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Abstract Fluorescent protein labelling, as well as
impressive progress in live cell imaging have revolu-
tionised the view on how essential nuclear functions
like gene transcription regulation and DNA repair are
organised. Here, we address questions like how DNA-
interacting molecules find and bind their target
sequences in the vast amount of DNA. In addition,
we discuss methods that have been developed for
quantitative analysis of data from fluorescence recovery
after photobleaching experiments (FRAP).
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How do nuclear proteins find their targets?

To exert its function, a nuclear factor involved in, e.g.
DNA repair, gene transcription or replication, has to
find its target in the enormous amount of DNA and
subsequently bind to it, either to DNA directly or to a
protein-DNA-complex. The simplest model to account
for this, obviously, is one where molecules move by free
diffusion and find their targets by random collisions.
More sophisticated models include sliding along the
DNA strand (one-dimensional (1D) diffusion), along
the chromatin surface (2D diffusion), as well as hopping
and jumping over the DNA after initial non-specific
binding. Below, we discuss these models in detail.

Diffusion and random collision

Before the advent of GFP-tagging and quantitative
microscopy assays like fluorescence recovery after
photobleaching (FRAP) it was generally assumed that
the vast majority of nuclear proteins was assembled in
stable functional structures. Only a small portion of
the proteins was considered to be engaged in transport
towards their target sites, which was thought to be
facilitated by sliding along DNA strands (Fig. 1a, b).
Once assembled in DNA–protein complexes, proteins
were generally assumed to be stably associated until
degraded. It was therefore a great surprise to the
research community that the first experiments exploring
FRAP on GFP-tagged nuclear proteins revealed that
several nuclear proteins with various functions, includ-
ing DNA repair, transcription and splicing factors, are
highly mobile, most likely more or less freely diffusing
through the nucleus (Fig. 1c; Houtsmuller et al. 1999;
Phair and Misteli 2000). A multitude of following
studies confirmed the novel view on nuclear organisa-
tion in which high mobility is a common feature of
most, if not all DNA-metabolising processes in the cell
nucleus. The possibility to freely move through the
nucleus, in spite of its crowded nature, was further
corroborated by the observation that the mobility of
fluorescently tagged inert proteins of increasing size
depends on their molecular size (Fig. 2a; Bancaud et
al. 2009). In addition, proteins involved in DNA repair
of single-strand lesions by nucleotide excision repair
also diffuse at rates expected for their molecular size
(Fig. 2b and c). The only exception is the damage
sensor xeroderma pigmentosum, complementation
group C (XPC), which likely shows decreased mobility

due to frequent transient binding events to undamaged
DNA, probing in this way the DNA for potential
damage (Fig. 2b). It should be noted, however, that
due to molecular crowding, which obviously puts
constraints on the mobility of unbound factors,
diffusion is probably not completely free, but anoma-
lous (Wachsmuth et al. 2000), and the degree of
anomality depends on local circumstances within the
nucleus, where in a more crowded region mobility
undergoes more constraints than in a less crowded
region (Bancaud et al. 2009). In the latter paper,
Ellenberg and coworkers conclude from local FRAP
and FCS measurements, showing mobility dependency
on local chromatin density, that chromatin adopts a
fractal structure where the local fractal dimension has a
regulatory role in exposing binding sites in the DNA to
diffusive proteins. This fractal structure was also
concluded from 4C experiments (Lieberman-Aiden et
al. 2009). However, at present, it is not clear whether a
fractal model is the only model fitting to these data
(McNally and Mazza 2010). Moreover, it is also
possible that both fractal chromatin arrangement and
anomalous diffusion are results of DNA-packing in a
crowded environment, rather than prerequisites for
proper function. Therefore, further in-depth research
will be required to verify whether these phenomena
provide mechanisms contributing to the efficiency by
which proteins find their targets.

Another common idea that was challenged by live
cell studies using fluorescently tagged probes is that
genes may be silenced by densely packing them into
heterochromatin limiting access of factors required to
initiate gene transcription, as it was shown that large
protein complexes (>500 kD) and dextrans with
similar molecular size have free access even to the
most dense chromatin domains (Verschure et al. 2003;
Gorisch et al. 2003, 2005).

