Skip to main content
Log in

Inhibition of mild steel corrosion in HCl solution using chitosan

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The efficiency of chitosan (a naturally occurring polymer) as a corrosion inhibitor for mild steel in 0.1 M HCl was investigated by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy measurements, scanning electron microscopy, and UV–visible analysis. The polymer was found to inhibit corrosion even at a very low concentration. Inhibition efficiency increases with a rise in temperature up to 96 % at 60 °C and then drops to 93 % at 70 °C, while it slightly increases with an increase in chitosan concentration. Polarization curves indicate that chitosan functions as a mixed inhibitor, affecting both cathodic and anodic partial reactions. Impedance results indicate that chitosan was adsorbed on the metal/solution interface. Adsorption of chitosan at the mild steel surface is found to be in agreement with Langmuir adsorption isotherm model. Chemical adsorption is the proposed mechanism for corrosion inhibition considering the trend of protection efficiency with temperature. Calculated kinetic and thermodynamic parameters corroborate the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abboud Y, Abourriche A, Saffaj T, Berrada M, Charrouf M, Bennamara A, Himidi N, Hannache H (2007) 2,3-Quinoxalinedione a novel corrosion inhibitor for mild steel in 1 M HCl. Mater Chem Phys 105:1–5

    Article  CAS  Google Scholar 

  • Abd El Rehim SS, Hassan HH, Amin MA (2001) Corrosion inhibition of aluminum by 1,1(lauryl amido)propyl ammonium chloride in HCl solution. Mater Chem Phys 70:64–72

    Article  CAS  Google Scholar 

  • Abdallah M (2004) Guar gum as corrosion inhibitor for carbon steel in sulphuric acid solutions. Portug Electrochim Acta 22:161–175

    Article  CAS  Google Scholar 

  • Abdallah M, El-Naggar MM (2012) Cu2+ cation + 3,5-dimethylpyrazole mixture as a corrosion inhibitor for carbon steel in sulfuric acid solution. Mater Chem Phys 71:291–298

    Article  Google Scholar 

  • Ahamad I, Prasad R, Quraishi MA (2010) Adsorption and inhibitive properties of some new Mannich bases of Isatin derivatives on corrosion of mild steel in acidic media. Corros Sci 52:1472–1481

    Article  CAS  Google Scholar 

  • Amin MA, Ahmed MA, Arida HA, Arslan T, Saracoglu M, Kandemirli F (2011) Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series—part II. Temperature effect, activation energies and thermodynamics of adsorption. Corros Sci 53:540–548

    Article  CAS  Google Scholar 

  • Atkins PW (1990) Physical chemistry, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Bai L, Conway BE (1991) AC impedance of Faradaic reactions involving electrosorbed intermediates: examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams. J Electrochem Soc 138:2897–2907

    Article  CAS  Google Scholar 

  • Bayol E, Gurten AA, Dursun M, Kayakirilmaz K (2008) Adsorption behaviour and inhibition corrosion effect of sodium carboxylmethyl cellulose on mild steel in acidic medium. Acta Physco-Chim Sinica 24:2236–2242

    Article  CAS  Google Scholar 

  • Behpour M, Ghoreishi SM, Gandomi-Niasar A, Soltani N, Salavati-Niasari M (2009a) The inhibition of mild steel corrosion in hydrochloric acid media by two Schiff base compounds. J Mater Sci 44:2444–2453

    Article  CAS  Google Scholar 

  • Behpour M, Ghoreishi SM, Khayatkashani M, Soltani N (2009b) The effect of two oleo-gum resin exudate from Ferula assa-foetida and Dorema ammoniacum on mild steel corrosion in acidic media. Corros Sci 53:2489–2501

    Article  Google Scholar 

  • Boukamp BAA (1986) Nonlinear least squares fit procedure for analysis of immitance data of electrochemical systems. Solid State Ionics 20:31–44

    Article  CAS  Google Scholar 

  • Buchweishaija J, Mhinzi GS (2008) Natural products as a source of environmentally friendly corrosion inhibitors: the case of gum exudate from Acacia seyal var. seyal. Portug Electrochim Acta 26:257–265

