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Abstract Chromosomal rearrangements are a source of
structural variation within the genome that figure promi-
nently in human disease, where the importance of trans-
locations and deletions is well recognized. In principle,
inversions—reversals in the orientation of DNA
sequences within a chromosome—should have similar
detrimental potential. However, the study of inversions
has been hampered by traditional approaches used for their
detection, which are not particularly robust. Even with
significant advances in whole genome approaches,
changes in the absolute orientation of DNA remain difficult
to detect routinely. Consequently, our understanding of
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inversions is still surprisingly limited, as is our appreciation
for their frequency and involvement in human disease.
Here, we introduce the directional genomic hybridization
methodology of chromatid painting—a whole new way of
looking at structural features of the genome—that can be
employed with high resolution on a cell-by-cell basis, and
demonstrate its basic capabilities for genome-wide discov-
ery and targeted detection of inversions. Bioinformatics
enabled development of sequence- and strand-specific di-
rectional probe sets, which when coupled with single-
stranded hybridization, greatly improved the resolution
and ease of inversion detection. We highlight examples
of the far-ranging applicability of this cytogenomics-based
approach, which include confirmation of the alignment of
the human genome database and evidence that individuals
themselves share similar sequence directionality, as well as
use in comparative and evolutionary studies for any species
whose genome has been sequenced. In addition to appli-
cations related to basic mechanistic studies, the information
obtainable with strand-specific hybridization strategies
may ultimately enable novel gene discovery, thereby
benefitting the diagnosis and treatment of a variety of
human disease states and disorders including cancer, au-
tism, and idiopathic infertility.

Keywords chromatid painting - chromosomal
inversions - Strand-specific hybridization

Abbreviations

a-CGH Microarray-based comparative
genomic hybridization
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BrdU 5'-Bromo-2'-deoxyuridine

CNVs Copy number variants

CO-FISH Chromosome orientation
fluorescence in situ hybridization

FISH Fluorescence in situ hybridization

Introduction

Abnormalities associated with chromosome rearrange-
ments have been studied for many years, and an appre-
ciation for their importance emerged in parallel with
development of methods that enabled their detection.
More than 800 tumor-specific chromosome aberrations,
primarily translocations and large deletions, have been
identified (Mitelman 2000). Detailed analysis of the
breakpoints involved in these structural changes has
been instrumental in the discovery of many cancer-
related genes and, more broadly, has shed light on
underlying mechanisms of carcinogenesis. Particularly
illustrative early examples include identification of the
9:22 translocation associated with chronic myeloid leu-
kemia (Nowell and Hungerford 1960; Rowley 1973),
and the 8:14 translocation that results in Burkitt’s lym-
phoma (Haluska et al. 1986). These and other notable
success stories would not have been possible without
corresponding advances in cytogenetic methodologies
(Rowley 1990).

Contemporary approaches such as fluorescence in
situ hybridization (FISH) and microarray-based
a-CGH have expanded our view and appreciation of
alterations associated with chromosome aberrations.
For example, many apparently balanced translocations
are actually complex rearrangements that concurrently
involve deletions and duplications (Chen et al. 2010;
Manning and Hudgins 2010), as well as inversions
(Gribble et al. 2005). Chromosomal inversions are
intra-chromosomal rearrangements that result from two
breaks occurring within the same chromosome,
followed by re-insertion of the broken segment in the
opposite (inverted) orientation, and are among the most
difficult of structural rearrangements to detect.

Traditionally inversions, and other types of structural
rearrangements, have been detected as disruptions to the
visual patterns produced by various types of banding—
megabase-sized striations distributed laterally along the
lengths of chromosomes (Bickmore and Craig 1977)—
an approach that severely limits the size of inversion that
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can be detected. Moreover, because such pattern disrup-
tions do not necessarily visibly alter banding patterns
(Savage 1977a, b), and because they are undetectable to
whole chromosome painting by FISH, even large
inversions can be difficult to detect with regularity
(Savage 1977a, b). While it is undeniable that a signif-
icant subset of inversions is visible by traditional cyto-
genetic approaches, it is also the case that many
(perhaps even most) remain undetected.