DNA sliding (1D diffusion)

In spite of the findings above, it is frequently argued
that protein movement by merely random diffusion,
whether anomalous or not, is not sufficient for finding
specific target sequences in the vast amount of DNA
at the required efficiency. In this line of reasoning,
facilitated transport mechanisms should exist that
guide a nuclear factor to its specific binding site, or
at least, that enhance the chance for the freely mobile
factor to find its target. The efficiency of finding
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specific binding sites may be increased when diffu-
sion and stochastic binding are accompanied by local
scanning mechanisms based on sliding of the protein
along the DNA (one-dimensional diffusion; Fig. 1a).
In more abstract terms, reducing the dimensionality of
diffusion-based reactions in biological systems can
greatly increase the efficiency of bimolecular interac-
tion (Adam and Delbruck 1968). Several modes of

local 1D scanning mechanisms have been experimen-
tally tested (reviewed in Gorman and Greene 2008).
In these models, after aspecific binding to DNA, a
protein travels along the DNA while remaining in
continuous contact with non-specific binding sites or
via a series of negligible dissociation and rebinding
events (Fig. 1a) (Berg et al. 1981). Most of the early
data supporting such models are based on in vitro
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Fig. 1 Modes of nuclear
protein translocation.
a One-dimensional diffu-
sion along the DNA helix.
Non-specific contacts of
proteins with DNA through
electrostatic interactions
lead to rotation-coupled
‘sliding’ along the DNA
helix but may be limited to
short ranges by obstacles
like other sliding factors or
DNA-bound complexes.
b Obstacles can be bypassed
by 2-dimensional diffusion
in which a protein diffuses
freely on the cylindrical
surface of the DNA between
sites that are not adjacent in
the primary DNA sequence.
c Free 3D diffusion with
random collisions resulting
in binding to specific and
non-specific binding sites.
Rapid rebinding to a site
close to the initial site or
rebinding relatively far from
the initial site is also
referred to as ‘hopping’
and ‘jumping’, respectively.
Although ‘hopping’ and
‘jumping’ are described as
separate models, molecules
behave similarly in a model
of 3D diffusion with
random collision.
d Obstacles can be bypassed
by intersegmental transfer
where proteins move from
one site to another, distant
site (~400 bp) by transient
binding to both sites and
subsequent dissociation
from the initial site
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studies of DNA cleavage by endonucleases, where the
length of a stretch of double-stranded DNA contain-
ing a specific cleavage site determines the rate at
which cleavage occurs (Jack et al. 1982; Langowaski
et al. 1983; Terry et al. 1987; Jeltsch et al. 1994,
1996; Jeltsch and Pingoud 1998; Wright et al. 1999;
Stanford et al. 2000). Alternative experiments using
the endonuclease BbvCI which more frequently
cleaves nearby nonpalindromic recognition sites when

they are in the same orientation rather than in inverted
orientation indicated that the BbvCI travels from the
first to the second site over short distances without
dissociation and rebinding (Gowers et al. 2005). In
addition to endonucleases, several other DNA-
binding proteins have been shown to display 1D
diffusion along DNA, using single-molecule detection
techniques (Shimamoto 1999; Gorman and Greene
2008). These include DNA repair proteins like Rad51
involved in homologous recombination, oxoguanine
glycosylase involved in base-excision repair and post-
replicative mismatch repair proteins (Msh2–Msh6),
but also transcription factors like RNA polymerase
(RNAP), T7 RNAP and the lac repressor (LacI), that
show facilitated diffusion along anchored DNA
stretches interspersed with three-dimensional trans-
locations (Kabata et al. 1993; Harada et al. 1999;
Blainey et al. 2006; Graneli et al. 2006; Wang et al.
2006; Gorman et al. 2007). Assuming that protein
sliding is mainly driven by electrostatic interactions
with the phosphate backbone, it has been suggested
that sliding involves spiralling around the DNA helix
(Fig. 1a; Schurr 1975; Gorman and Greene 2008).
This was indirectly shown as rotational behaviour of a
DNA stretch linked to an asymmetrically labelled
bead when dragged over an RNA polymerase-coated
coverslip using an optical trap (Sakata-Sogawa and
Shimamoto 2004). More recently, statistical analysis
of single-molecule diffusion data of eight DNA-
binding proteins showed that rotation-coupled sliding
along the DNA helix is a general phenomenon in vitro
(Blainey et al. 2009).
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�Fig. 2 FRAP curves of proteins of varying size showing the
relationship between diffusion and molecular size. FRAP
curves were obtained by briefly photobleaching a narrow strip
spanning the nucleus and following the recovery of fluores-
cence in that strip with short intervals (20 ms (a) or 100 ms (b
and c); described for instance in van Royen et al. 2009). a
FRAP curves of protein chains consisting of an increasing
number of non-fluorescent GFP-variants and one intact GFP.
Schematic drawings indicate that the increase of average radius
of gyration (as a measure for molecular size) is largest between
GFP and GFP-NFP. b FRAP curves of various DNA repair
proteins in the absence of single-strand damage. XPC is the
odd-one-out which can be explained by its role in damage
detection: its mobility is much lower than expected due to
frequent transient binding to (undamaged) chromatin, in this
way scanning the DNA for potential damage. c Comparison of
FRAP curves of GFP, GFP-NFP and the repair factor XPA in
unchallenged cells showing similar mobility of similar-sized
XPA and GFP-NFP
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However, although it seems clear that many DNA-
binding proteins in vitro are able to slide along DNA,
studies on living cells to determine to what extent this
behaviour contributes to reaction efficiency in vivo
are still limited. One interesting study on protein
behaviour in living Escherichia coli cells using the
lac repressor LacI suggests that one-dimensional
diffusion along DNA segments occurs, but in combi-
nation with three-dimensional translocation through
the cytoplasm (Elf et al. 2007). The most obvious
difficulty that may arise in DNA sliding models is the
presence of hundreds or thousands of different DNA-
binding molecules, each present in tens of thousands
of copies, which may considerably hinder each other
when moving along the one lane road of DNA. This
is a lesser problem in a hypothesised two-dimensional
sliding mechanism, where the protein diffuses over
the DNA surface, enabling the restriction endonuclease
EcoRI to bypass obstacles in vitro (Fig. 1b; Kampmann
2004). In addition, the lack of directionality in one-
dimensional diffusion may also lower the probability
of reaching distant sites, limiting the efficiency of
detecting specific binding sites (Gerland et al. 2002).

