Skip to main content

Advertisement

Log in

Ginsenoside Re Promotes Nerve Regeneration by Facilitating the Proliferation, Differentiation and Migration of Schwann Cells via the ERK- and JNK-Dependent Pathway in Rat Model of Sciatic Nerve Crush Injury

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Exploring effective drugs that are capable of promoting nerve regeneration has gained much attention. Ginsenoside Re (Re) is the main ingredient of ginseng berries and roots. Research in the area has shown that ginsenoside Re exhibits multiple pharmacological activities via different mechanisms both in vivo and in vitro. But the potential therapeutic effects of Re on sciatic nerve crush injury (SNC) have been little investigated. Herein, we investigated the protect effect of Re on peripheral nerve regeneration in a rat SNC model. Walking track analysis revealed that Re treatment significantly promoted functional recovery of crushed sciatic nerve in rats. The expression of PCNA in rat sciatic nerve was up-regulated by Re treatment, and peaked when the concentration of Re was 2.0 mg/kg. Using immunofluorescent staining, we found that Re greatly increased the expression of GAP-43 and S100 in injured rat sciatic nerve. Furthermore, we evaluated the effects of Re on proliferation, differentiation, and migration of Schwann cells in SNC rat models. Our studies reveal that Re promotes nerve regeneration is depend on ERK1/2 and JNK1/2 signaling pathway. Elevated Oct-6 expression and featured morphological changes indicated that Re facilitated the differentiation of Schwann cells following SNC. Also, transwell and wound-healing assay demonstrated that the migration capabilities of Schwann cell were significantly enhanced after Re treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SNC:

Sciatic nerve crush injury

PNI:

Peripheral nerve injury

SFI:

Sciatic functional index

TSI:

Toe spread index

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

SC:

Schwann cell

References

  • Akassoglou K, Akpinar P, Murray S, Strickland S (2003) Fibrin is a regulator of Schwann cell migration after sciatic nerve injury in mice. Neurosci Lett 338:185–188

    Article  CAS  PubMed  Google Scholar 

  • Alanko J, Kurahashi Y, Yoshimoto T, Yamamoto S, Baba K (1994) Panaxynol, a polyacetylene compound isolated from oriental medicines, inhibits mammalian lipoxygenases. Biochem Pharmacol 48:1979–1981

    Article  CAS  PubMed  Google Scholar 

  • Arroyo EJ, Bermingham JR Jr, Rosenfeld MG, Scherer SS (1998) Promyelinating Schwann cells express Tst-1/SCIP/Oct-6. J Neurosci 18:7891–7902

    CAS  PubMed  Google Scholar 

  • Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Attele AS et al (2002) Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Blaauw G, Muhlig RS, Vredeveld JW (2008) Management of brachial plexus injuries. Adv Tech Stand Neurosurg 33:201–231

    Article  CAS  PubMed  Google Scholar 

  • Campbell WW (2008) Evaluation and management of peripheral nerve injury. Clin Neurophysiol 119:1951–1965

    Article  PubMed  Google Scholar 

  • Charvet C et al (2006) Vav1 promotes T cell cycle progression by linking TCR/CD28 costimulation to FOXO1 and p27kip1 expression. J Immunol 177:5024–5031

    Article  CAS  PubMed  Google Scholar 

  • Chen L et al (2008) Spatiotemporal expression of SSeCKS in injured rat sciatic nerve. Anat Rec 291:527–537

    Article  CAS  Google Scholar 

  • Christensen LP, Jensen M (2009) Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds. J Nat Med 63:159–168

    Article  CAS  PubMed  Google Scholar 

  • de Medinaceli L (1995) Interpreting nerve morphometry data after experimental traumatic lesions. J Neurosci Methods 58:29–37

    Article  PubMed  Google Scholar 

  • Deng X, Wei H, Lou D, Sun B, Chen H, Zhang Y, Wang Y (2012) Changes in CLIP3 expression after sciatic nerve injury in adult rats. J Mol Histol 43:669–679

    Article  CAS  PubMed  Google Scholar 

  • Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto Y et al (1998) Inhibition of 15-hydroxyprostaglandin dehydrogenase activity in rabbit gastric antral mucosa by panaxynol isolated from oriental medicines. J Pharm Pharmacol 50:1075–1078

    Article  CAS  PubMed  Google Scholar 

  • Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JL, Barres BA (2000) The relationship between neuronal survival and regeneration. Annu Rev Neurosci 23:579–612