Many of the problems relating to pattern recognition
and resolution that plague banding analysis can, in
principle, be overcome through more molecular
approaches. A case in point is the recent discovery of a
(p13.3q24.3) pericentric inversion encompassing prac-
tically all of chromosomel6 that was identified by
transcriptome sequencing, but which otherwise was
“cryptic” to alternative methods of analysis (Gruber et
al. 2012). The discovery, which involved the concerted
effort of several institutions and multiple authors, was
important for the additional reason that the inversion
encoded a fusion protein (CBFA2T3-GLIS2) that
defined a particularly aggressive subtype of pediatric
acute leukemia.

It is fair to say that molecular methods face their fair
share of challenges regarding inversion detection as
well, and that despite significant progress made toward
characterizing structural variation using such
approaches, our understanding of inversions is still sur-
prisingly limited (Baker 2012). Whereas CNVs can be
mapped with great precision, changes in orientation
(i.e., phase) of DNA sequences are much more difficult
to detect. Techniques like paired-end sequencing have
great potential to identify and map inversions across the
human genome (Tuzun et al. 2005), but can be limited
by possible mis-assembly of reference genomes and the
presence of flanking high-density inverted duplications
(Feuk 2010).

These issues aside, alternative independent methodol-
ogies would be of value for validating and characterizing
recurrent structural variants identified by sequencing
approaches—as, for example, those recently reported
for colorectal cancer (Cancer Genome Atlas 2012) and
adenocarcinoma of the lung (Imielinske 2012).
Highlighting the potential significance of inversions
in the etiology of disease, and at the same time
underscoring difficulties in detecting and characteriz-
ing them (Antonacci et al. 2009), a majority of var-
iants identified in this latter study (Imielinske 2012)
were relegated to the generic classification of “intra-
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chromosomal rearrangements.” One might well sus-
pect that many of the variants in this class were bona
fide inversions.

Lastly, it should be noted that sequencing approaches
are not particularly well suited to addressing the cellular
heterogeneity typical of solid tumors since this would
ostensibly involve characterization of abnormalities
among mosaic sub-populations. This would also
apply to single cell sequencing methodologies
(Falconer et al. 2012), which are impractical for
use on more than a few cells. For similar reasons,
strictly genomics-based approaches would be of
dubious value in constructing quantitatively mean-
ingful cellular dose responses—as used for the
purpose of risk assessment following exposure to
genotoxic agents—because this requires the collec-
tive assembly of data from of many cells, each
individually assessed for damage.

There exists, therefore, a need for methodologies of
chromosomal inversion detection that provide the
higher resolution of molecular approaches, while still

Pre-replication
G4 Chromosome

Inverted

segments Strand degradation

Fig. 1 Chromatid painting and inversion detection. Following
S-phase, each complementary polynucleotide strand from a G,
chromosome segregates into respective sister chromatids at
metaphase. When BrdU is incorporated during DNA synthesis,
each nascent strand becomes photo-labile, allowing it to be
selectively degraded. For the purposes of in situ hybridization,
this results in a metaphase chromosome whose sister chromatids
are single-stranded and complementary. Because inverted DNA
sequences must reverse their 5'—3' orientation in order to

Selective photolysis Single-strand-specific

probe hybridization

retaining one of cytogenetics’ most powerful assets—its
ability to provide an unbiased view of the entire genome
on an individual cell basis. Here, we introduce the
directional genomic hybridization methodology of chro-
matid painting—not to be confused with the standard
practice of chromosome painting—that promises to cir-
cumvent many of the aforementioned limitations asso-
ciated with inversion detection. Chromatid painting
evolved from the strand-specific hybridization concept
of chromosome orientation FISH (CO-FISH; Bailey et
al. 2004a, b, c; Goodwin and Meyne 1993; see Fig. 1).
Due to the requirement for single-stranded probes how-
ever, the methodology was limited to the interrogation
of repetitive centromeric or telomeric sequences with
simple oligonucleotide probes, where it was used to
study a variety of cytogenetic phenomena including:
lateral asymmetry (Goodwin et al. 1996); leading- ver-
sus lagging-strand telomeres (Bailey et al. 2001);
telomere-DNA double strand break fusions (Bailey et
al. 2004a, b, c); recombination within sub-telomeric and
telomeric regions (T-SCE; Bailey et al. 2004a, b, c;

