Skip to main content

Advertisement

Log in

Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Inter-individual variability in drug response and the emergence of adverse drug reactions are main causes of treatment failure in cancer therapy. Recently, membrane transporters have been recognized as an important determinant of drug disposition, thereby affecting chemosensitivity and -resistance. Genetic factors contribute to inter-individual variability in drug transport and targeting. Therefore, pharmacogenetic studies of membrane transporters can lead to new approaches for optimizing cancer therapy. This review discusses genetic variations in efflux transporters of the ATP-binding cassette (ABC) family such as ABCB1 (MDR1, P-glycoprotein), ABCC1 (MRP1), ABCC2 (MRP2) and ABCG2 (BCRP), and uptake transporters of the solute carrier (SLC) family such as SLC19A1 (RFC1) and SLCO1B1 (SLC21A6), and their relevance to cancer chemotherapy. Furthermore, a pharmacogenomic approach is outlined, which using correlations between the growth inhibitory potency of anticancer drugs and transporter gene expression in multiple human cancer cell lines, has shown promise for determining the relevant transporters for any given drugs and predicting anticancer drug response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheok, M. H., & Evans, W. E. (2006). Acute lymphoblastic leukaemia: A model for the pharmacogenomics of cancer therapy. Nature Reviews Cancer, 6, 117–129.

    Article  PubMed  CAS  Google Scholar 

  2. Bodo, A., Bakos, E., Szeri, F., Varadi, A., & Sarkadi, B. (2003). The role of multidrug transporters in drug availability, metabolism and toxicity. Toxicology Letters, 140–141, 133–143.

    Article  PubMed  CAS  Google Scholar 

  3. Anderle, P., Huang, Y., & Sadee, W. (2004). Intestinal membrane transport of drugs and nutrients: Genomics of membrane transporters using expression microarrays. European Journal of Pharmaceutical Sciences, 21, 17–24.

    Article  PubMed  CAS  Google Scholar 

  4. Huang, Y., & Sadee, W. (2006). Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Letter, 239, 168–182.

    Article  CAS  Google Scholar 

  5. Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2, 48–58.

    Article  PubMed  CAS  Google Scholar 

  6. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  7. Dean, M., Rzhetsky, A., & Allikmets, R. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Research, 11, 1156–1166.

    Article  PubMed  CAS  Google Scholar 

  8. Ross, D. D., & Doyle, L. A. (2004). Mining our ABCs: Pharmacogenomic approach for evaluating transporter function in cancer drug resistance. Cancer Cell, 6, 105–107.

    Article  PubMed  CAS  Google Scholar 

  9. Rabow, A. A., Shoemaker, R. H., Sausville, E. A., & Covell, D. G. (2002). Mining the National Cancer Institute’s tumor-screening database: Identification of compounds with similar cellular activities. Journal of Medicinal Chemistry, 45, 818–840.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, D. H., Park, J. Y., Sohn, S. K., Lee, N. Y., Baek, J. H., Jeon, S. B., et al. (2006). Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. International Journal of Cancer, 118, 2195–2201.

    Article  CAS  Google Scholar 

  11. Wada, M. (2006). Single nucleotide polymorphisms in ABCC2 and ABCB1 genes and their clinical impact in physiology and drug response. Cancer Letter, 234, 40–50.

    Article  CAS  Google Scholar 

  12. Cordon-Cardo, C., O’Brien, J. P., Casals, D., Rittman-Grauer, L., Biedler, J. L., Melamed, M. R., et al. (1989). Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood–brain barrier sites. Proceedings of the National Academy of Sciences of the United States of America, 86, 695–698.

    Article  PubMed  CAS  Google Scholar 

  13. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., & Willingham, M. C. (1987). Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proceedings of the National Academy of Sciences of the United States of America, 84, 7735–7738.

    Article  PubMed  CAS  Google Scholar 

  14. Schuetz, E. G., Furuya, K. N., & Schuetz, J. D. (1995). Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. Journal of Pharmacology and Experimental Therapeutics, 275, 1011–1018.

