in which the corpus was divided for the annotation process (see

Fig. 6a). The relatively large difference between the strict and relaxed agreement

scores for most annotation types (5 % on average, see Fig. 6b) shows that a

significant amount of the conflicting annotation could be overcome with minimal

intervention during the adjudication process. This gives us further reason to believe

in the good quality of the final corpus annotation. The agreement improvement

varies from less than 1 % (OEs) to over 13 % (TEs) depending on the

characteristics of the annotation types. Main verbs are much less prone to chunk

boundary disagreement, because in most cases they are a single word. On the other

Table 4 Pairwise IAA between all annotators

Chunks Expressions

AB CD AC BC AD BD AB CD AC BC AD BD

PrS 0.86 0.82 0.90 0.81 0.86 0.85 0.79 0.60 1.00 0.79 0.60 0.50

ReS 0.84 0.75 0.91 0.84 0.78 0.78 0.73 0.90 1.00 0.73 0.90 0.70

F1S 0.85 0.78 0.90 0.82 0.82 0.82 0.76 0.72 1.00 0.76 0.72 0.58

PrR 0.90 0.92 0.90 0.84 0.94 0.92 0.79 0.67 1.00 0.79 0.67 0.50

ReR 0.88 0.84 0.92 0.87 0.85 0.84 0.73 1.00 1.00 0.73 1.00 0.70

F1R 0.89 0.88 0.91 0.86 0.90 0.88 0.76 0.80 1.00 0.76 0.80 .58

S and R subscripts stand for strict and relaxed agreement. Columns represent annotator pairs

denoted with their letters
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hand, temporal expression boundaries could be difficult to identify with certainty in

more complex cases such as periods of time (e.g. more than six months).

5.4 Corpus availability

The data that the Harvey corpus was drawn from was obtained as part of the Patient

Records Enhancement Programme under a license from the GPRD. Currently we

are not permitted to share any of the data with anyone not covered by our license

agreement. However, we are working towards a bid for the public or at least a less

restrictive release of the data. Meanwhile we have made the annotation guidelines as

well as the annotation (without the text) available on GitHub.9

6 Extrinsic evaluation

The lack of an established quality metric for annotated corpora makes it difficult to

compare and evaluate them. Therefore, corpora are often extrinsically evaluated

through the impact they make on an application task. Following this methodology

we set up experiments to evaluate the performance of two statistical models trained

on Harvey corpus data: one for chunking, and one for named entity recognition. We

also set up a comparison experiment using a randomly selected dataset (of size

comparable to the Harvey corpus) extracted from the Penn TreeBank chunk data

from CoNLL-2000. In all three experiments we used YamCha (Kudo and

Matsumoto 2001, 2003), a state of the art SVM-based sequential tagger, to generate

the models. The first two experiments aimed to establish if the corpus provides

enough training data to achieve adequate results for the tasks of syntactic chunking

and entity recognition. The third experiment aimed to compare the learning rates

and the difference in performance between the Harvey data chunking model and one

trained on edited text.

Figure 8 shows the accuracy of the models estimated using bootstrapping (Efron

and Tibshirani 1997) as the training data size increases. Instead of repeatedly

analysing subsets of the data, as in cross-validation, bootstrapping repeatedly

analyses sub-samples of it. Each sub-sample is a random sample with replacement

from the full sample. The number of used sub-samples typically ranges from 50 to

2000 depending on the task and its goals. Each data point represents the mean F1-

score of five hundred repeated evaluations using sub-samples of the data. As a

result, the average standard error of the mean is relatively low: 0.14 % points for the

chunks curve, and 0.30 for the semantic entities curve.

Table 5 Harvey Corpus statistics: annotation counts, average tokens per annotation, and average

annotations per record

NP MV AP Chunks TE LE QE OE NEs All

Count 6304 2613 893 9810 605 481 321 73 1480 11,290

9 http://github.com/harvey-corpus.
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The shape of the Harvey chunking learning curve and the decreasing standard

deviation suggest that the corpus contains consistent chunking annotation allowing a

stable learning process. The increasing curve trend indicates that more training data

should improve the performance, but it is difficult to predict to what extent. The

difference with the edited text learning curve is large at the beginning, around 10 %

points, and gradually increases to over fourteen and a half percentage points. This

increasing difference suggests that it is unlikely that the Harvey curve will catch up

given more data with the current training configuration of the model. However,

Fig. 8 also shows that the current corpus size does not provide enough data to reach

state of the art results even with regular text. If we assume that the trend in the

learning curves remains, then the current chunking performance should increase

from 0.74 F1-score (0.76 precision, 0.74 recall) to well over 0.80 if provided with

the same amount of training data as the state of the art chunking models. There are

also a number of factors that could easily improve the chunking performance. Our

experiment did not try to adjust the training process in any way, but used the

standard YamCha feature set for the CoNLL data; optimising features should help.