Replicated Chromosomes in Fixed Cells (metaphase configuration)

Fluorescence
microscopy

preserve polarity, individual strands within the inversion are
obligated to “switch places” between the sister chromatids;
therefore, hybridization of fluorescently tagged directional
single-stranded probes to unique sequences along either chro-
matid results in a microscopically visible signal that “switches”
from one chromatid to its sister. For large inversions, the signal
switch is accompanied by a corresponding lack of signal on the
opposite chromatid; for small inversions, the unlabeled segment
is often obscured by the brightness of the fluorescent signal
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Cornforth and Eberle 2001); and mammalian telomere
replication timing (Zou et al. 2004).

With availability and refinement of the human
genome database came the ability to utilize
bioinformatics-based design schemes for construction
of single-stranded oligonucleotide probes to unique se-
quences along the length of a given chromosome that
were also similar with respect to their absolute 5’
pter—3’qter directionality (orientation), an advance-
ment that greatly expanded the potential of strand-
specific hybridization strategies. For example, by pooling
together of many such unique sequence, strand-specific
probes it became possible to effectively “paint” individ-
ual whole chromatids of a given chromosome, or any
specific region thereof. In so doing, changes in direction-
ality (inversions) occurring anywhere along the length of
a painted chromosome readily reveal themselves as an
abrupt “switch” in the location of hybridization signal—
from one sister chromatid to the other. This
cytogenomics-based approach of achieving strand-
specificity provides investigators a new tool for inversion
discovery and high-resolution inversion detection.

Materials and methods
Cell culture

Human cells (normal fibroblasts and lymphocytes;
Kasumi-4 leukemia cell line; HTori-3 immortalized thy-
roid cells), and chimpanzee, gorilla, and orangutan fibro-
blasts, were cultured for a single cell cycle in complete
media containing 5.0 uM 5-bromo-2-deoxyuridine and
1.0 pM 5-bromo-deoxycytidine (BrdU/BrdC; Acros,
Chem Impex International). Cells were blocked in mito-
sis for 2—4 h using Colcemid (KaryoMax, Gibco) at a
final concentration of 0.1 pug/ml. Mitotic cells were
harvested and dropped onto slides using standard cyto-
genetic protocols (Bailey et al. 2010).

Directional strand-specific probes

Creation of the human chromosome 3 specific chromatid
paint began by downloading contiguous DNA sequences
from the publically available NCBI genomic database
(GRCh37.p2 primary assembly) and masking them using
Genetic Information Research Institute software; i.e., re-
peat sequences were removed. Single-stranded oligonu-
cleotide probes (oligos) were designed to unique
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sequences and our specifications using ARRAY Designer
(version 4.2), and later with proprietary software
(KromaTiD Inc.), tiling to small target regions at speci-
fied non-overlapping locations along the length of each
chromosome 3 contig at ~1-Mb intervals. Oligo design
criterion demanded similar directionality and length
(~40-mers), as well as uniform melting temperatures
(70.0+5.0 °C). More than 17,000 individual oligos were
synthesized (Invitrogen), hydrated, and pooled in subsets
of 45 for end-labeling with fluorescent dNTP analogs
(Cy-3, Fluorescein; General Electric, Perkin Elmer) using
terminal transferase (New England Biolabs). Pools of 90
individual labeled oligos constituted a probe set, which
together spanned relatively short unique regions (~5—
14.5 kb); probe sets were hybridized individually to
confirm strand specificity. The complete chromosome
3-specific chromatid paint consisted of 190 probe sets.
In similar fashion, targeted probe sets to both sides of
known inversion breakpoints on chromosome 3 (g2/;
q26) and chromosome 10 (¢/1.2;q21) were also generat-
ed. Targeted probe sets were larger in that they consisted
of 180200 individual labeled oligos and they covered
larger unique regions (~14-63 kb), modifications that
served to increase brightness and visibility of the individ-
ual signals. Proximity of the selected probe sets to the
specific inversion breakpoints did not exceed 1 Mb.

