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Abstract Sensitivity of baker’s yeast to disulfiram
(DSF) and hypersensitivity of a mutant devoid of Cu,
Zn-superoxide dismutase to this compound is reported,
demonstrating that yeast may be a simple convenient
eukaryotic model to study the mechanism of DSF
toxicity. DSF was found to induce oxidative stress in
yeast cells demonstrated by increased superoxide pro-
duction and decrease of cellular glutathione content.
Anoxic atmosphere and hydrophilic antioxidants (ascor-
bate, glutathione, dithiothreitol, cysteine, and N-acetyl-
cysteine) ameliorated DSF toxicity to yeast indicating
that oxidative stress plays a critical role in the cellular
action of DSF.
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Abbreviations
ALDH acetaldehyde dehydrogenase
ASC ascorbate

CYS cysteine
DDC N,N-diethyldithiocarbamate
DHET dihydroethidine
DSF disulfiram
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
GSH reduced glutathione
GSSG oxidized glutathione
MeDDC S-methyl-N,N-diethyldithiocarbamate
MeDTC S-methyl-N,N-diethylthiocarbamate
NAC N-acetylcysteine

Introduction

Disulfiram (DSF, Antabuse) is a drug used to support the
treatment of chronic alcoholism by producing an ex-
tremely aversive reaction when taken in the presence of
alcohol, and is thus considered a deterrent. DSF prevents
conversion of acetaldehyde to the harmless acetic acid by
blocking acetaldehyde dehydrogenase (ALDH, EC
1.2.1.10).

In the presence of reduced glutathione (GSH),
disulfiram is rapidly reduced in vivo to N,N-diethyldi-
thiocarbamate (DDC), which is methylated to form S-
methyl-N,N-diethyldithiocarbamate (MeDDC). MeDDC
is oxidized primarily to the intermediate metabolite
MeDDC sulfine, which is ultimately converted to S-
methyl-N,N-diethylthiocarbamate (MeDTC) sulfoxide,
the proposed active metabolite of disulfiram in vivo,
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and a small amount of MeDDC sulfoxide (Pike et al.
2001).

Mechanism of DSF action within a cell is complex
and multi-level. DSF and its metabolite-DDC inhibit
superoxide dismutase (SOD) in vitro and in vivo by
copper chelation (Heikkila et al. 1976; Marikovsky et
al. 2003; Kelner and Alexander 1986). Cells incubated
with DSF show transient elevation of intracellular
superoxide level, and progressive decrease of intracel-
lular H2O2 level (Cen et al. 2002). Both DSF and DDC
may also induce oxidative stress by shifting thiol redox
balance. It was reported that DSF does not deplete total
glutathione but significantly decreases the reduced
glutathione/oxidized glutathione (GSH/GSSG) ratio,
by induction of glutathione oxidation (Cen et al.
2002; Burkitt et al. 1998; Namazi 2008). According
to Grosicka-Maciag et al., DSF increases catalase and
glutathione reductase activities, decreases non-Se-
dependent glutathione peroxidase (GPx) activity, but
does not change Se-dependent GPx in V79 fibroblasts.
In contrast to other data, these authors did not reveal
changes in SOD-1 and SOD-2 activities (Grosicka-
Maciag et al. 2010). Several studies have suggested
that DSF can induce apoptosis, DNA fragmentation,
changes in mitochondrial membrane potential (Cen et
al. 2002; Burkitt et al. 1998), and increase of protein
carbonyl content (Grosicka-Maciag et al. 2010).
Furthermore, DSF inhibits ATP hydrolysis and binds
to substrate sites of several ABC transporters
associated with multidrug resistance, blocking their
activity (Sauna et al. 2004; Sauna et al. 2005). DSF
metabolites like DDC can elevate copper level, leading
to oxidative stress, protein damage, lipid peroxidation,
and apoptosis in some cell types (Chen et al. 2001;
Tonkin et al. 2004; Viquez et al. 2007), whereas
MeDDC sulfoxide and MeDDC sulfine can inhibit the
verapamil-stimulated ATPase activity of P-glycoprotein
(Loo et al. 2004).

DSF, apart from treatment of alcoholism, has been
examined as a potential drug effective in protection
against Giardia lamblia (Nash & Rice 1998), Tricho-
monas vaginalis (Bouma et al. 1998), and leishmaniasis
(Namazi 2008); in the therapy of candidiasis (Shukla et
al. 2004); as a potential inhibitor of inflammation
(Marikovsky et al. 2003); and in alternative therapy of
some types of cancers (Cen et al. 2002; Sauna et al.
2005; Navrátilová et al. 2009; Wang et al. 2011). Khan
et al. demonstrated antifungal activity of DSF against
both yeast and filamentous fungi (Khan et al. 2007).