Hopping, jumping and intersegmental transfer

In addition to these sliding mechanisms, it has also been
hypothesised that proteins may bind repeatedly in the
same region in an aspecific manner and only freely
diffuse shortly through nuclear space before rebinding
at another (specific or non-specific) binding site, in this
way, enhancing their chances to find their target sites.
These short 3-D diffusion events include short intra-
segmental hops along the DNA contour, intersegmental
jumps between nearby segments and translocations over
longer distances in three-dimensional space (Fig. 1c).
Because of the larger probability of binding to nearby
sites relative to distant sites, in solution the protein will
more frequently bind to sites on the same strand of
DNA (Halford and Marko 2004). This model is
supported by the decreased association time when the
DNA conformation is changed from a coiled structure
to extendedDNA using optical tweezers (van den Broek
et al. 2008). It was determined that cDNA coiling leads
to a more efficient search rate for specific binding sites
(Fig. 1d; Lomholt et al. 2009). Whether this holds true
for chromatin binding in the nucleus depends on the
relative proximity of functional elements in different
stands of DNA in higher order chromatin organisation.

A third alternative is so-called intersegmental transfer
(as opposed to intersegmental jumps), which may
occur when proteins are capable of binding two sites
(Fig. 1d). In this model a protein binds a site distant
from its target, and before dissociating binds to another
site that is brought into proximity by looping of DNA,
thereby generating an intermediate in which the protein
is transiently bound to both sites. Because of limited
DNA flexibility, intersegmental transfer is restricted to
larger steps (≈400 bp) (Bellomy and Record 1990).

FRAP analysis

Before we move on to discussing the way nuclear
proteins bind their targets once they found them, we
summarise below recent developments in quantitative
analysis of fluorescence recovery after photobleach-
ing. FRAP is widely used, not only to determine the
mobility of fluorescently tagged proteins, but also the
kinetics of interactions with immobile structures. In
other words, with FRAP, we can quantitatively assess
on- and off-rates from and to DNA or DNA
complexes.

FRAP makes use of the fact that fluorescent
molecules can be photobleached, i.e. they can be
made irreversibly non-fluorescent by illuminating
them at high excitation intensity. After selectively
photobleaching a small volume within a larger
volume, for instance within a living cell nucleus, the
recovery of fluorescence due to movement (for
instance by diffusion) of unbleached mobile mole-
cules from outside the bleached region moving into
the region is followed at regular time intervals. The
extent to and rate at which this happens represent the
fractions of mobile and immobile molecules and the
speed at which they move. Since the precise quanti-
tative analysis of the resulting FRAP curves is
difficult, as discussed below, FRAP is especially
powerful if the system under surveillance can be
studied in an active and passive state, so that a
difference in mobility can be attributed to protein
function. For instance, in DNA repair, one can
compare protein mobilities in unchallenged cells with
those in cells that were exposed to a DNA damage-
inducing agent. In transcriptional regulatory systems,
like the nuclear hormone receptors, one can compare
mobilities of ligand-induced and inactive receptors
such as either non-liganded receptors, receptors
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inhibited by antagonistic ligands or receptor mutants
lacking DNA-binding properties (Farla et al. 2005).
Such comparative studies can be based on qualitative
analysis, i.e., visual inspection of the curves, or semi-
quantitative analysis, by calculating the half life of
fluorescence recovery. In addition, a permanently
immobilised fraction can be readily estimated from
the incomplete recovery of fluorescence. Although
this straightforward approach is by itself useful, as
can be seen from the wealth of mechanistic insight
that has been gained from many studies, half-lives
(which are frequently reported) only provide infor-
mation on overall mobility but do not allow detailed
quantitative analysis. For example, when relatively
small fractions of proteins are engaged in immobilis-
ing DNA-binding events, half-life will be only
slightly increased compared to fully free protein.
Therefore, half-life is not easily translated into
quantitative estimates of bound fractions or residence
times in immobile DNA–protein complexes.