Improving the quality of the POS tags of the Harvey corpus should also provide

some improvement. We also expect that the proportion of unknown words

encountered by the clinical data model is much higher than that of the Penn

TreeBank model, which leaves more room for improvement through techniques

tackling that issue.

The entity recognition model has a steeper learning curve, but a much lower

performance at 0.43 F1-score with a significant gap between precision(0.69) and

recall (0.32). These results are promising, because the distribution of the entity

annotation is less balanced and much less frequent than that of the syntactic chunks,

which is more uniform covering about 60 % of all tokens (see Table 5). A closer

look at the results shows that locative expressions achieve only 25 % correctly

tagged tokens, as opposed to over 90 % for on-examination expressions and 55 %

for temporal and quantitative expressions. This can be explained by the very large

vocabulary of the locative expressions, including body parts and regions expressed

in both conversational and medical language style.

(a) (b)

Fig. 7 Arithmetic mean (white dot) and frequency distribution of a tokens per annotation, and b
annotations per record, across all annotation types
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7 Conclusion

We have produced a set of annotation guidelines and an annotated corpus of patient

medical records consisting of physician-typed free-text notes and Read codes. In

this article we have described the background, motivation, data source, annotation

guidelines and procedures, and an evaluation of annotation quality.

Since the chunk annotations of most established language resources have been

automatically generated rather than hand-annotated, the chunk annotation guide-

lines presented in this study are unique for the English language. They were planned

as a self-sufficient tuition instrument for domain specialists, containing enough

easily digestible linguistic knowledge to support the annotation process. The

guideline development and the annotator training were set up as iterative processes,

which returned in gradually improving agreement. We found that experience and

longer annotation sessions improves IAA, while long periods of time between

annotation sessions result in deterioration. After the training process was complete,

inter-annotator agreement reached 0.86 F1-score for annotation of chunks, 0.71 for

semantic entities, and 0.84 overall. The resulting parallel annotations of the corpus

were combined by a third domain specialist resolving the conflicts with minimal

intervention, producing the final version of the Harvey corpus, containing 750

records, 22,914 tokens, and 11,288 annotations. The corpus was extrinsically

evaluated using two machine learning tasks. The experiments showed that

performance increases with more training data and that the learning rate of the

chunking classifier is comparable (but with a lower starting point) to a classifier

using data from the CoNLL-2000 data set (see Fig. 8). In contrast, the named entity

annotation is not enough for training an accurate classifier, as its F1-score reached

only 0.43.

Despite these positive results, there are limitations to the Harvey corpus:

relatively small size compared to other clinical text corpora, and lack of other

important annotation layers such as parts of speech. Even though adding more data

seems unlikely to increase chunking accuracy to levels seen with edited text, it is

evident from the learning curves that it will continue improving it. Addressing other

(a) (b)

Fig. 8 A 500-fold bootstrapping learning curves generated using YamCha: a chunking and b named
entity recognition. Training samples range from 25 to 675 records with a step of 25; testing samples are
always set to 75 records
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issues, such as POS tagging errors, should also decrease the chunking error rate, as

its imperfect quality could have a harmful effect on the decisions made by the

classifier. However, quantifying that effect requires a much more detailed analysis

of the relation between the two. Such analysis should also optimise the features of

the models for primary care data, as the configuration used in this study was the

optimal YamCha configuration for the CoNLL-2000 data.

While the Harvey corpus is the first annotated language resource based on UK

primary care text large enough to be used for developing machine learning tools,

there are previous studies on US secondary care data with comparable goals. Both

this study and that of Fan et al. (2013) are essentially aiming at adding syntactic

information to difficult to process clinical text, but using different approaches and

slightly different data. It will be difficult to compare results as there is free access

only to the annotation, not the textual data of their study. However, the learning

curve that we generated suggests that if more data is available the chunking

accuracy should go well over 0.80, which is comparable to the performance of Fan

et al.’s constituency parser. Even so, a fair evaluation would require an extrinsic

measurement, such as impact on symptom identification, since chunking and

constituency parsing are evaluated in very different ways.

In conclusion, the Harvey corpus provides a shallow parsing gold standard for

primary care notes, which allows the development of accurate tools for syntactic

chunking. The accompanying guidelines allow further annotation of more clinical

data to be carried out in the same manner with similar annotation quality. The

corpus and annotation guidelines will support future research in processing this kind

of text and may serve as a foundation layer for annotating medication, symptoms,

and diseases, which coincide with syntactic chunks. The potential benefits of such

research should eventually minimise or even eliminate the need for manual

processing and de-identification in typical information extraction tasks on UK

clinical text. Development of such approaches will be essential to scaling up use of

text, which has been shown to improve the quality of medical research
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