Single-stranded hybridization pre-treatment

Briefly, slides (25x 75x1 mm) were incubated in PN
buffer (sodium phosphate) for 10 min at room tempera-
ture, rinsed in phosphate-buffered saline, then dehydrated
through an ethanol series (75, 85, and 100 %) for 2 min
each. Slides were air dried, stained with Hoechst 33258
(0.5 pg/ml in 2x sodium citrate; SSC) for 15 min in the
dark, then rinsed with deionized distilled water (ddH,O).
Slides were air dried, flooded with 2x SSC, coverslipped
(1 mm), and exposed to 365 nm ultraviolet light (UV
Stratalinker 2400; Strategene) for 35 min, then rinsed in
ddH,O to remove coverslip, air dried, and dehydrated in
the ethanol series, as above (Bailey et al. 2010). For use
of single-stranded directional probe sets with standard
(double-stranded) FISH, slide pretreatment was not
performed prior to hybridization.

Strand-specific hybridization

For each pretreated slide, a mixture of hybridization
buffer (25.3 ul; KromaTiD), chromatid paint (2.25 ul;
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KromaTiD), and ddH,0O (2.45 nl) was prepared and
heated to 75 °C for 5 min, then pipetted onto pre-
treated slides, which were coverslipped and sealed with
rubber cement. Slides were heated at 73 °C for 3 min,
then transferred to individual hybridization chambers
(Corning) and incubated at 37 °C overnight. After
hybridization, the slides were washed five times in 2x
SSC at 42 °C for 15 min each. Slides were rinsed in PN
buffer, counterstained with DAPL/antifade (18 ul; Vector
Labs), and coverslipped.

Image capture and analysis was performed on
an Olympus Bx41 microscope outfitted with
fluorochrome-appropriate excitation/barrier filters,
running Metavue 7.1 software and equipped with a
Photometrics CoolSNAP ES? camera. Efficiency of
probe hybridization was routinely greater than 90 %.
Number of metaphases scored was dependent on end-
point (e.g., recurrent inversions only required 3—5) and
treatment (e.g., dose).

Results
Directional genomic hybridization methodology

A prerequisite for achieving strand-specific hybridization
is that cells incorporate bromo-deoxyuridine/
deoxycytidine (BrdU/BrdC) during a single round of
replication, so that sister chromatids are unifilarly
substituted (Fig. 1). Prior to hybridization with single-
stranded probes, slides are stained with Hoechst 33258,
exposed to UV light to nick the DNA at sites of BrdU
incorporation, and treated with Exonuclease III to selec-
tively degrade the newly replicated strands (Bailey et al.
2010). For the purposes of subsequent hybridization, this
strategy effectively renders the entirety of each sister
chromatid a single-stranded target.
Bioinformatics-based approaches were developed
and employed to guide the design of sequence-
specific, single-stranded oligonucleotides, which were
also of similar directionality. We initially reasoned that
the orientation of targets along a single contig had the
highest probability of being of similar 5'— 3’ direction;
therefore, the largest contig on chromosome 3q
(NT_005612) was selected (Fig. 2a). Probe sets to
unique sequences were designed, synthesized, labeled
(green), and hybridized to pre-treated human metaphase
chromosomes, which produced a strand-specific signal
at the predicted location. Consistent contig alignment

along the entire length of chromosome 3 was confirmed
by designing probe sets to the remaining three contigs,
each of which contained 90 individual oligonucleotides
that were labeled (red) and hybridized similarly. All
produced strand-specific signals at the predicted loca-
tions along chromosome 3, and all were on the same
chromatid, thereby validating similar 5'— 3’ direction of
the assembled contigs (Fig. 2b). Extending this
cytogenomic strategy, some 17,000 individual (single-
stranded) oligonucleotides were synthesized, pooled,
and fluorescently labeled to create a complete chromo-
some 3 chromatid-specific paint. Figure 3a illustrates
the robustness and specificity of the chromatid paint
hybridized to a human whole-metaphase spread (effec-
tively single-stranded due to pre-treatment), where
hybridization is confined to one, and only one, chroma-
tid of the target chromosome.