    PubMed  CAS  Google Scholar 

  15. Schwab, M., Eichelbaum, M., & Fromm, M. F. (2003). Genetic polymorphisms of the human MDR1 drug transporter. Annual Review of Pharmacology and Toxicology, 43, 285–307.

    Article  PubMed  CAS  Google Scholar 

  16. Marzolini, C., Paus, E., Buclin, T., & Kim, R. B. (2004). Polymorphisms in human MDR1 (P-glycoprotein): Recent advances and clinical relevance. Clinical Pharmacology and Therapeutics, 75, 13–33.

    Article  PubMed  CAS  Google Scholar 

  17. Cascorbi, I. (2006). Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology & Therapeutics.

  18. Pauli-Magnus, C., & Kroetz, D. L. (2004). Functional implications of genetic polymorphisms in the multidrug resistance gene MDR1 (ABCB1). Pharmaceutical Research, 21, 904–913.

    Article  PubMed  CAS  Google Scholar 

  19. Stein, U., Walther, W., & Wunderlich, V. (1994). Point mutations in the mdr1 promoter of human osteosarcomas are associated with in vitro responsiveness to multidrug resistance relevant drugs. European Journal of Cancer, 30A, 1541–1545.

    Article  PubMed  CAS  Google Scholar 

  20. Stein, U., Walther, W., & Shoemaker, R. H. (1996). Vincristine induction of mutant and wild-type human multidrug-resistance promoters is cell-type-specific and dose-dependent. Journal of Cancer Research and Clinical Oncology, 122, 275–282.

    Article  PubMed  CAS  Google Scholar 

  21. Rund, D., Azar, I., & Shperling, O. (1999). A mutation in the promoter of the multidrug resistance gene (MDR1) in human hematological malignancies may contribute to the pathogenesis of resistant disease. Advances in Experimental Medicine and Biology, 457, 71–75.

    PubMed  CAS  Google Scholar 

  22. Mickley, L. A., Lee, J. S., Weng, Z., Zhan, Z., Alvarez, M., Wilson, W., et al. (1998). Genetic polymorphism in MDR-1: A tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood, 91, 1749–1756.

    PubMed  CAS  Google Scholar 

  23. Takane, H., Kobayashi, D., Hirota, T., Kigawa, J., Terakawa, N., Otsubo, K., et al. (2004). Haplotype-oriented genetic analysis and functional assessment of promoter variants in the MDR1 (ABCB1) gene. Journal of Pharmacology and Experimental Therapeutics, 311, 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  24. Taniguchi, S., Mochida, Y., Uchiumi, T., Tahira, T., Hayashi, K., Takagi, K., et al. (2003). Genetic polymorphism at the 5′ regulatory region of multidrug resistance 1 (MDR1) and its association with interindividual variation of expression level in the colon. Molecular Cancer Therapeutics, 2, 1351–1359.

    PubMed  CAS  Google Scholar 

  25. Lockhart, A. C., Tirona, R. G., & Kim, R. B. (2003). Pharmacogenetics of ATP-binding cassette transporters in cancer and chemotherapy. Molecular Cancer Therapeutics, 2, 685–698.

    PubMed  CAS  Google Scholar 

  26. Hoffmeyer, S., Burk, O., von Richter, O., Arnold, H. P., Brockmoller, J., Johne, A., et al. (2000). Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 3473–3478.

    Article  PubMed  CAS  Google Scholar 

  27. Hitzl, M., Drescher, S., van der Kuip, H., Schaffeler, E., Fischer, J., Schwab, M., et al. (2001). The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics, 11, 293–298.

    Article  PubMed  CAS  Google Scholar 

  28. Ameyaw, M. M., Regateiro, F., Li, T., Liu, X., Tariq, M., Mobarek, A., et al. (2001). MDR1 pharmacogenetics: Frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics, 11, 217–221.

    Article  PubMed  CAS  Google Scholar 

  29. Kim, R. B., Leake, B. F., Choo, E. F., Dresser, G. K., Kubba, S. V., Schwarz, U. I., et al. (2001). Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clinical Pharmacology and Therapeutics, 70, 189–199.