    Article  CAS  Google Scholar 

  • Cao C (1996) On electrochemical techniques for interface inhibitor research. Corros Sci 38:2073–2082

    Article  CAS  Google Scholar 

  • Cheng S, Chen S, Liu T, Chang X, Yin Y (2007) Carboxymethyl chitosan + Cu2+ mixture as an inhibitor used for mild steel in 1.0 M HCl. Electrochim Acta 52:5932–5938

    Article  CAS  Google Scholar 

  • Durnie W, De Marco R, Jefferson A, Kinsella B (1999) Development of a structure-activity relationship for oil field corrosion inhibitors. J Electrochem Soc 146:1751–1756

    Article  CAS  Google Scholar 

  • Ekanem UF, Umoren SA, Udousoro II, Udoh AP (2010) Inhibition of mild steel corrosion in HCl using pineapple leaves (Ananas comosus L.) extract. J Mater Sci 45:5558–5566

    Article  CAS  Google Scholar 

  • El-Haddad MN (2013) Chitosan as a green inhibitor for copper corrosion in acidic medium. Int J Biol Macromol 55:142–149

    Article  CAS  Google Scholar 

  • Fekry AM, Mohamed RR (2010) Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim Acta 55:1933–1939

    Article  CAS  Google Scholar 

  • Ferreira EdeMM, Morelli T, Moreira IMNS, de Carvalho SMS (2004) Studies on indium sorption from iodide medium by polyurethane foam. J Braz Chem Soc 15:563–569

    Article  CAS  Google Scholar 

  • Fu J, Zang H, Wang Y, Li S, Chen T, Liu X (2012) Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind Eng Chem Res 51:6377–6386

    Article  CAS  Google Scholar 

  • Hermas AA, Morad MS, Wahdan MH (2004) Effect of PgTPhPBr on the electrochemical and corrosion behaviour of 304 stainless steel in H2SO4 solution. J Appl Electrochem 34:95–102

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62:142–158

    Article  CAS  Google Scholar 

  • Jones DA (1992) Principles and prevention of corrosion. In: Johnstone D (ed). Macmillan Publishing Company, NY

  • Khairou KS, El-sayed A (2003) Inhibition effect of some polymers on the corrosion of cadmium in hydrochloric acid solution. J Appl Polym Sci 88:866–871

    Article  CAS  Google Scholar 

  • Khaled KF, Al-Qahtani MM (2009) The inhibitive effect of some tetrazole derivatives towards Al corrosion in acid solution: chemical, electrochemical and theoretical studies. Mater Chem Phys 113:150–158

    Article  CAS  Google Scholar 

  • Khaled KF, Babić-Samardžija K, Hackerman N (2006) Cobalt(III) complexes of macrocyclic-bidentate type as a new group of corrosion inhibitors for iron in perchloric acid. Corros Sci 48:3014–3034

    Article  CAS  Google Scholar 

  • Machnikova E, Whitmire KH, Hackerman N (2008) Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives. Electrochim Acta 53:6024–6032

    Article  CAS  Google Scholar 

  • Mansfeld F (1973) Tafel slopes and corrosion rates from polarization resistance measurements. Corrosion 29:397–402

    Article  Google Scholar 

  • Mansfeld F (1999) Analysis and Interpretation of EIS Data for Metals and Alloys, Technical Report N° 26, Part No.: BTR026. Issue: AB: May 1999, Solartron Ltd., LA

  • Martinez S, Stern I (2001) Inhibitory mechanism of low-carbon steel corrosion by mimosa tannin in sulphuric acid solutions. J Appl Electrochem 31:973–978

    Article  CAS  Google Scholar 

  • Metikos-Hukovic M, Babic R, Grubac Z (2002) The study of aluminium corrosion in acidic solution with nontoxic inhibitors. J Appl Electrochem 32:35–41

    Article  CAS  Google Scholar 

  • Mobin M, Khan MA, Parveen M (2011) Inhibition of mild steel corrosion in acidic medium using starch and surfactants additives. J Appl Polym Sci 121:1558–1565