Previous studies have shown that antioxidants can
reduce the cytotoxic effects of DSF treatment; for
example, N-acetylcysteine (NAC) prevents DSF-
induced apoptosis, augments cell viability and the
GSH/GSSG ratio in human melanoma cells (Cen et al.
2002), and also prevents the increase in protein
carbonyl content induced by disulfiram in V79 cells
(Grosicka-Maciag et al. 2010). Dithiothreitol (DTT)
completely prevents DSF-induced inhibition of ALDH
at pH 7.5 in vitro; however, the inhibition induced by
MeDTC is prevented by DTT only at pH 9.0 (Veverka
et al. 1997). DTT protects also ATPase activity (Shukla
et al. 2004).

In this paper, we show that mutant of yeast Saccha-
romyces cerevisiae deficient in Cu, Zn-superoxide
dismutase (Sod1p), the enzyme decomposing superox-
ide anion, is hypersensitive to DSF. We demonstrate that
several antioxidants such as ascorbate, cysteine, dithio-
threitol, glutathione, and N-acetylcysteine abolish this
sensitivity.

Material and methods

Chemicals

Disulfiram (tetraethylthiuram disulfide), CAS num-
ber 97-77-8, purum, ≥97%, was from Aldrich
(Sigma-Aldrich, Poznan, Poland). A stock solution
of DSF was freshly prepared in absolute ethanol
(MERC, Germany) before each experiment. Dihy-
droethidine (DHET), FUN-1, and MitoTracker-
Green stain were from Molecular Probes (Eugene,
Oregon, USA). Monochlorobimane was from Fluka
(Sigma-Aldrich, Poznan, Poland). Antioxidants and
all other reagents were purchased from Sigma-
Aldrich (Poznan, Poland). Components of culture
media were from BD Difco (Becton Dickinson and
Company, Spark, USA) except for glucose (POCh,
Gliwice, Poland).

Yeast strains and growth conditions

Following yeast strains were used: wild-type SP4
MATα leu1 arg4 (Bilinski et al. 1978), and Δsod1
mutant, isogenic to SP4, MATα leu1 arg4 sod1::
natMX (Koziol et al. 2005). Yeast was grown in
standard liquid YPD medium (1% yeast extract, 1%
yeast bacto-peptone, and 2% glucose) on a rotary
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shaker at 150 rpm or on solid YPD medium
containing 2% agar, at a temperature of 30°C.

DSF toxicity assays

Liquid yeast cultures (200 μl of cell suspension
containing 1×106 cells) with various concentrations
of DSF (0–75 μM) were cultivated in a Bioscreen C
(Oy Growth Curves Ab Ltd.) incubator with shaking
at 30°C. Their growth was monitored turbidimetrically
at 600 nm for 24 h (with measurements every 1 h).

For spotting tests, yeast exponential phase cultures
were diluted to give suspensions of 107, 106, 105, and
104 cells/ml. Aliquots of 5 μl of each suspension were
inoculated on solid YPD medium containing DSF (0–
100 μM). Freshly prepared stock solution of DSF was
added to sterile media, after cooling to approximately
50°C. In case of experiments under anaerobic
conditions, cells were grown on YPD plates with or
without 50 μM DSF in a desiccator under the
atmosphere of 100% gaseous oxygen-free nitrogen
(Linde Gaz, Cracow, Poland). Colony growth was
inspected after 48 h.

In experiments involving antioxidants, cells were
grown on liquid or solid YPD medium containing
50 μMDSF with various concentration of antioxidants,
viz. ascorbate (ASC), cysteine (CYS), dithiothreitol,
glutathione (GSH), N-acetylcysteine, 2,2,6,6-tetra-
methylpiperidine-1-oxyl (Tempo), 4-hydroxy-
2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), or
Trolox. In case of liquid medium, cell growth
was inspected after 18 h, and on solid medium
after 48 h.

Measurement of reactive oxygen species

Generation of superoxide was assessed with dihy-
droethidine at the final concentration of 18.9 μM
(added from a stock solution was prepared in DMSO).
Cells from exponential phase culture were centri-
fuged, washed twice, and suspended in 100 mM
phosphate buffer, pH 7, containing 0.1% glucose and
1 mM ethylenediaminetetraacetic acid (EDTA) and
DSF at concentrations of 0, 20, 50, and 100 μM at a
density of 108 cells/ml. After 1, 2, and 3 h incubation
cells were centrifuged, washed twice, and suspended
in the same buffer. The kinetics of fluorescence
increase, due to oxidation of fluorogenic probe, was
measured using a Hitachi F2500 fluorescence spec-

trophotometer. Measurement conditions were: lex=
518 nm and lem=605 nm; temperature of 30°C.