Genome-wide inversion discovery

Due to the necessity of maintaining DNA 5'-to-3'
polarity, inverted segments reinsert themselves into
chromosomal DNA in the reversed (or opposite) ori-
entation. Because the sequence- and strand-specific
probes all possess the same 5" —3' directionality (sim-
ilar orientation) and thus are capable of hybridizing
only to complementary stretches of single-stranded
chromatids, inversions are revealed as obligatory color
switches of signal from one sister chromatid to the other
(Fig. 1). Tonizing radiation (IR) is well known for its
ability to induce chromosome rearrangements
(Cornforth 1998), including inversions (Muhlmann-
Diaz and Bedford 1995), and was used here to demon-
strate the utility of chromatid painting for discovery of
novel inversions. Figure 3b, ¢ shows small and large
inversions, respectively, following exposure of human
cells to IR (gamma rays).

Assuming all probe sets yield visible signals,
chromatid painting with probes spaced at 1 Mb
intervals will reveal any inversion of 1 Mb length or
larger. Inversions less than 1 Mb may also be detected
if by chance a probe set falls within the inverted
region. This happens with a frequency that depends
on inversion size. For example, 50 % of 0.5 Mb
inversions occurring at random locations produce
visible signals; similarly 10 % of 0.1 Mb inversions
are detectable. Detection of much smaller inversions is
possible with more densely spaced probes. To illus-
trate this important point, we designed a mock “mini-

@ Springer



F.A. Ray et al.

170
a
Ideogran=2]X] cContig=2]X]
$P Y3 —
3F%:§ 4
B2
Jp2S.1 3
Ip24.3
20N+
338 Jumnd
3e23
P . - J0M
J;g % Je— 1|-NT_e22817,
3p21.33 e
3p21.32 - 3
3p21.31 sond
3p21.2 E
3p21.1 6 0n
Ipl4.3 § { 3
Ipi14.2
Ip14.1 -. 700+
Jpld -3
3p12.3 — sond |/ NT-022459,
3;[?% ol
3« < ETLE
ai1.2 O 3
52
a12: 10004
il ,
Joe —
3313.13 | il 110m4
3 —
o1 F O -
i E— .
522!% 3
q21.
3.4 fom| "
922. t
S 14004
3q24 3| NT_oese12,
3425.1 1504
3358:7 Louul
£ .
. — 160"4
3426.1
3926.2 1
3426.51 1701
393832 L)
s 1
3322:3 - 18 004
L F Tl
3928 .
19 0M
3929
1 |-NT_029928,

Fig. 2 Confirmation of chromosome 3 contig alignment. a Hu-
man genome database contig map: http://www.ncbi.nlm.nih.gov/
projects/mapview/maps.cgi?taxid=9606&chr=3 b Probe sets to all
four contigs along chromosome 3 were designed, synthesized,

inversion” within a 10 Mb region of chromosome 3q.
Probe sets covering the region were tagged with fluo-
rescein (green); excluded was a 6 kb segment nested
within the region. For this segment, oligos were inten-
tionally designed in the reverse orientation, synthe-
sized and tagged with Cy3 (red). This “simulated” 6
kb inversion serves as further validation, provides a
useful reference marker, and demonstrates that even
quite small inversions are cytogenetically detectable
utilizing directional genomic hybridization strategies
(Fig. 3d).
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labeled, and hybridized to normal human fibroblasts following
strand-specific pre-treatment; one probe set to the large NT
005612 contig (green) and probe sets to the other three contigs
(red) are shown

