Skip to main content
Log in

A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Proton T2 relaxation times of water in cellulosic fibres have been interpreted using a 3-term average model. Motional and chemical exchange contributions to relaxation show opposing temperature behaviour, enabling the use of Arrhenius analysis to determine proton exchange rates and water rotational correlation times. Both parameters vary dramatically with extent of hydration, with chemical exchange dominating relaxation at saturated water contents. Interpretations are based on a morphological model with two types of accessible cellulose, at void surfaces and internally within the cellulose phase. In native cellulose fibres, the presence of crystalline fibrils with low internal accessibility leads to rapid proton exchange at low moisture contents. Regenerated cellulose fibres typically have lower crystallinity and higher internal accessibility, which results in slower exchange as result of migration of water between void and internal environments. Exchange behaviour in regenerated fibres is highly dependent on structural organisation, which depends on the manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ablett S, Lifford PJ, Badhdadi SMA, Derbyshire WJ (1978) Nuclear magnetic resonance investigations of polysaccharide films, sols, and gels: i agarose. Colloid Interface Sci 67:355–377

    Article  CAS  Google Scholar 

  • Abu Rous M, Ingolic E, Schuster KC (2008) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13(4):411–419

    Article  Google Scholar 

  • Araujo CD, MacKay AL, Whittall KP, Hailey JRT (1993) A diffusion model for spin–spin relaxation of compartmentalized water in wood. J Mag Res B 101:248–261

    Article  CAS  Google Scholar 

  • Araujo CD, Avarmidis S, MacKay AL (1994) Behaviour of solid wood and bound water as a function of moisture content: a proton magnetic resonance study. Holzforschung 48:69–74

    Article  CAS  Google Scholar 

  • Baumgartner S, Lahajnar G, Sepe A, Kristl J (2002) Investigation of the state and dynamics of water in cellulose ethers by 1H NMR Spectroscopy. AAPS Pharm SciTech 3(4), article 36

  • Belton PS, Hills BP, Raimbaud ER (1988) The effects of morphology and exchange on proton N.M.R. relaxation in agarose gels. Mol Phys 63:825–842

    Article  CAS  Google Scholar 

  • Bredereck K, Saafan A (1981) Faserstruktur und färbeeigenschaften von cellulosefasern, 1. zusammenhänge zwischen veränderungen der faserstruktur und der farbstoffadsorption bei baumwolle durch mercerisation und flüssigammoniak-behandlungen. Die Angewandte Makromolekulare Chemie 95:13–33

    Article  CAS  Google Scholar 

  • Bryant RG (1996) The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct 25:29–53

    Article  CAS  Google Scholar 

  • Bryant RG, Korb J-P (2002) Magnetic field dependence of proton spin–lattice relaxation times. Magn Reson Med 48:21–26

    Article  Google Scholar 

  • Carles JE, Scallan AMJ (1973) The determination of the amount of bound water within cellulosic gels by NMR spectroscopy. Appl Pol Sci 17:1855–1865

    Article  CAS  Google Scholar 

  • Child TF (1972) Pulsed NMR study of molecular motion and environment of sorbed water on cellulose. Polymer 13:259–264

    Article  CAS  Google Scholar 

  • Duvvuri U, Goldberg AD, Kranz JK, Hoang L, Reddy R, Wehrli FW, Wand AJ, Englander SW, Leigh JS (2001) Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the non invasive detection of cartilage degradation. Proc Nat Acad Sci USA 98(22):12479–12484

    Google Scholar 

  • Eisenstadt M (1985) NMR relaxation of protein and water protons in diamagnetic hemoglobin solutions. Biochem 24:3407–3421

    Article  CAS  Google Scholar 

  • Felby C, Thygesen LG, Kristensen JB, Jørgensen H, Elder T (2008) Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15:703–710

    Article  CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science 26(9):1473–1524

    Google Scholar 

  • Froix MF, Nelson R (1975) The interaction of water with cellulose from nuclear magnetic resonance relaxation times. Macromolecules 8:726–730

    Article  CAS  Google Scholar 

  • Garvey CJ, Parker IH, Simon P, Whittaker AK (2006) The hydration of paper studied with solid-state magnetisation-exchange 1H NMR spectroscopy. Holzforschung 60:409–416

    Article  CAS  Google Scholar 

  • Häggkvist M, Li T-Q, Ödberg L (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1H and 2H NMR relaxation. Cellulose 5:33–49

