Skip to main content
Log in

Effect of Rhodium Traces on the Reducibility of Silica-Supported Iron Particles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Fe/SiO2 and Rh–Fe/SiO2 catalysts with increasing Fe/Rh ratio have been prepared and characterized by TEM, XRD, oxygen adsorption and Mössbauer spectroscopy. It was confirmed that Fe/SiO2 catalysts cannot be reduced under hydrogen flow, to more than 50 % whatever the temperature in the 200–500 °C range and shown that the presence of even a small amount of Rh (Fe/Rh ≤2,000) promoted the reduction of iron up to 85–95 %. This promoting effect also took place with a Fe/SiO2 + Rh/SiO2 physical mixture (Fe/Rh ≤2,000). Therefore, the occurrence of a hydrogen spillover effect may be involved in the observed process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fischer F, Tropsch H (1926) Brennstoff Chemie 7:97

    CAS  Google Scholar 

  2. Bhasin MM, Bartley WJ, Ellgen PC, Wilson TP (1978) J Catal 54:120

    Article  CAS  Google Scholar 

  3. Burch R, Petch MI (1992) Appl Catal A 88:39

    Article  CAS  Google Scholar 

  4. Burch R, Petch MI (1992) Appl Catal A 88:77

    Article  CAS  Google Scholar 

  5. Burch R, Hayes MJ (1997) J Catal 165:249

    Article  CAS  Google Scholar 

  6. Gronchi P, Tempesti E, Mazzocchia C (1994) Appl Catal A 120:115

    Article  CAS  Google Scholar 

  7. Mazzocchia C, Gronchi P, Kaddouri A, Tempesti E, Zanderighi L, Kiennemann A (2001) J Mol Catal A Chem 165:219

    Article  CAS  Google Scholar 

  8. Ma H, Yuan Z, Wang Y, Bao X (2001) Surf Interface Anal 32:224

    Article  CAS  Google Scholar 

  9. Ojeda M, Granados ML, Rojas S, Terreros P, Garcia-Garcia FJ, Fierro JLG (2004) Appl Catal A 261:47

    Article  CAS  Google Scholar 

  10. Richard D, Ockelford J, Giroir-Fendler A, Gallezot P (1989) Catal Lett 3:53

    Article  CAS  Google Scholar 

  11. Galvagno S, Donato A, Neri G, Pietropaolo R, Pietropaolo D (1989) J Mol Catal 49:223

    Article  CAS  Google Scholar 

  12. Van’t Blik HFJ, Niemantsverdriet JW (1984) Appl Catal 10:155

    Article  Google Scholar 

  13. Gatte RR, Phillips J (1987) J Phys Chem 91:5961

    Article  CAS  Google Scholar 

  14. Ichikawa M, Fukuoka A (1988) Shokubai 30:168

    CAS  Google Scholar 

  15. Fukuoka A, Kimura T, Kosugi N, Kuroda H, Minai Y, Sakai Y, Tominaga T, Ichikawa M (1990) J Catal 126:434

    Article  CAS  Google Scholar 

  16. Niemantsverdriet JW, Van der Kraan AM, Van Loef JJ, Delgass WN (1983) J Phys Chem 87:1292

    Article  CAS  Google Scholar 

  17. Niemantsverdriet JW, Van der Kraan JAC, Flipse CFJ, Van der Kraan AM (1985) J Catal 96:58

    Article  CAS  Google Scholar 

  18. Niemantsverdriet JW, Aschenbeck DP, Fortunato FA, Delgass WN (1984) J Mol Catal 25:285

    Article  CAS  Google Scholar 

  19. Guerrero-Ruiz A, Sepulveda-Escribano A, Rodriguez-Ramos I (1992) Appl Catal A 81:81

    Article  CAS  Google Scholar 

  20. Bartholomew CH, Boudart M (1973) J Catal 29:278

    Article  CAS  Google Scholar 

  21. Garten RL (1976) J Catal 43:18

    Article  CAS  Google Scholar 

  22. Batley GE, Ekstrom A, Johnson DA (1974) J Catal 34:368

    Article  CAS  Google Scholar 

  23. Shanke D, Vada S, Belkkan S, Hilmen EA, Hoff A, Holmen A (1995) J Catal 156:85

    Article  Google Scholar 

  24. Bianchi CL (2001) Catal Lett 76:155

    Article  CAS  Google Scholar 

  25. Yan Z, Bukur DB, Goodman DW (2011) Catal Today 160:39

    Article  CAS  Google Scholar 

  26. Candy JP, Godard G, Basset JM (2003) Chem Eng Trans 2:787

    Google Scholar 

  27. Candy JP, El Mansour A, Ferretti OA, Mabilon G, Bournonville JP, Basset JM, Martino G (1988) J Catal 112:201

    Article  CAS  Google Scholar 

  28. Liu K, Wang A, Zhang W, Wang J, Huang Y, Shen J, Zhang R (2010) J Phys Chem C 114:8533

    Article  CAS  Google Scholar 

  29. Millet JM, Virely C, Forissier M, Bussiere P, Vedrine JC (1989) Hyperfine Interact 46:619

    Article  Google Scholar 

  30. Gager HM, Hobson MC Jr (1975) Catal Rev Sci Eng 11:117

    Article  CAS  Google Scholar 

  31. Niemantsverdriet JW, Van der Kraan AM (1986) Surf Interface Anal 9:221

    Article  CAS  Google Scholar 

  32. Conner WC, Falconer JL (1995) Chem Rev 95:759

    Article  CAS  Google Scholar 

  33. Cavanagh RR, Yates JT Jr (1981) J Catal 68:22

    Article  CAS  Google Scholar 

  34. Martin D, Duprez D (1993) Stud Surf Sci Catal 77:201

    Article  CAS  Google Scholar 

  35. Apple TM, Gajardo P, Dybowski C (1981) J Catal 68:103

    Article  CAS  Google Scholar 

  36. Bernal S, Calvino JJ, Cifredo GA, Laachir A, Perrichon V, Herrmann JM (1994) Langmuir 10:717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Thivolle-Cazat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnefille, E., Millet, JM.M., Candy, JP. et al. Effect of Rhodium Traces on the Reducibility of Silica-Supported Iron Particles. Catal Lett 142, 984–990 (2012). https://doi.org/10.1007/s10562-012-0853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0853-x

Keywords

Navigation