High-resolution targeted inversion detection

The ability to detect and characterize inversions can be
further augmented using high-resolution, strand-specific
probe sets targeted to previously verified or suspected
breakpoints. The Kasumi 4 cell line, derived from a
patient with chronic myelogenous leukemia (CML), pos-
sesses a variant chromosome 3 homolog with a large ¢g21;
q26 inversion (Asou et al. 1996). Strand-specific hybrid-
ization of Kasumi 4 metaphases with closely spaced
probe sets—targeted across the known region of the
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Fig. 3 Inversion discovery and detection with directional geno-
mic hybridization. a Directional, fluorescently tagged (red) single-
stranded probe sets to unique sequences along one chromatid of
human chromosome 3 are both chromosome- and chromatid-
specific (insets are higher magnification). b, ¢ lonizing radiation-
induced small and large inversions, respectively. d A simulated 6-

breakpoints and labeled with different fluorochromes—
readily identified the inverted homolog as the one in
which the red segment switched to the opposite chroma-
tid (Fig. 3e, arrow). The green signals on its sister chro-
matid represent probes directed to sequences proximal
and distal to the inversion breakpoints. The RET/PTCI
rearrangement associated with radiation-induced
papillary thyroid carcinoma provides another noteworthy
example as it involves a g//.2;¢2] inversion in one
homolog of chromosome 10 (Caudill et al. 2005). Here,
HTori-3 immortalized human thyroid cell cultures were
irradiated and interrogated with strand-specific probe sets
targeted to the inverted region on chromosome 10. Con-
sistent with Caudill et al., analysis at time zero revealed a
small subset of cells in the exposed population that
contained the inv(10)(q11.2; q21) rearrangement in one
of the homologues, as evidenced by the obvious splitting
of the strand-specific signals across sister chromatids
(Fig. 3f; arrow).

Other applications of directional genomic
hybridization

The human chromatid-3 paint also hybridized to closely
related hominoid species, specifically chimpanzee,

kb inversion (red) on one chromatid of a normal unirradiated cell.
The region is flanked by complementary probe sets (green), which
hybridize to the opposite chromatid. e Targeted high-resolution,
two-color detection of known inversion breakpoints associated
with inv(3) in CML, and f inv(10) associated with thyroid cancer;
arrows depict inverted homologues

gorilla, and orangutan (Supplementary Fig. 1), support-
ive of its application in comparative and evolutionary
studies. Visible gaps in hybridization signal likely rep-
resent repetitive regions, for example around the centro-
meres, or stretches of sequence not identical to human,
as these would not be present in the chromatid paint, and
therefore are not detected. Consistent with other obser-
vations, variation in the state of chromosome compac-
tion also appeared to influence signal intensities.
Directional strand-specific hybridization revealed no
recurrent inversions in either chimpanzee (Supplemen-
tary Fig. 1a) or gorilla (not shown). In contrast, a large
inversion was noted in both homologs of orangutan
chromosome 3 (Supplementary Fig. 1b).

Chromatid painting facilitates simultaneous detection
of both intra-chromosomal changes (inversions) and
inter-chromosomal changes (dicentrics, translocations).
The damage-induced breakage and mis-repair of two
chromosomes that results in dicentric formation also pro-
duces a compound fragment consisting of the two broken
acentric pieces, which also mis-rejoin. These events are
clearly visible with chromatid painting (Supplementary
Fig. 2), where one broken chromosome 3 is involved
with an unidentified broken chromosome to form a
dicentric chromosome; the associated compound acentric
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fragment is definitively identified as it consists of the
remaining pieces of chromosome 3 and the other chro-
mosome. Chromatid painting concurrently revealed a
large inversion (color switch to sister chromatid) in the
uninvolved chromosome 3 (Supplementary Fig. 2b).

The advantages of oligonucleotide probes for stan-
dard FISH applications have been recently demonstrat-
ed (Boyle et al. 2011; Yamada et al. 2011). Noteworthy
of such strategies is the superb specificity of the probes
themselves, which do not require unlabeled repetitive
DNA (Cotl) to block non-specific binding during
hybridization. This valuable feature is true of our
strand-specific directional probe sets as well, regardless
of whether they are being used for (single-stranded)
chromatid painting, or with standard (double-stranded)
FISH for conventional chromosome painting (Supple-
mentary Fig. 3).