    Article  Google Scholar 

  • Harris RH (1986) In Chapter 3, nuclear magnetic resonance spectroscopy: a physicochemical view. Longman Scientific and Technical Publishers, Essex UK

    Google Scholar 

  • Hearle JWS, Peters RH (1963) ed. in Fibre Structure. Butterworths Ltd, London, Chapters 6, 12 and 13

  • Hills BP (1991) Multinuclear NMR studies of water in solutions of simple carbohydrates. 1. Proton and Deuterium relaxation. Mol Phys 72(5):1099–1121

    Google Scholar 

  • Hills BP, Takacs SF, Belton PS (1989a) The effects of proteins on the proton NMR transverse relaxation times of water 1 Native bovine serum albumin. Mol Phys 67:903–919

    Article  CAS  Google Scholar 

  • Hills BP, Wright KM, Belton PS (1989b) Proton N.M.R. studies of chemical and diffusive exchange in carbohydrate systems. Mol Phys 67:1309–1326

    Article  CAS  Google Scholar 

  • Ibbett RN, Phillips DAS, Kaenthong S (2007a) A dye-adsorption and water NMR-relaxation study of the effect of resin cross-linking on the porosity characteristics of lyocell solvent-spun cellulosic fibre. Dyes Pigm 75:624–632

    Article  CAS  Google Scholar 

  • Ibbett RN, Domvoglou D, Fasching M (2007b) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR. Polymer 48:1287–1296

    Article  CAS  Google Scholar 

  • Ibbett R, Schuster KC, Fasching M (2008) The study of water behaviour in regenerated cellulosic fibres by low-resolution proton NMR. Polymer 49:5013–5022

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Lenz J, Schurz J, Wrentschur E (1988) The length of the crystalline domains in fibres of regenerated cellulose. Determination of the crystallite length of cellulose II by means of wide-angle X-ray diffraction. Holzforschung 42:117–122

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015

    Article  Google Scholar 

  • Maloney TC, Johansson T, Paulapuro H (1998) Removal of water from the cell wall during drying. Paper Technol 39:39–47

    CAS  Google Scholar 

  • Mattos C (2002) Protein-water interactions in a dynamic world. Trends Biochem Sci 27(4):203–208

    Article  CAS  Google Scholar 

  • McConville PM, Pope JM (2001) 1H NMR T2 relaxation in contact lens hydrogels as a probe of water mobility. Polymer 42:3359–3368

    Article  Google Scholar 

  • Mizutani C, Tsujii Y, Bertoniere N (1999) Effect of fiber structure on heat of wetting of cotton and regenerated cellulosic fibers. Text Res J 69(8):559–584

    Article  CAS  Google Scholar 

  • Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1994) Carbon-13 NMR distinction between categories of molecular order and disorder. cellulose 2(2):95–110

    Article  Google Scholar 

  • Ono H, Yamada H, Matsuda S, Kunihiko O, Kawamoto T, Iijima H (1998) 1H-NMR relaxation of water molecules in the aqueous microcrystalline cellulose suspension systems and their viscosity. Cellulose 5:231–247

    Article  CAS  Google Scholar 

  • Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin–spin relaxation time of water and rheological properties of cellulose nano fiber dispersion, transparent cellulose hydrogel (TCG). Polym J 35:684–694

    Article  Google Scholar 

  • Santyr GE, Henkelman RM, Bronskill MJ (1988) Variation in measured transverse relaxation in tissue resulting from spin-Locking with the CPMG sequence. J Magn Reson 79:28–44

    CAS  Google Scholar 

  • Swift TJ, Connick RE (1962) NMR-relaxation mechanisms of o in aqueous solutions of paramagnetic cations and the lifetime of water molecules in the first coordination sphere. J Chem Phys 37(2):307–320

    Article  CAS  Google Scholar 

  • Topgaard D, Söderman O (2002) Changes of cellulose fiber wall structure during drying investigated using NMR self-diffusion and relaxation experiments. Cellulose 9:139–147

    Article  CAS  Google Scholar 

  • Varga K, Schädel U, Nilsson H, Persson O, Schuster KC (2007) Measuring the heat of wetting of textile fibres by reaction calorimetry. Fibres Text East Europe 5:53–59

    Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support from the Christian Doppler Society of Austria and Lenzing AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ibbett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibbett, R., Wortmann, F., Varga, K. et al. A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation. Cellulose 21, 139–152 (2014). https://doi.org/10.1007/s10570-013-0106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0106-1

Keywords

Navigation