    Article  CAS  PubMed  Google Scholar 

  • Harrisingh MC, Perez-Nadales E, Parkinson DB, Malcolm DS, Mudge AW, Lloyd AC (2004) The Ras/Raf/ERK signalling pathway drives Schwann cell dedifferentiation. EMBO J 23:3061–3071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang KS et al (2009) Proliferative effects of Chishao on Schwann cells are FGF-uPA, and ERK- and JNK-dependent. Am J Chin Med 37:1191–1202

    Article  PubMed  Google Scholar 

  • Huang SL, He XJ, Li ZF, Lin L, Cheng B (2014) Neuroprotective effects of ginsenoside Rg1 on oxygen-glucose deprivation reperfusion in PC12 cells. Pharmazie 69:208–211

    CAS  PubMed  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  PubMed  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Yoo DS, Xu H, Park NI, Kim HH, Choi JE, Park SU (2009) Ginsenoside content of berries and roots of three typical Korean ginseng (Panax ginseng) cultivars. Nat Prod Commun 4:903–906

    CAS  PubMed  Google Scholar 

  • Kinnman E, Aldskogius H, Johansson O, Wiesenfeld-Hallin Z (1992) Collateral reinnervation and expansive regenerative reinnervation by sensory axons into “foreign” denervated skin: an immunohistochemical study in the rat. Exp Brain Res 91:61–72

    Article  CAS  PubMed  Google Scholar 

  • Konakahara S et al (2011) A neuronal transmembrane protein LRFN4 induces monocyte/macrophage migration via actin cytoskeleton reorganization. FEBS Lett 585:2377–2384

    Article  CAS  PubMed  Google Scholar 

  • Konakahara S, Suzuki Y, Kawakami T, Saitou M, Kajikawa M, Masuho Y, Kohroki J (2012) A neuronal transmembrane protein LRFN4 complexes with 14-3-3s and NCK1 to induce morphological change in monocytic cells via Rac1-mediated actin cytoskeleton reorganization. FEBS Lett 586:2251–2259

    Article  CAS  PubMed  Google Scholar 

  • Kou YH et al (2013) Radix hedysari extract promotes peripheral nerve regeneration. Beijing Da Xue Xue Bao 45:830–833

    PubMed  Google Scholar 

  • Lee S, Kim MG, Ko SK, Kim HK, Leem KH, Kim YJ (2014) Protective effect of ginsenoside Re on acute gastric mucosal lesion induced by compound 48/80. J Ginseng Res 38:89–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu YW, Zhu X, Li W, Lu Q, Wang JY, Wei YQ, Yin XX (2012) Ginsenoside Re attenuates diabetes-associated cognitive deficits in rats. Pharmacol Biochem Behav 101:93–98

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Li W, Tian R, Lei W (2010) Ginsenoside Rg1 promotes peripheral nerve regeneration in rat model of nerve crush injury. Neurosci Lett 478:66–71

    Article  CAS  PubMed  Google Scholar 

  • Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S (2007) The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. J Med Invest 54:381–384

    Article  PubMed  Google Scholar 

  • Nave KA, Salzer JL (2006) Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16:492–500

    Article  CAS  PubMed  Google Scholar 

  • Ogata T et al (2004) Opposing extracellular signal-regulated kinase and Akt pathways control Schwann cell myelination. J Neurosci 24:6724–6732

    Article  CAS  PubMed  Google Scholar 

  • Papakonstanti EA, Stournaras C (2008) Cell responses regulated by early reorganization of actin cytoskeleton. FEBS Lett 582:2120–2127

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Wang H, Qu C, Xie L, Wicks SM, Xie J (2012) Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chin Med 7:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Pereira JA, Lebrun-Julien F, Suter U (2012) Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 35:123–134

    Article  CAS  PubMed  Google Scholar 

  • Pongkitwitoon B, Sakamoto S, Morinaga O, Juengwatanatrakul T, Shoyama Y, Tanaka H, Morimoto S (2011) Single-chain variable fragment antibody against ginsenoside Re as an effective tool for the determination of ginsenosides in various ginsengs. J Nat Med 65:24–30

    Article  CAS  PubMed  Google Scholar 

  • Sacharuk VZ et al (2011) Thermographic evaluation of hind paw skin temperature and functional recovery of locomotion after sciatic nerve crush in rats. Clinics 66:1259–1266

    Article  PubMed  Google Scholar 

  • Schumacher M, Guennoun R, Stein DG, De Nicola AF (2007) Progesterone: therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 116:77–106