    Article  CAS  Google Scholar 

  • Mohamed RR, Fekry AM (2011) Antimicrobial and anticorrosive activity of adsorbents based on chitosan Schiff’s base. Int J Electrochem Sci 6:2488–2508

    CAS  Google Scholar 

  • Morad MS (2008) Inhibition of iron corrosion in acid solutions by Cefatrexyl: behaviour near and at the corrosion potential. Corros Sci 50:436–448

    Article  CAS  Google Scholar 

  • Mortimer RG (2000) Physical chemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Nataraja SE, Venkatesha TV, Manjunat K, Poojary B, Pavithra MK, Tandon HC (2011) Inhibition of the corrosion of steel in hydrochloric acid solution by some organic molecules containing the methylthiophenyl moiety. Corros Sci 53:2651–2659

    Article  CAS  Google Scholar 

  • Noor EA (2007) Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of Fenugreek leaves. Int J Electrochem Sci 2:996–1017

    CAS  Google Scholar 

  • Noor EA (2009) Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al–Cu alloy in hydrochloric acid. Mater Chem Phys 114:533–541

    Article  CAS  Google Scholar 

  • Noor EA, Al-Moubaraki AH (2008) Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater Chem Phys 110:145–154

    Article  CAS  Google Scholar 

  • Obi-Egbedi NO, Obot IB (2011) Inhibitive properties, thermodynamic and quantum chemical studies of alloxazine on mild steel corrosion in H2SO4. Corros Sci 53:263–275

    Article  CAS  Google Scholar 

  • Obot IB, Obi-Egbedi NO, Eseola AO (2011) Anticorrosion potential of 2-Mesityl-1H-imidazo [4,5-f][1,10]-phenanthroline on mild steel in sulfuric acid solution: experimental and theoretical study. Ind Eng Chem Res 50:2098–2110

    Article  CAS  Google Scholar 

  • Oguzie EE (2006) Studies on the inhibitive effect of Occimum viridis extract on the acid corrosion of mild steel. Mater Chem Phys 99:441–446

    Article  CAS  Google Scholar 

  • Oguzie EE, Li Y, Wang FH (2007) Corrosion and corrosion inhibition characteristics of bulk nanocrystalline ingot iron in sulphuric acid. J Solid State Electrochem 12:721–728

    Article  Google Scholar 

  • Okafor PC, Zheng Y (2009) Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions. Corros Sci 51:850–859

    Article  CAS  Google Scholar 

  • Popova A, Sokolova E, Raicheva S, Christov M (2003) AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros Sci 45:33–58

    Article  Google Scholar 

  • Rinaudo M, Pavlov G, Desbrieres J (1999) Influence of acetic acid concentration on the solubilization of chitosan. Polymer 40:7029–7032

    Article  CAS  Google Scholar 

  • Rosliza R, Wan Nik WB (2010) Improvement of corrosion resistance of AA6061 alloy by tapioca starch in seawater. Curr Appl Phys 10:221–229

    Article  Google Scholar 

  • Saleh MM (2006) Inhibition of mild steel corrosion by hexadecylpyridinium bromide in 0.5 M H2SO4. Mater Chem Phys 98:83–89

    Article  CAS  Google Scholar 

  • Singh AK (2012) Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-Indolin-3-ylideneamino) phenylimino) indolin-2-one. Ind Eng Chem Res 51:3215–3223

    Article  CAS  Google Scholar 

  • Solmaz R, Kardas G, Yazici B, Erbil M (2008) Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media. Coll Surf A Physicochem Eng Aspects 312:7–17

    Article  CAS  Google Scholar 

  • Solomon MM, Umoren SA, Udosoro II, Udoh AP (2010) Inhibitive and adsorption behaviour of carboxymethyl cellulose on mild steel corrosion in sulphuric acid solution. Corros Sci 52:1317–1325

    Article  CAS  Google Scholar 

  • Stupnisĕk-Lisac E, Gazivoda A, Madzărac M (2002) Evaluation of non-toxic corrosion inhibitors for copper in sulphuric acid. Electrochim Acta 47:4189–4194

