Skip to main content

Advertisement

Log in

Partial Biological Characterization of Cancer Stem-like Cell Line (WJ2) of Human Glioblastoma Multiforme

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

To provide suitable models for human GBM cancer stem cells in vitro and in vivo, and investigate their biological characteristics, a new human GBM cancer stem-like cell line, WJ2, was established in this experiment through serial passages from adherent monolayer culture to nonadherent tumor sphere culture in turns; Its partial biological characteristics were studied through cell proliferation and tumor sphere assay; cell cycle distribution, side population, and CD133 phenotype were analyzed with FCM. The expressions of CD133, Nestin, and GFAP of cancer stem-like cells and xenograft tumor cells were detected with RT-PCR and immunohistochemistry. Biological characterization, side population, CD133 phenotype and CD133 Nestin, BCRP-1, Wnt-1 gene expression revealed the stemness of this cancer stem-like cell line. Tumorigenicity heterotransplanted in nude mice; histopathological characteristics of xenograft tumor, and expressions of CD133, Nestin, and GFAP of xenograft tumor cells indicated that xenograft tumors recapitulated the phenotype and biological characterization of human primary GBM. All findings of this experimental study suggested that WJ2 cancer stem-like cell line could accurately mimic human GBM cancer stem cell in vitro and in vivo; it would be useful in the cellular and molecular studies as well as in testing novel therapies of CSC-based anti-cancer therapies for human GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M (2007) Cancer stem cells and oncology therapeutics. Curr Opin Oncol 19:61–64

    PubMed  Google Scholar 

  • Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533

    Article  PubMed  CAS  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67:4010–4015

    Article  PubMed  CAS  Google Scholar 

  • Bellows CG, Aubin JE (1989) Determination of numbers of osteoprogenitors present in isolated fetal rat calvaria cells in vitro. Dev Biol 133:8–13

    Article  PubMed  CAS  Google Scholar 

  • Dirks PB (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond B Biol Sci 363:139–152

    Article  PubMed  CAS  Google Scholar 

  • Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C, De Maria R (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Salford LG, Widegren B (2007) Glioma stem cells: evidence and limitation. Semin Cancer Biol 17:214–218

    Article  PubMed  CAS  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, Depinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Gal H, Makovitzki A, Amariglio N, Rechavi G, Ram Z, Givol D (2007) A rapid assay for drug sensitivity of glioblastoma stem cells. Biochem Biophys Res Commun 358:908–913

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  PubMed  CAS  Google Scholar 

  • Hadnagy A, Gaboury L, Beaulieu R, Balicki D (2006) SP analysis may be used to identify cancer stem cell populations. Exp Cell Res 312:3701–3710

    Article  PubMed  CAS  Google Scholar 

  • Hill RP, Perris R (2007) “Destemming” cancer stem cells. J Natl Cancer Inst 99:1435–1440

    Article  PubMed  CAS  Google Scholar 

  • Ieta K, Tanaka F, Haraguchi N, Kita Y, Sakashita H, Mimori K, Matsumoto T, Inoue H, Kuwano H, Mori M (2008) Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol 15:638–648

    Article  PubMed  Google Scholar 

  • Inagaki A, Soeda A, Oka N, Kitajima H, Nakagawa J, Motohashi T, Kunisada T, Iwama T (2007) Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions. Biochem Biophys Res Commun 361:586–592

    Article  PubMed  CAS  Google Scholar 

  • Jones RJ, Matsui W (2007) Cancer stem cells: from bench to bedside. Biol Blood Marrow Transplant 13:47–52

    Article  PubMed  Google Scholar 

  • Jost SC, Wanebo JE, Song SK, Chicoine MR, Rich KM, Woolsey TA, Lewis JS, Mach RH, Xu J, Garbow JR (2007) In vivo imaging in a murine model of glioblastoma. Neurosurgery 60:360–371

    Article  PubMed  Google Scholar 

  • Kang MK, Kang SK (2007) Tumorigenesis of chemotherapeuticdrug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 6:837–848

    Article  CAS  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, Pastorino S, Purow BW, Christopher N, Zhang W, Park JK, Fine HA (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black K L, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  CAS  Google Scholar 

  • Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A, Kunisada T, Mori H, Iwama T (2007) VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun 360:553–559

    Article  PubMed  CAS  Google Scholar 

  • Panagiotakos G, Tabar V (2007) Brain tumor stem cells. Curr Neurol Neurosci Rep 7:215–220

    Article  PubMed  Google Scholar 

  • Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo SG, Vescovi AL (2006) Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells. Ernst Schering Found Symp Proc 5:59–81

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo SG, Vescovi AL (2007) Brain tumour stem cells: possibilities of new therapeutic strategies. Expert Opin Biol Ther 7:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Platet N, Mayol JF, Berger F, Hérodin F, Wion D (2007) Fluctuation of the SP/non-SP phenotype in the C6 glioma cell line. FEBS Lett 581:1435–1440

    Article  PubMed  CAS  Google Scholar 

  • Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984

    Article  PubMed  CAS  Google Scholar 

  • Sakariassen PØ, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 9:882–892

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-García I, Vicente-Dueñas C, Cobaleda C (2007) The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 29:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Seigel GM, Hackam AS, Ganguly A, Mandell LM, Gonzalez-Fernandez F (2007) Human embryonic and neuronal stem cell markers in retinoblastoma. Mol Vis 13:823–832

    PubMed  CAS  Google Scholar 

  • Serakinci N, Erzik C (2007) Road for understanding cancer stem cells: model cell lines. Regen Med 2:957–965

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bone VE, Hawkins CH, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, TakuichiroHide BA, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumors initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Tang C, Chua CL, Ang BT (2007) Insights into the cancer stem cell model of glioma tumorigenesis. Ann Acad Med Singapore 36:352–357

    PubMed  Google Scholar 

  • Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208:166–188

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wang X, Jiang S, Lin P, Zhang J, Wu Y, Xiong Z, Ren JJ, Yang H (2007) Establishment of a new human glioblastoma multiforme cell line (WJ1) and its partial characterization. Cell Mol Neurobiol 27:831–843

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sakariassen PO, Tsinkalovsky O, Immervoll H, Bøe SO, Svendsen A, Prestegarden L, Røsland G, Thorsen F, Stuhr L, Molven A, Bjerkvig R, Enger PO (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122:761–768

    Article  PubMed  CAS  Google Scholar 

  • Yin S, Li J, Hu C, Chen X, Yao M, Yan M, Jiang G, Ge C, Xie H, Wan D, Yang S, Zheng S, Gu J (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 120:1444–1450

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67:3691–3697

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Zhou C, Ma W, Wang D, Guo S, Su X, Zhang S (2007) Most MCF7 and SK-OV3 cells were deprived of their stem nature by Hoechst 33342. Biochem Biophys Res Commun 364:338–343

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, Margolick JB, Liotta LA, Petricoin E 3rd, Zhang Y (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104:16158–16163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

National Natural Science Foundation of China supported this study; Grant Number: 30471779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujie Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wang, X., Jiang, S. et al. Partial Biological Characterization of Cancer Stem-like Cell Line (WJ2) of Human Glioblastoma Multiforme. Cell Mol Neurobiol 28, 991–1003 (2008). https://doi.org/10.1007/s10571-008-9273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9273-2

Keywords

Navigation