Skip to main content

Advertisement

Log in

Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A rotating disk bioreactor with plastic composite support (PCS) as the solid support was evaluated for bacterial cellulose (BCel) production. Results demonstrated that BCel can be produced in a semi-continuous manner. The BCel productivity reached around 0.24 g/L/day and can be sustained for at least five consecutive runs. Scanning electron microscopy results confirmed that Gluconacetobacter can attach on the PCS surface, which eliminates the need of reinoculation. X-ray diffraction patterns and mechanical analysis of BCel produced from this semi-continuous process exhibited lower crystallinity (66.9 %) and mechanical property (Young's modulus of 372.5 MPa) when compared with the BCel obtained from static culture (crystallinity = 88.7 %, Young's modulus of 3,955.6 MPa). Both BCel samples possessed similar water content (98.66 vs. 99.04 %) and thermostability (around 346 °C). In conclusion, the PCS rotating disk bioreactor system can be used to produce BCel in pellicle form with enhanced productivity and, meanwhile, can be scaled up easily to meet commercial need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BCel:

Bacterial cellulose

PCS:

Plastic composite support

PCS-RDB:

PCS rotating disk bioreactor

SS-RDB:

Stainless steel rotating disk bioreactor

SC:

Static culture

SEM:

Scanning electron microscopy

XRD:

X-ray diffraction

References

  • Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis—polymerization and crystallization are coupled processes in Acetobacter-xylinum. Proc Natl Acad Sci Biol 77(11):6678–6682

    Article  CAS  Google Scholar 

  • Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Pol Chem 42(3):487–495. doi:10.1002/Pola.10877

    Article  CAS  Google Scholar 

  • Bungay HR, Serafica GC (1999) Production of microbial cellulose using a rotating disk film bioreactor. Us Patent US5955326, 1999/09/21

  • Bungay HR, Serafica GC (2000) Production of microbial cellulose. Us Patent US6071727, 2000/06/06

  • Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12. doi:10.1186/1754-1611-3-12

    Article  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87(2):445–456. doi:10.1007/s00253-010-2622-3

    Article  CAS  Google Scholar 

  • Cheng KC, Catchmark JM, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12(3):730–736. doi:10.1021/bm101363t

    Article  CAS  Google Scholar 

  • Deinema MH, Zevenhui L (1971) Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Mikrobiol 78(1):42–57

    Article  CAS  Google Scholar 

  • Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94(1):64–69

    Article  CAS  Google Scholar 

  • Ho KL, Pometto AL 3rd, Hinz PN, Dickson JS, Demirci A (1997a) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol 63(7):2516–2523

    CAS  Google Scholar 

  • Ho KLG, Pometto AL, Hinz PN (1997b) Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl Environ Microbiol 63(7):2533–2542

    CAS  Google Scholar 

  • Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734. doi:10.1021/bm100060v

    Article  CAS  Google Scholar 

  • Keshk S, Sameshima K (2006) The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol 72(2):291–296. doi:10.1007/s00253-005-0265-6

    Article  CAS  Google Scholar 

  • Kim Y-J, Kim J-N, Wee Y-J, Park D-H, Ryu H-W (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 529–537. doi:10.1007/978-1-60327-181-3_44

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Goncalves-Miskiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29(4):189–195. doi:10.1038/sj.jim.7000303

    Article  CAS  Google Scholar 

  • Lin SP, Loira Calvar I, Catchmark J, Liu JR, Demirci A, Cheng KC (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose. doi:10.1007/s10570-013-9994-3

    Google Scholar 

  • Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical-properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical-properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater Sci 25(6):2997–3001

    Article  CAS  Google Scholar 

  • Ohad I, Danon IO, Hestrin S (1962) Synthesis of cellulose by Acetobacter xylinum. V. Ultrastructure of polymer. J Cell Biol 12:31–46

    Article  CAS  Google Scholar 

  • Okiyama A, Motoki M, Yamanaka S (1992) Bacterial cellulose. 2. Processing of the gelatinous cellulose for food materials. Food Hydrocoll 6(5):479–487

    Google Scholar 

  • Portal O, Clark WA, Levinson DJ (2009) Microbial cellulose wound dressing in the treatment of nonhealing lower extremity ulcers. Wounds 21(1):1–3

    Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677. doi:10.1021/Bm034519+

    Article  CAS  Google Scholar 

  • Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air liquid interface of a culture of Acetobacter-xylinum. J Gen Microbiol 11(1):123–129

    Article  CAS  Google Scholar 

  • Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58(6):756–760. doi:10.1007/s00253-002-0978-8

    Article  CAS  Google Scholar 

  • Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146. doi:10.1007/s11814-009-0022-0

    Article  Google Scholar 

  • Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061. doi:10.1021/bm049291k

    Article  CAS  Google Scholar 

  • Tanpichai S, Quero F, Nogi M, Yano H, Young RJ, Lindstrom T, Sampson WW, Eichhorn SJ (2012) Effective Young's modulus of bacterial and microfibrillated cellulose fibrils in fibrous networks. Biomacromolecules 13(5):1340–1349. doi:10.1021/bm300042t

    Article  CAS  Google Scholar 

  • Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotech Biochem 59(8):1498–1502

    Article  CAS  Google Scholar 

  • Trovatti E, Fernandes SM, Rubatat L, Freire CR, Silvestre AD, Neto C (2012) Sustainable nanocomposite films based on bacterial cellulose and pullulan. Cellulose 19(3):729–737. doi:10.1007/s10570-012-9673-9

    Article  CAS  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200

    Article  CAS  Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical-properties of sheets prepared from bacterial cellulose. J Mater Sci 24(9):3141–3145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored in part by “Aim for the Top University Plan” of National Taiwan University and the National Science Council, Taiwan, under Contract No. 〈100-2313-B-002-057-MY2〉 and 〈102-2221-E-002-035-MY2〉. The authors are very grateful to Joint Center for Instruments and Researches, College of Bioresources and Agriculture at National Taiwan University, and Prof. An-I Yeh from Graduate Institute of Food Science Technology at National Taiwan University for his assistance with SEM, XRD measure and mechanical property analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Chen Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SP., Hsieh, SC., Chen, KI. et al. Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose 21, 835–844 (2014). https://doi.org/10.1007/s10570-013-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0136-8

Keywords

Navigation