To obtain more quantitative information from
FRAP analysis, sophisticated analytical models have
been established. The parameters that one aims to
quantitatively assess are effective on- and off-rates to
and from immobile DNA–protein complexes, which
can be used to calculate the bound fraction and
residence time in the complex, parameters that are
usually reported. When on-rates increase at constant
off-rate, the immobile fraction also increases. When
off-rates increase, the immobile fraction becomes
smaller at constant on-rate, and, in addition, the
residence time becomes shorter. Apart from the
parameters to be extracted from the FRAP curve,
mathematical or numerical models essentially include
a number of fixed parameters representing both
microscopic properties, like shape, size and intensity
profile of the laser beam focused by the objective
lens, as well as properties of the nucleus like shape
and size and the intranuclear distribution of the
factors under surveillance. Most of these can be
obtained experimentally in control measurements.
However, incorporating them in mathematical models
requires skilled mathematicians (Mueller et al. 2010).
In the development of these models, therefore a
number of simplifications have been applied. Initially
it was frequently assumed that diffusion is in general
so fast that it can be neglected in the FRAP model.
The simplified models assumed reaction-dominant or
diffusion-uncoupled FRAP recovery, where curves

can be separated in an extremely short diffusive
phase, essentially taking less than a second, and a
much longer binding phase over a period of seconds
to minutes (Sprague et al. 2004; Sprague and
McNally 2005; Beaudouin et al. 2006). However, it
was recently suggested that diffusion may also
contribute to very slow FRAP recoveries, as long as
the time to associate with a binding site is fast
compared to diffusion (Mueller et al. 2008, 2010). If
in these cases diffusion is neglected this may lead to
the false prediction of an additional short-lived
binding state. A proper procedure to verify whether
FRAP recovery curves are diffusion coupled or
uncoupled is by applying bleach pulse areas with
increasing size. When diffusion is relatively fast,
recovery is hardly affected by the size of the bleach
area (Phair et al. 2004; Sprague et al. 2004).

In order to simplify mathematical models, the
photobleached region is sometimes modelled as a
cylindrical uniform profile (Carrero et al. 2003), or a
cylindrical region with a radial Gaussian distribution
(Braeckmans et al. 2003; Kang and Kenworthy 2008;
Tsibidis and Ripoll 2008; Tsibidis 2009). However,
although a cylindrical profile is justified when a low
numerical aperature (NA) lens is used, a double-cone
profile may be more accurate, even for low NA lenses
(Braeckmans et al. 2007; van Royen et al. 2009;
Hallen and Layton 2010). Furthermore, unlike a
cylindrical bleaching profile, the double-cone profile
also implies a significant dependency of the three
dimensional situation, because of the axial Gaussian
distribution of the laser beam (Mazza et al. 2007,
2008; Hallen and Layton 2010). These and other
fixed parameters, like photophysical properties of the
fluorophores in use (e.g. blinking and reversible
photo-bleaching), and also experimental settings like
the duration of bleaching and the consequences for
diffusion during bleaching should be carefully con-
sidered in the development of a kinetic model (Braga
et al. 2004; Mueller et al. 2008, 2010; Kang et al.
2009). Another complication in the development of
mathematical models is a heterogeneous distribution
of target sites of the labelled proteins. Most models
assume a homogeneous distribution of binding sites,
ignoring the typical spatial organisation of nuclear
processes like gene transcription or DNA replication
(Kang and Kenworthy 2008; Mueller et al. 2008). A
more accurate binding model would then be one
which takes the actual inhomogeneous distribution of
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binding sites into account by using the acquired
imaging data (Beaudouin et al. 2006).

Although with the right interpretation, FRAP data
are very informative about the mobility of fluores-
cently labelled proteins, it clearly has its limitations.
The integration of complementary techniques like
single-molecule tracking (SMT) and fluorescence
correlation spectroscopy will be of great value in
unravelling the full picture of the dynamic behaviour
of proteins. These approaches will be discussed
elsewhere in this issue (Erdel et al. 2011; Dange
et al. 2011).

How do nuclear proteins bind their targets?