    Article  Google Scholar 

  • Umoren SA (2008) Inhibition of aluminium and mild steel corrosion in acidic medium using gum Arabic. Cellulose 15:751–761

    Article  CAS  Google Scholar 

  • Umoren SA (2011) Synergistic inhibition effect of polyethylene glycol—polyvinyl pyrrolidone blends for mild steel corrosion in sulphuric acid medium. J Appl Polym Sci 119:2072–2084

    Article  CAS  Google Scholar 

  • Umoren SA, Obot IB, Ebenso EE, Okafor PC, Ogbobe O, Oguzie EE (2006) Gum arabic as a potential corrosion inhibitor for aluminium in alkaline medium and its adsorption characteristics. Anti Corros Methods Mater 53:277–282

    Article  CAS  Google Scholar 

  • Umoren SA, Obot IB, Ebenso EE, Okafor PC (2008) Eco-friendly inhibitors from naturally occurring exudates gums for aluminium corrosion inhibition in acidic medium. Portug Electrochem Acta 26:267–282

    Article  CAS  Google Scholar 

  • Umoren SA, Obot IB, Obi-Egbedi NO (2009) Raphia hookeri gum as a potential eco-friendly inhibitor for mild steel in sulphuric acid. J Mater Sci 44:274–279

    Article  CAS  Google Scholar 

  • Villamil RFV, Corio P, Rubin JC, Agostinho SML (1999) Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. J Electroanal Chem 472:112–119

    Article  CAS  Google Scholar 

  • Vlasov PS, Kiselev AA, Domnina NS, Popova EV, Tyuterev SL (2009) Synthesis and biological activity of metal chitosan complexes. Russ J Appl Chem 82:1675–1681

    Article  CAS  Google Scholar 

  • Yang KK, Wang XL, Wang YZ (2007) Progress in nanocomposite of biodegrable polymer. J Ind Eng Chem 13:485–500

    CAS  Google Scholar 

  • Yüce AO, Kardas G (2012) Adsorption and inhibition effect of 2-thiohydantoin on mild steel corrosion in 0.1 M HCl. Corros Sci 58:86–94

    Article  Google Scholar 

  • Zarrouk A, Hammouti B, Zarrok H, Al-Deyab SS, Messali M (2011) Temperature effect, activation energies and thermodynamic adsorption studies of l-cysteine methyl ester hydrochloride as copper corrosion inhibitor in nitric acid 2 M. Int J Electrochem Sci 6:6261–6274

    CAS  Google Scholar 

  • Zerga B, Attayibat A, Sfaira M, Taleb M, Hammouti B, Ebn Touhami M, Radi S, Rais Z (2010) Effect of some tripodal bipyrazolic compounds on C38 steel corrosion in hydrochloric acid solution. J Appl Electrochem 40:1575–1582

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. A. Umoren acknowledges the Academy of Sciences for the Developing World (TWAS) for the TWAS-UNESCO Associateship appointment at INIFTA, CONICET Argentina and the Vice Chancellor, University of Uyo, Nigeria for granting Special Leave to visit INIFTA, Argentina, C.A. Gervasi gratefully acknowledges the Comisión de Investigaciones Científicas y Técnicas Buenos Aires (CICBA) for his position as a member of the Carrera del Investigador Científico. This work was partially financed with a grant from Agencia Nacional de Promoción Científica y Tecnológica (PICT Nº 2008-1902), and M.V.Mirífico gratefully acknowledges the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-CCT LP) (PIP 0847), Universidad Nacional de La Plata (UNLP), and Facultad de Ingeniería UNLP, Área Departamental de Ingeniería Química (11-I133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria V. Mirífico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umoren, S.A., Banera, M.J., Alonso-Garcia, T. et al. Inhibition of mild steel corrosion in HCl solution using chitosan. Cellulose 20, 2529–2545 (2013). https://doi.org/10.1007/s10570-013-0021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0021-5

Keywords

Navigation