Fluorescence microscopy

Cells from exponential phase culture were centrifuged,
washed twice, and suspended to a final density of
108 cells/ml in 100 mM phosphate buffer, pH 7,
containing 0.1% glucose and 1 mM EDTA, and DSF at
concentrations of 0, 20, 50, and 100 μM. After
incubation for 3 h cells were pelleted by centrifugation
and washed twice with PBS. The cellular content of
glutathione was estimated with monochlorobimane
according to a slightly modified method of Staleva et
al. (Staleva et al. 2002). Briefly, cells were incubated
with 30 μM monochlorobimane for 30 min and then
fluorescence of the bimane-glutathione conjugates was
observed using excitation wavelength of 480 nm.
Mitochondria were stained with MitoTrackerGreen
and metabolic activity of yeast cells was assessed with
FUN-1 according to the manufacturer’s protocols
(Molecular Probes). The fluorescence pictures were
taken with an OLYMPUS BX-51 microscope equipped
with a DP-72 digital camera.

Statistical analysis

The results represent mean ± SD from at least three
independent experiments. Statistical analysis was
performed using the SPSS 17.0 software. The
statistical significance of differences between means
of treated samples compared to untreated control was
estimated using one-way ANOVA and the Dunnet
post hoc test. The differences between means of two
yeast strains compared were evaluated using the t test
for independent samples. Values were considered
significant if P<0.05.

Results

A mutant defective in Sod1p is hypersensitive to DSF

Exposure of yeast in both liquid and solid medium to
DSF resulted in inhibition of growth in a concentration-
dependent manner, Δsod1 mutant showing much
higher sensitivity (Fig. 1a–c). Complete inhibition of
growth under the influence of DSF in liquid medium
could be observed at a concentration of 75 μM for wild
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type (WT) and of 50 μM for Δsod1 mutant. However,
a 50% decrease in survival of Δsod1 mutant was
noticed already at 30 μM concentration of DSF. Lower
concentrations of DSF tested (10–50 μM in the case of
WT, and 10–20 μM in the case of Δsod1) did not
cause significant inhibition of growth after 24 h
(mortality less than 25% compared with control), but
clearly changed the course of growth curves
(Fig. 1a, b). On solid medium, complete inhibition
of growth was apparent at the concentration of
100 μM DSF in the case of WT and of 50 μM
DSF in the case of Δsod1 mutant. Partial inhibition

of growth of WT could be observed from the
concentration of 75 μM, and in the case of Δsod1
mutant of 30 μM of DSF (Fig. 1c). Both in liquid
and on solid medium, there was no effect of
introduced amounts of ethanol (DSF solvent) on
the growth of yeast cells (data not shown).

DSF induces oxidative stress in yeast cells

Treatment of Δsod1 mutant cells with 20, 50, and
100 μM DSF for 1, 2, and 3 h induced a significant
increase in the rate of ROS generation estimated with

Fig. 1 Effect of DSF (0–100 μM) on yeast cell growth on
liquid and solid media. Kinetics of growth of WT strain SP4 (a)
and Δsod1 mutant (b) was monitored turbidimetrically at
600 nm every 1 h for 24 h. Data are presented as mean±SD

from three independent experiments; c in spotting tests colony
growth was recorded after 48 h. Successive spots contained
initially 50,000, 5,000, 500, and 50 cells

4 Cell Biol Toxicol (2012) 28:1–9



DHET (Fig. 2). In the case of WT and Δsod1 cells we
observed an increased oxidation of DHET after 2 and
3 h incubation in the buffer. This effect was especially
significant in the case of Δsod1 mutant cells. Ethanol
(disulfiram solvent) did not cause oxidation of the
probe, in the amounts introduced with DSF (data not
shown). Yeast cells showed a concentration-dependent
decrease in the GSH content after exposure to
different concentrations of disulfiram. Changes of
intracellular GSH content were greater for Δsod1
than for WT cells (Fig. 3a). Microscopic visualization
showed that exposure of yeast cells to DSF in the
concentration range of 20–100 μM caused a signifi-
cant decrease of metabolic activity, increase in cell
death frequency, changes of morphology, and mito-
chondria disintegration, observed especially for
Δsod1 mutant cells (Fig. 3b, c).