FRAP is very well suited to analyse the function and
behaviour of proteins that exert their functions in
DNA–protein complexes, since DNA or chromatin is
essentially immobile over the time a typical FRAP
experiment takes. Therefore, residence times in the
immobile state determined by FRAP experiments reflect
the engagement of the investigated factor in DNA–
protein complexes. This enabled researchers even in
the early days of live-cell imaging and GFP-tagging
to observe surprisingly short-lived DNA–protein
complexes in DNA repair of single-strand lesions
(Houtsmuller et al. 1999) and transcription initiation
(McNally et al. 2000). Following these pioneering
studies, a large number of reports showed a similarly
dynamic interaction of nuclear proteins with DNA,
including investigations on gene transcription and
RNA processing, DNA repair, DNA replication and
chromatin structure (Kruhlak et al. 2000; Leonhardt
et al. 2000; Mattern et al. 2004; Sporbert et al. 2002;
Stavreva et al. 2004). In Fig. 3a, a comparison is made
between the mobilities of a selection of proteins from
these studies. In view of the difficulty to compare
FRAP-data obtained by different procedures and ana-
lytical methods, as discussed above, we chose to present
the time until complete recovery estimated from the
published FRAP-curves since we think that in many
cases these serve well as an indication of the actual
residence times of the indicated proteins in DNA-
associated complexes. We are aware, however, that this
rough analysis only holds for proteins with effective
on- and off-rates in the lower left part of Fig. 3b and the
left corner of the diamond in Fig. 3c. For proteins with
higher on- and off-rates, residence times in immobile

complexes will be substantially shorter (top right part in
Fig. 3b, right corner in 3c). Note that this very frequent
and transient binding behaviour is only possible when
the concentration of binding sites is very high since
proteins hardly have time to diffuse over longer
distances between binding events, but no relatively long
binding events occur. Typically, these are scenarios
where DNA is constantly (aspecifically) bound, such as
the hopping, sliding or jumping models discussed
above. Obviously, prior knowledge of the function of
the protein under surveillance may help to interpret
FRAP curves in this way. For instance XPC, the damage
sensor in nucleotide excision repair, likely interacts
frequently and shortly with intact DNA, as argued
above, leading to prolonged recovery times, in the order
of tens of seconds, much longer than the actual aspecific
DNA-binding time. However, in cells exposed to
ultraviolet light, a substantial part of the XPC protein
is much longer bound to immobile DNA damage,
leading from a shift from the right to the left corner in
Fig. 3c. In this case, recovery times are in the order of
several minutes (Hoogstraten et al. 2008; Nishi et al.
2009) and can be used to roughly estimate DNA-
binding times. In addition, in a number of cases, proteins
interact with subnuclear structures like DNA repair foci,
in which case final recovery time (of bleached foci) also
is a good indicator of binding times.

In cases where proteins reside relatively long in the
immobile fraction (either in foci, or scattered throughout
the nucleus), like the DNA repair proteins, binding time
estimated from recovery time, still largely depends on
the assumed binding model (Figs. 3b and c, 4a). When
simple binding kinetics are assumed (where the
equilibrium between immobile and mobile state is
determined by the ratio of on- and off-rates) residence
times are distributed exponentially (red curve in
Fig. 4b). In case the effective on- and off-rates are in
the lower left panel of Fig. 3b, the characteristic
binding time is approximately 1/5 of the time until full
recovery. However, a more complex binding model
can be hypothesised, where the stability of the complex
increases over time, due to entry of stabilising factors,
and drops when the required action is performed. In
this case, average residence times are more towards 1/2
or 1/3 of the time until full recovery (blue curve in
Fig. 4b). Such a more complex binding model can be
appreciated if for instance a DNA repair complex in
progress is considered. It is conceivable that the
damage sensing protein XPC is initially bound in a
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less-stable manner than when it is stabilised by binding
of later factors (cf Fig. 2b; Mone et al. 2004; Dinant et
al. 2009; Nishi et al. 2009). In addition, when repair is
finished, off-rates of involved proteins will consider-

ably increase, leading to their rapid release. Similarly,
in transcriptional regulation, many types of mediator
and chromatin remodelling complexes are involved,
which may have a role in stabilising initial promoter
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binding of founding factors, such as steroid receptors
(McKenna et al. 1999; Hermanson et al. 2002; Smith
and O’Malley 2004; Heemers and Tindall 2007).
Moreover, transcription complexes have been suggested
to be actively disassembled by chaperone proteins, in
which case effective off-rate increases dramatically
(Elbi et al. 2004). Such scenarios, where early factors

undergo more changes in binding stability than late
binding factors, or where factors are actively released
after finishing their job, give rise to different distribu-
tions of binding times (Fig. 4b), but surprisingly
similar FRAP-curves (Fig. 4c).