    Article  CAS  PubMed  Google Scholar 

  • Sheu JY, Kulhanek DJ, Eckenstein FP (2000) Differential patterns of ERK and STAT3 phosphorylation after sciatic nerve transection in the rat. Exp Neurol 166:392–402

    Article  CAS  PubMed  Google Scholar 

  • Smit X, de Kool BS, Blok JH, Visser GH, Hovius SE, van Neck JW (2006) Recovery of neurophysiological features with time after rat sciatic nerve repair: a magneto-neurographic study. J Peripher Nerv Syst 11:126–134

    Article  PubMed  Google Scholar 

  • Su X, Pei Z, Hu S (2014) Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol 20:283–289

    Article  CAS  PubMed  Google Scholar 

  • Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6:276–287

    Article  PubMed Central  PubMed  Google Scholar 

  • Teng CM, Kuo SC, Ko FN, Lee JC, Lee LG, Chen SC, Huang TF (1989) Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim Biophys Acta 990:315–320

    Article  CAS  PubMed  Google Scholar 

  • Teodosijevic M, Miljkovic Z, Majstorovic Z (1998) Use of the maximal physiologic load test in the evaluation of functional values of newly made complete dentures and dentures rebased by the Rehm method. Vojnosanit Pregl 55:161–170

    CAS  PubMed  Google Scholar 

  • Tsang F, Koh AH, Ting WL, Wong PT, Wong WS (1998) Effects of mitogen-activated protein kinase kinase inhibitor PD 098059 on antigen challenge of guinea-pig airways in vitro. Br J Pharmacol 125:61–68

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Cheng X, Zhou Z, Wu H, Long L, Gu X, Xu G (2013a) Increased expression of Gem after rat sciatic nerve injury. J Mol Histol 44:27–36

    Article  PubMed  Google Scholar 

  • Wang Z, Zhang P, Kou Y, Yin X, Han N, Jiang B (2013b) Hedysari extract improves regeneration after peripheral nerve injury by enhancing the amplification effect. PLoS ONE 8:e67921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu CF et al (2007) Differential effects of ginsenosides on NO and TNF-alpha production by LPS-activated N9 microglia. Int Immunopharmacol 7:313–320

    Article  CAS  PubMed  Google Scholar 

  • Wu H et al (2013) Changes in the BAG1 expression of Schwann cells after sciatic nerve crush. J Mol Neurosci 49:512–522

    Article  CAS  PubMed  Google Scholar 

  • Xia SH, Fang DC (2007) Pharmacological action and mechanisms of ginkgolide B. Chin Med J 120:922–928

    CAS  PubMed  Google Scholar 

  • Xie JT et al (2005) Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 1740:319–325

    Article  CAS  PubMed  Google Scholar 

  • Yao L et al (2014) FBP1 and p27kip1 expression after sciatic nerve injury: implications for Schwann cells proliferation and differentiation. J Cell Biochem 115:130–140

    Article  CAS  PubMed  Google Scholar 

  • Yuan D et al (2014) Upregulated expression of SSTR1 is involved in neuronal apoptosis and is coupled to the reduction of bcl-2 following intracerebral hemorrhage in adult rats. Cell Mol Neurobiol 34:951–961

    Article  CAS  PubMed  Google Scholar 

  • Yue J et al (2011) Cutaneous human papillomavirus type 38 E7 regulates actin cytoskeleton structure for increasing cell proliferation through CK2 and the eukaryotic elongation factor 1A. J Virol 85:8477–8494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Z et al (2014) Involvement of upregulated SYF2 in Schwann cell differentiation and migration after sciatic nerve crush. Cell Mol Neurobiol 34:1023–1036

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2012) Dynamic change of numbl expression after sciatic nerve crush and its role in Schwann cell differentiation. J Neurosci Res 90:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Zou DW et al (2013) Traditional chinese medicine tang-luo-ning ameliorates sciatic nerve injuries in streptozotocin-induced diabetic rats. Evid Based Complement Altern Med 2013:989670

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Basic Research Program of China (973 Program 2012CB8221004); the National Natural Science Fund (31170766); and the Nantong City Social Development Projects funds (HS2012032); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Tan.

Additional information

Lei Wang and Damin Yuan have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Yuan, D., Zhang, D. et al. Ginsenoside Re Promotes Nerve Regeneration by Facilitating the Proliferation, Differentiation and Migration of Schwann Cells via the ERK- and JNK-Dependent Pathway in Rat Model of Sciatic Nerve Crush Injury. Cell Mol Neurobiol 35, 827–840 (2015). https://doi.org/10.1007/s10571-015-0177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-015-0177-7

Keywords

Navigation