Antioxidants and anoxia abolish sensitivity of yeast
to DSF

The inhibition of growth of Δsod1 mutant cells in the
presence of DSF may be overcome by addition of low
molecular, hydrophilic antioxidants to growth medium

(Fig. 4a, b). In the case of liquid medium, complete
abolition of sensitivity of both yeast strains to 50 μM
DSF was reached at 5 mM ASC, CYS, GSH, NAC,
and at 2.5 mM DTT. No protective effect was observed
for 0.5 mM Tempol and 1 mM Trolox, and a slight
potentiation of the effect of DSF on WT cells was even
noted for 0.5 mM Tempo (Fig. 4a). A similar effect
was observed on solid medium: complete abolition of
the effect of DSF was achieved for ASC, CYS, GSH,
and NAC (1 and 5 mM), and partial amelioration for
DTT (0.1, 1, and 5 mM) while Tempo, Tempol, and
Trolox were ineffective (Fig. 4b). Anoxic atmosphere,
similarly to antioxidants, led to complete abolishment
of growth inhibition of Δsod1 mutant cells in the
presence of DSF (Fig. 4c).

Discussion

Despite of the fact that DSF is mainly known as an
inhibitor of aldehyde dehydrogenase, it has also other
effects on cells. It has been reported that DSF may
induce oxidative stress. This mechanism of DSF
action was examined in several mammalian cell lines

Fig. 2 Superoxide formation in yeast cells after treatment with
DSF. Cells were suspended in 0.1 M phosphate buffer, pH 7.0,
containing 0.1% glucose and 1 mM EDTA and treated with
various concentrations of DSF for 1, 2, and 3 h. Superoxide
formation was estimated by the rate of fluorescence increase
due to DHET oxidation within cells. Data represent mean ± SD
from three independent experiments, asterisks denote statistical

significance with respect to wild-type yeast ***P<0.001,
estimated by the t test for independent samples. The letters b
and c indicate values significantly different from untreated
control for the same yeast strain using ANOVA and Dunnet post
hoc test at b P<0.01 and c P<0.001, respectively. Statistical
analysis was performed only for samples incubated for 3 h with
or without DSF
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(Cen et al. 2002; Grosicka-Maciag et al. 2010; Chen
et al. 2001). In this paper, we show that also yeast S.
cerevisiae may provide new information on the
mechanisms of cellular effects of DSF.

Yeast S. cerevisiae is widely accepted as a model
eukaryotic organism. It has a number of attributes that
make it attractive as an experimental system for studies
of cell physiology, genetics, and cellular response to
various environmental stresses. Despite its simplicity
yeast cells are similar to higher eukaryotes in their
biochemistry and physiology. Many studies confirm the
usefulness of yeast for testing toxicity of xenobiotics
including drugs (Yasokawa et al. 2008; Letavayová et
al. 2008; Van der Heggen et al. 2010). Yeast can be
grown under hypoxia or even complete anoxia, which
makes yeast cells especially useful for studies of
oxidative stress-related mechanisms. Their culture is
much cheaper in comparison with mammalian cells.
Furthermore, viable disruptants of all genes of S.
cerevisiae are easily available which can allow for

screening of genes whose products are important for
cellular effects of xenobiotics.

Our results demonstrate that yeast cells lacking Cu,
Zn-superoxide dismutase (Sod1p), the enzyme remov-
ing superoxide anion, are hypersensitive to DSF. DSF at
a concentration of 30 μM caused an approximate 50%
growth inhibition both in liquid and on solid medium,
and completely inhibited growth ofΔsod1 mutant cells
at a concentration of 50 μM (Fig. 1b, c). We
demonstrated that WT strain is also sensitive to DSF
but growth inhibition is observed at higher concen-
trations (e.g., 75 μM of DSF; Fig. 1a, c). It is worth
noting that almost the same concentrations were used
in experiments with S. cerevisiae Δpso2 mutant (0–
30 μM DSF) (Brendel et al. 2010), C. albicans (0–
100 μM DSF) (Shukla et al. 2004), and astrocytes (0–
100 μM DSF) (Chen et al. 2001). Thus, the sensitivity
of very different cells to DSF is similar which may
well justify the use of yeast cells in studies of the
mechanism of action of this compound.