While the above studies clearly show the dynamic
interplay between DNA-binding proteins and chro-
matin in general, there are still a number of questions
that remain to be discussed for individual proteins: Do
proteins associate with target DNA or DNA–protein
complexes until, for instance, repair is completed or
transcription is initiated, or do they stay shorter, only
to perform their own specific task within the entire
process? Do unproductive binding events also occur,
and if yes how often? In addition, is there a specific or
preferred order in which factors assemble? Below we
discuss these issues in detail.
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Fig. 4 DNA-binding mod-
els. a The top cartoon shows
a simple binding model
which gives rise to an
exponential distribution of
binding times (red curve in
b). In a more complex
model, early binding factors
have different binding
kinetics (blue curve in b)
since the complex is stabi-
lised when later factors bind
resulting in a lower off-rate.
b Frequency distributions of
residence times for the
complex (blue) and simple
(red) binding model.
Average binding time in the
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Fig. 3 Relationship between time until final recovery in FRAP
experiments and residence time in immobile complexes. a Time
until complete recovery in FRAP experiments of a selection of
nuclear proteins involved in several nuclear functions (log
plot). Note that repair factors are measured in the presence of
induced DNA damage and they in general show longer
recovery times than transcription factors. b and c Diagrams
adapted from Sprague et al. 2004, showing the relationship
between on/off ratio (y- and x-axes respectively), immobile
fraction (colour coding) and time until final recovery (solid
lines) (note that in both curves, Kon defines effective on-rate,
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Results from FRAP-studies on single-strand DNA-
damage by nucleotide excision repair (NER) point to an
action mechanism where repair factors are present in
DNA–protein complexes for the time required to repair a
single lesion, and leave the spot soon after. First, all
investigated NER constituents, including ERCC1/XPF
(Houtsmuller et al. 1999), XPB (Hoogstraten et al.
2002), XPA (Rademakers et al. 2003), XPC
(Hoogstraten et al. 2008; Nishi et al. 2009) and XPG
(Zotter et al. 2006) have similar and relatively long
fluorescence recovery times in the order of 3 to 5 min,
and show similar immobile fractions, dependent on the
number of lesions present. Second, the time it takes to
fully repair all single-strand lesions induced by UV-
irradiation at 8 J/m2 predicted on the basis these FRAP
measurements is in agreement with the total repair time
determined by incorporation of labelled nucleotides
at different time points after damage induction
(Houtsmuller et al. 1999). A different picture arises
from studies on double-strand break repair (DSB)
dynamics, where residence times of individual factors
in DSB foci differ considerably from each other (e.g.
RAD54, ~3 s; RAD52, ~5 min; and RAD51, stably
bound, see Fig. 3a), and are mostly much shorter than
the life span of individual DSB foci, which is in the
order of several hours. An interesting, but highly
speculative explanation for the observed very rapid
interactions of RAD54 is related to its ability to hydro-
lyse ATP in a DSB-dependent manner (Swagemakers et
al. 1998). If its main activity in DSB foci would be
hydrolysing ATP, it may be that during each short-term
visit RAD54 delivers a small amount of energy by
hydrolysing a few ATPs, thereby fuelling the ongoing
repair process. In contrast, RAD51, which is very stably
associated to DSB foci, may have a scaffolding
function. Thus, opposite to the situation in NER, in
DSB repair, individual factors do not reside in a DSB
focus during its entire life span, but in general have
shorter residence times, which may correspond to the
time required to perform specific actions within the
entire repair process. In transcription, the situation is
probably more complex, where different models may
explain consecutive steps, from initial binding by
regulatory factors such as steroid receptors and cofac-
tors, which may act similarly to NER factors (see also
below), followed by assembly of the general transcrip-
tion machinery and finalised by launching of RNA
polymerase II. The general transcription complex may
behave more similarly to the DSB repair system, in a

sense that residence times differ considerably
between individual factors, where the TATA-box-
binding protein TBP as a part of TFIID shows
relatively long residence times, in the order of tens
of minutes (de Graaf et al. 2010), whereas residence
times of TFIIH are in the order of several seconds
rather than minutes (Hoogstraten et al. 2002). A
speculative explanation of the long-term binding of
TBP, may be in the observation that its residence
times are influenced by the presence or absence of
coactivators or repressors, where the latter increase
its binding times, suggesting a regulatory role for
TBP in addition to its function in initiation (de Graaf
et al. 2010). The very rapid interactions of TFIIH in
transcription are in contrast with its behaviour in
single-strand damage repair, where it is engaged in
repair complexes for minutes (Hoogstraten et al.
2002). Interestingly, not only TFIIH, but repair
factors in general seem to be more stably associated
with repair complexes than transcription factors are
with transcription initiation complexes (Fig. 3a). An
attractive explanation for this could be that DNA
damage demands urgent removal, and is stably
bound by repair complexes, whereas transcription
(regulation) is an ongoing process, possibly requir-
ing less tight attention. In other words, repair factors
better do their job properly, whereas transcription
factors may miss a round or two.