    Article  PubMed  CAS  Google Scholar 

  30. Lee, S. S., Kim, S. Y., Kim, W. Y., Thi-Le, H., Yoon, Y. R., Yea, S. S., et al. (2005). MDR1 genetic polymorphisms and comparison of MDR1 haplotype profiles in Korean and Vietnamese populations. Therapeutic Drug Monitoring, 27, 531–535.

    Article  PubMed  CAS  Google Scholar 

  31. Kroetz, D. L., Pauli-Magnus, C., Hodges, L. M., Huang, C. C., Kawamoto, M., Johns, S. J., et al. (2003). Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics, 13, 481–494.

    Article  PubMed  CAS  Google Scholar 

  32. Nakamura, T., Sakaeda, T., Horinouchi, M., Tamura, T., Aoyama, N., Shirakawa, T., et al. (2002). Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clinical Pharmacology and Therapeutics, 71, 297–303.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, D., Johnson, A. D., Papp, A. C., Kroetz, D. L., & Sadee, W. (2005). Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenetics and Genomics, 15, 693–704.

    PubMed  CAS  Google Scholar 

  34. Chen, G., Duran, G. E., Steger, K. A., Lacayo, N. J., Jaffrezou, J. P., Dumontet, C., et al. (1997). Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. Journal of Biological Chemistry, 272, 5974–5982.

    Article  PubMed  CAS  Google Scholar 

  35. Kioka, N., Tsubota, J., Kakehi, Y., Komano, T., Gottesman, M. M., Pastan, I., et al. (1989). P-glycoprotein gene (MDR1) cDNA from human adrenal: Normal P-glycoprotein carries Gly185 with an altered pattern of multidrug resistance. Biochemical and Biophysical Research Communications, 162, 224–231.

    Article  PubMed  CAS  Google Scholar 

  36. Bonhomme-Faivre, L., Devocelle, A., Saliba, F., Chatled, S., Maccario, J., Farinotti, R., et al. (2004). MDR-1 C3435T polymorphism influences cyclosporine a dose requirement in liver-transplant recipients. Transplantation, 78, 21–25.

    Article  PubMed  CAS  Google Scholar 

  37. Hitzl, M., Schaeffeler, E., Hocher, B., Slowinski, T., Halle, H., Eichelbaum, M., et al. (2004). Variable expression of P-glycoprotein in the human placenta and its association with mutations of the multidrug resistance 1 gene (MDR1, ABCB1). Pharmacogenetics, 14, 309–318.

    Article  PubMed  CAS  Google Scholar 

  38. Lepper, E. R., Nooter, K., Verweij, J., Acharya, M. R., Figg, W. D., & Sparreboom, A. (2005). Mechanisms of resistance to anticancer drugs: The role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics, 6, 115–138.

    Article  PubMed  CAS  Google Scholar 

  39. Mathijssen, R. H., de Jong, F. A., van Schaik, R. H., Lepper, E. R., Friberg, L. E., Rietveld, T., et al. (2004). Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. Journal of the National Cancer Institute, 96, 1585–1592.

    Article  PubMed  CAS  Google Scholar 

  40. Plasschaert, S. L., Groninger, E., Boezen, M., Kema, I., de Vries, E. G., Uges, D., et al. (2004). Influence of functional polymorphisms of the MDR1 gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clinical Pharmacology and Therapeutics, 76, 220–229.

    Article  PubMed  CAS  Google Scholar 

  41. Puisset, F., Chatelut, E., Dalenc, F., Busi, F., Cresteil, T., Azema, J., et al. (2004). Dexamethasone as a probe for docetaxel clearance. Cancer Chemotherapy and Pharmacology, 54, 265–272.

    Article  PubMed  CAS  Google Scholar 

  42. Tanabe, M., Ieiri, I., Nagata, N., Inoue, K., Ito, S., Kanamori, Y., et al. (2001). Expression of P-glycoprotein in human placenta: Relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. Journal of Pharmacology and Experimental Therapeutics, 297, 1137–1143.