Fig. 3 Effect of DSF (0–100 μM) on yeast cells. a Changes in
GSH content estimated with monochlorobimane. b Changes of
mitochondria morphology, cell staining with MitoTrackerGreen. c

Changes of metabolic activity, cell staining with FUN-1 (a—
metabolically active cell; b—metabolically inactive cell; c—dead
cell)
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Fig. 4 Effect of antioxidants
and anoxic atmosphere on
yeast cell growth inhibition
induced by 50 μM DSF.
a Yeast cells were cultured in
liquid medium with antioxi-
dants (5 mM ASC, CYS,
GSH, NAC; 2.5 mM DTT;
0.5 mM Tempo, Tempol and
1 mM Trolox) and growth
rate was monitored turbidi-
metrically after 18 h. Data
represent mean ± SD from
three independent experi-
ments, asterisks denote sta-
tistical significance with
respect to wild-type yeast
*P<0.05, **P<0.01,
***P<0.001, estimated by
the t test for independent
samples. The letters a and c
indicate significantly differ-
ent values from DSF treated
sample with the same yeast
strain using ANOVA and
Dunnet post hoc test at
a P<0.05, c P<0.001,
respectively. b Yeast cells
were grown on solid medium
with the same antioxidants.
c Yeast cells were grown on
solid medium under anoxic
atmosphere. For spotting
tests colony growth was
recorded after 48 h. Succes-
sive spots contained 50,000,
5,000, 500, and 50 cells
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Our results show that DSF causes oxidative stress
in yeast cells by significantly increasing superoxide
generation (Fig. 2), and depletion of glutathione
(Fig. 3a). Longer incubation (3-h) with 50 and
100 μM DSF causes also morphological changes,
disintegration of mitochondria (Fig. 3b), and decrease
of metabolic activity of cells (Fig. 3c). Mitochondria
are known to be an important target for many oxidants
and dynamic changes in their morphology may be
accompanied by loss of mitochondrial membrane
potential. Furthermore, these alterations as well as
disintegration of mitochondria may be a trigger for
apoptosis (Eisenberg et al. 2007).

The potential mechanism of DSF toxicity may be
linked to the copper chelating activity of this
compound. Though DSF does not inhibit superoxide
dismutase in vitro, it decreases the activity of this
enzyme in vivo, apparently due to reduction to
diethyldithiocarbamate (DDC), a strong SOD inhibi-
tor (Forman et al. 1980). In erythrocytes, DSF was
found to oxidize GSH to GSSG and inhibit SOD, and
these effects were ascribed to reduction of this
compound to DDC as well (Kelner & Alexander
1986). Reduction of DSF to DDC and inhibition of
Cu, Zn-superoxide dismutase leading to increase in
superoxide steady state level and oxidation of
glutathione seems also to be a plausible mechanism
contributing to the effects of this compound in yeast.

The role of oxidative stress in the toxicity of DSF
is confirmed by elimination of hypersensitivity of
Δsod1 mutant cells to this compound under anoxia
(Fig. 4c), and by the protection offered by some
hydrophilic antioxidants: ascorbate, reduced glutathi-
one, dithiothreitol, cysteine, and N-acetylcysteine
(Fig. 4a, b). Amelioration of the effects of DSF by
DTT and NAC has been reported previously for C.
albicans (Shukla et al. 2004) and Chinese hamster
fibroblast cells (Grosicka-Maciag et al. 2010). Pro-
tective effects of ascorbate and other hydrophilic
antioxidants on DSF-induced oxidative stress have
not been well studied. Yeast seems to be a useful
eukaryotic model for studies of these effects at the
cellular level.

Interestingly, some of antioxidants used like Tempo,
Tempol, and Trolox had no protective effect (Fig. 4a, b).
The same pattern of antioxidant action was found
when studying rescue of Δsod1 mutant cells from
other oxidants including tert-butyl hydroperoxide,
cumene hydroperoxide, menadione, juglone, hypochlo-

rite, chlorite, oxytetracycline, acrolein, acrylamide, and
hypertonic stress (Koziol et al. 2005; Lewinska et al.
2004; Kwolek-Mirek et al. 2009; Kwolek-Mirek et al.
2011), which suggests that DSF induces oxidative
stress by a mechanism similar to that of other oxidants.

In summary, our data show that yeast S. cerevisiae
is sensitive to DSF. We demonstrate the important role
of Cu, Zn-superoxide dismutase (Sod1p) in protection
against DSF-induced oxidative stress. Hydrophilic
antioxidants: ascorbate, cysteine, reduced glutathione,
ditiothreitol, and N-acetylcysteine can abolish DSF-
induced toxicity in yeast cells. The observation that
not only thiol antioxidants but also ascorbate can
protects from DSF toxicity may be useful in further
studies and be of importance for the anti-alcoholic
therapy in humans.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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