Next to these speculative considerations, it should be
noted also that it is highly likely, given the increasingly
recognised stochastic nature of all molecular behaviour
in the cell, that not all observed binding events are
actually productive. Very transient interactions in the
subsecond range have been reported to occur on a large
scale, together with longer binding events. For instance
in DNA replication and in AR-regulated transcription,
experimental FRAP curves fit best to curves generated
by Monte Carlo computer simulations of a scenario
where in addition to relatively long binding events, the
majority of the proteins are binding transiently to DNA
(Xouri et al. 2007; Tanner et al. 2010). These
interactions may also contribute to the observed
anomalous diffusion discussed above and may repre-
sent aspecific binding events, possibly leading to
sliding along DNA.

FRAP has been instrumental in determining resi-
dence times in DNA–protein complexes, but other
approaches have been explored to address the
question whether individual factors bind in a preferred
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or specific order to the complexes in progress.
Obviously, factors that identify targets in chromatin,
like transcription regulatory factors or DNA damage
sensors are early binders, but less knowledge exists
on the order, if any, in which the subsequent activities
bind (Dinant et al. 2009; Coulon et al. 2010). In DNA
repair of single-strand lesions it was shown that in
patient or mutant cell lines, each lacking a specific
factor, only a subset of the other repair proteins
would assemble on a locally induced damage spot
within the nucleus. These data suggest a defined
order of binding, where the single-strand lesion is
first detected then stabilised, unwound, cut out and
resynthesised. Along the same lines, but exploring
an alternative approach where they used ionising
irradiation of a limited volume in the nucleus, and
followed the assembly of several GFP-tagged DSB
repair-proteins, ample evidence has been provided
that these factors assemble in a specific order
(Jazayeri et al. 2006; Essers et al. 2006). After IR-
induced DNA damage, activated ATM binds Chk2
very transiently resulting in activation and Chk2-
mediated cell cycle arrest (Lukas et al. 2003, 2004).
This very transient binding is contrasted by the
binding of the Mre11-Rad50-Nbs1 complex (MRN)
at the damage site, which is followed by consecutive
binding of RPA, ATR, Chk1 and the RAD52-group
proteins and others (Jazayeri et al. 2006). During the
existence of the holocomplex, the involved factors
dynamically exchange between the complex and the
nucleoplasm, each factor having its own average
residence time (Essers et al. 2005).

In an experimentally different set-up, chromatin
immunoprecipitation (ChIP) experiments on cultured
synchronised cells suggest a cyclic binding pattern in
hormone-regulated transcription, where estrogen
receptors (ERs), cofactors and finally the general
transcription machinery bind in a more or less defined
order, and release soon after transcription initiation,
leaving the gene for a new round of binding (Metivier
et al. 2003). Since the observed cycles were typically
in the order of tens of minutes these data initiated
discussion on the interpretation of many of the
preceding FRAP experiments on nuclear receptors
which suggested a much shorter binding time in the
order of tens of seconds rather than minutes (e.g.
McNally et al. 2000; Farla et al. 2004, 2005; Schaaf
and Cidlowski 2003; Rayasam et al. 2005; Marcelli et
al. 2006; Klokk et al. 2007; Meijsing et al. 2007).

However, an explanation for the apparent inconsis-
tency of ChIP and FRAP data was provided by
McNally and co-workers who showed, combining
FRAP and single-cell measurements of messenger
RNA, that rapid exchange of the yeast copper-
inducible transcription factor ACE1p with each copy
of an array of endogenous CUP1 promoters occurs,
but that the number of available binding sites in the
array goes through cycles on a longer time scale in the
order of tens of minutes (Karpova et al. 2008). This
indicates that during the existence of a productive
complex, individual components may continually
exchange, similar to RAD54 in DSB repair. Indeed,
such exchange has been observed for histones, of
which the exchange is increased in transcriptionally
active areas, but also occurs in other areas (Kimura et
al. 2002).

The combination of acceptor photobleaching FRET
and FRAP has provided an alternative approach to
investigate binding order. In this method, the increase
and the subsequent loss of fluorescence of FRET-donor
fluorescence in a small region inside the nucleus after
photobleaching the FRET-acceptor, is compared with
the recovery of FRET-acceptor fluorescence (van Royen
et al. 2007). Application of this approach to androgen
receptors double tagged with the FRET-pair CFP and
YFP at the N and C terminuses, revealed that androgen
receptors undergo a transformational change after
binding to regulatory regions of androgen-regulated
genes, and that this change uncovers binding sites for
cofactors allowing them to bind to the same regions
only after ARs have bound.