Discussion

Utilizing strand-specific hybridization strategies
coupled with bioinformatics for sequence- and strand-
specific directional probe design, we have developed
chromatid (as opposed to chromosome) painting. This
cytogenomics-based methodology offers high-
resolution detection of chromosomal inversions on a
cell-by-cell basis. Although the current resolution of
inversion detection by chromatid painting is on average
~1 MB based on spacing of the probe sets, and repre-
sents an order of magnitude improvement over tradi-
tional banding, this is by no means the limit of
resolution that can be achieved. We demonstrate that
detection of much smaller inversions is entirely possible
with more densely targeted probe coverage, placing
chromatid painting among approaches normally consid-
ered the purview of high-resolution cytogenetic
methods such as interphase FISH (Mancini et al. 2000)
or Fiber FISH (Korbel et al. 2007). However, we also
note that resolution in terms of inversion detection
should perhaps more precisely be viewed as “probabil-
ity of detection,” a more accurate way of viewing the
fact that based on spacing of probe sets, smaller and
smaller inversions can indeed be detected, but with
smaller and smaller probability depending on the loca-
tion of the breakpoints. Importantly, chromatid painting
revealed that the spontaneous frequencies of inversions
in both normal human fibroblasts and lymphocytes were
quite low (<0.3 %), a favorable and critical factor when
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evaluating dose responses for inversions induced by
various genotoxic agents including IR, where medical,
environmental, and occupational exposures represent
significant health concerns.

The realization of strand-specific hybridization has, at
least to date, provided corroborating support for the
assembly of the human genome database in terms of it
being aligned and oriented correctly, as well as initial
evidence that individuals themselves share similar
sequence directionality. Analogous experiments
conducted during the design of human chromosome 10
strand-specific probes revealed similar orientation of
contigs along this chromosome as well (not shown).
Interestingly, we also noted that dependent on probe set
spacing, fluorescent signals did not always present as
uniform visibly contiguous stretches. A possible expla-
nation for this may be related to the variable state of
chromatin condensation that chromosomes present
throughout metaphase, prompting our speculation that
strand-specific probe sets designed at specific and vary-
ing intervals may be useful for investigating chromo-
some compaction.

We provide evidence of the utility of chromatid paint-
ing strategies for comparative and evolutionary studies,
demonstrating their likely potential to complement stud-
ies comparing human and distantly related species, as for
example was recently reported with the Y chromosome
(Hughes et al. 2012). In fact, directional genomic
hybridization methodology could be used to develop
probe sets to any species with suitable chromosomes
whose genome has been sequenced, e.g., equine, canine,
feline, and exotic or endangered species. Additionally,
unlike conventional chromosome painting, chromatid
painting facilitates simultaneous detection of both intra-
chromosomal (inversions) and inter-chromosomal
rearrangements (dicentrics, translocations). And like
chromosome painting, it is also amenable to multi-
color combinatorial schemes of chromosome identifica-
tion (Speicher et al. 1996). Lastly, the ability to use
sequence- and strand-specific probe sets for standard
FISH applications greatly expands their use for diagnos-
tic and prognostic purposes.

Although inversions have been detectable at the
resolution of traditional cytogenetics (>10 Mb) for
many years, there has been a paucity of methods for
high-resolution global, unbiased inversion discovery.
Therefore, it is largely unknown how common inver-
sions really are, what their size distribution is, and to
what extent they are associated with human disorders.
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Improved detection of inversions, especially small
ones, such as that provided by directional genomic
hybridization strategies, stands to facilitate efforts to
characterize the contribution of inversions to structural
variation in the human genome, thereby aiding inves-
tigation of underlying disease mechanisms. Ultimate-
ly, novel gene discovery and high-resolution inversion
detection have the potential to benefit the diagnosis
and treatment of a variety of disease states and disor-
ders including cancer, autism, developmental delay,
and idiopathic infertility.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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