Apart from binding in a specific order, it has also
been shown that different factors influence, i.e.
stimulate or inhibit, each others binding behaviour.
For example, the glucocorticoid receptor and high-
mobility group box protein 1 interact when bound to
chromatin and decrease each others' mobility (Agresti
et al. 2005), suggesting a cooperative binding
mechanism. Another example of cooperative binding
behaviour is provided by detailed analysis of the
dynamic behaviour of linker histone H1. Sophisticated
FRAP analysis of various GFP-tagged truncated H1
variants each harbouring defined DNA-binding domains
revealed two distinct binding mechanisms through
different combinations of domains and an additional
metastable intermediate binding state (Stasevich et al.
2010). These types of cooperative binding reactions
cannot be described by a simple binding reaction
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model, but require a model of sequential binding events
or even more complex models that includes initial
complex formation (cf. Fig. 4) (Mueller et al. 2010).
Most likely these complex binding events will lead to
more variability in its binding kinetics and in particular
a varying off-rate.

Conclusion

We have discussed models and supportive data
concerning mechanisms by which nuclear proteins
translocate to their target sites, and how they interact
with DNA or DNA–protein complexes. Taking
together the results of various approaches, the
predominant mechanism by which proteins travel
through the nucleus to find their target sites is one
of three-dimensional diffusion. It is however, not yet
clear how nuclear factors find the precise nucleotide
sequence or DNA damage in the vast amount of
DNA. It has been argued that DNA-scanning mech-
anisms should exist (1D diffusion), enhancing the
chance to encounter a target site (Fig. 1a). Indeed it
can be calculated that a specific molecule that
effectively diffuses at a typical rate of say 1 μm2/s
in a (large) nucleus with a diameter of say 30 μm, will
collide with for instance a nucleosome with a
diameter of 10 nm only once a day. In contrast to
this, it can also be argued that, from the viewpoint of
a specific binding site awaiting a factor to bind, it is
not relevant which of the often thousands or tens of
thousands of copies actually binds, which will happen
several times per minute. In addition, many nuclear
proteins that do not bind DNA directly, may not have
intrinsic DNA-binding properties, and may not be
able to explore DNA-scanning mechanisms to
enhance their binding chances. However, since the
investigated endonuclease and other DNA-binding
proteins are clearly able to slide along DNA in vitro,
it seems likely that at least short stretches of DNA are
scanned continually by DNA-interacting factors in
vivo, enhancing their binding efficiency. Sliding
mechanisms in that view can then be regarded as
binding mechanisms rather than finding mechanisms,
similar to protein–protein interactions that often start
with weak interactions, after which strong interactions
are initiated by reorientation of the binding partners.
As an alternative to 1D-diffusion, hopping or jumping
models have been suggested. However, these hopping

events (Fig. 1c) also occur frequently in a model of
free diffusion and random collision. It may be that the
recently reported fractal organisation of chromatin
facilitates hopping behaviour (Bancaud et al. 2009;
Lieberman-Aiden et al. 2009). However, further
investigation is required to verify whether binding
and rebinding of factors for instance in chromatin
areas rich in binding sites occurs more frequently than
expected on the basis of free diffusion.

In Fig. 3 we provided a semi-quantitative compar-
ison of nuclear proteins involved in several nuclear
processes, which allows to make general statements
about the large scale differences between residence
times of different factors in DNA–protein complexes.
Although our interpretations are highly speculative
and require much more research, we discussed the
possible relationship between the observed residence
times and protein function. Moreover, apart from the
fact that data are compared from different labs using
different FRAP approaches and analytical methods,
which we tried to overcome by showing final
recovery times (Fig. 3a), the influence of the GFP-
tag on a labelled protein may limit to some extent the
validity of our comparison. Although GFP-tagged
proteins are in general thoroughly tested to be
functional in spite of the bulky tag, it would be
overly optimistic to assume that there is no influence.
Since the potentially limiting effect on function is
likely to differ between different proteins, caution is
required, especially when precise quantitative data are
integrated in systems biology approaches to present a
full quantitative model.

Finally, quantitative fluorescence methods, specifi-
cally FRAP, and other approaches have revealed a
highly dynamic behaviour of nuclear proteins, but to
fully unravel the reaction mechanisms by which DNA–
protein complexes perform their functions, more
research and the application of novel approaches are
required. In the field of fluorescence, single-molecule
tracking and high-resolution microscopy technology are
expected to play an important role in this further
research.
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