    PubMed  CAS  Google Scholar 

  43. Wu, X., Gu, J., Wu, T. T., Swisher, S. G., Liao, Z., Correa, A. M., et al. (2006). Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. Journal of Clinical Oncology, 24, 3789–3798.

    Article  PubMed  CAS  Google Scholar 

  44. Sai, K., Kaniwa, N., Itoda, M., Saito, Y., Hasegawa, R., Komamura, K., et al. (2003). Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics, 13, 741–757.

    Article  PubMed  CAS  Google Scholar 

  45. Mathijssen, R. H., Marsh, S., Karlsson, M. O., Xie, R., Baker, S. D., Verweij, J., et al. (2003). Irinotecan pathway genotype analysis to predict pharmacokinetics. Clinical Cancer Research, 9, 3246–3253.

    PubMed  CAS  Google Scholar 

  46. Stanulla, M., Schaffeler, E., Arens, S., Rathmann, A., Schrauder, A., Welte, K., et al. (2005). GSTP1 and MDR1 genotypes and central nervous system relapse in childhood acute lymphoblastic leukemia. International Journal of Hematology, 81, 39–44.

    Article  PubMed  CAS  Google Scholar 

  47. Illmer, T., Schuler, U. S., Thiede, C., Schwarz, U. I., Kim, R. B., Gotthard, S., et al. (2002). MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Research, 62, 4955–4962.

    PubMed  CAS  Google Scholar 

  48. van den Heuvel-Eibrink, M. M., Wiemer, E. A., de Boevere, M. J., van der Holt, B., Vossebeld, P. J., Pieters, R., et al. (2001). MDR1 gene-related clonal selection and P-glycoprotein function and expression in relapsed or refractory acute myeloid leukemia. Blood, 97, 3605–3611.

    Article  PubMed  Google Scholar 

  49. Kafka, A., Sauer, G., Jaeger, C., Grundmann, R., Kreienberg, R., Zeillinger, R., et al. (2003). Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. International Journal of Oncology, 22, 1117–1121.

    PubMed  CAS  Google Scholar 

  50. Green, H., Soderkvist, P., Rosenberg, P., Horvath, G., & Peterson, C. (2006). mdr-1 single nucleotide polymorphisms in ovarian cancer tissue: G2677T/A correlates with response to paclitaxel chemotherapy. Clinical Cancer Research, 12, 854–859.

    Article  PubMed  CAS  Google Scholar 

  51. Cole, S. P., Bhardwaj, G., Gerlach, J. H., Mackie, J. E., Grant, C. E., Almquist, K. C., et al. (1992). Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science, 258, 1650–1654.

    Article  PubMed  CAS  Google Scholar 

  52. Kruh, G. D., & Belinsky, M. G. (2003). The MRP family of drug efflux pumps. Oncogene, 22, 7537–7552.

    Article  PubMed  CAS  Google Scholar 

  53. Conseil, G., Deeley, R. G., & Cole, S. P. (2005). Polymorphisms of MRP1 (ABCC1) and related ATP-dependent drug transporters. Pharmacogenetics and Genomics, 15, 523–533.

    PubMed  CAS  Google Scholar 

  54. Yasui, K., Mihara, S., Zhao, C., Okamoto, H., Saito-Ohara, F., Tomida, A., et al. (2004). Alteration in copy numbers of genes as a mechanism for acquired drug resistance. Cancer Research, 64, 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  55. Chen, Z. S., Furukawa, T., Sumizawa, T., Ono, K., Ueda, K., Seto, K., et al. (1999). ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P. Molecular Pharmacology, 55, 921–928.

    PubMed  CAS  Google Scholar 

  56. Leslie, E. M., Deeley, R. G., & Cole, S. P. (2001). Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology, 167, 3–23.

    Article  PubMed  CAS  Google Scholar 

  57. Leslie, E. M., Deeley, R. G., & Cole, S. P. (2005). Multidrug resistance proteins: Role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicology and Applied Pharmacology, 204, 216–237.

    Article  PubMed  CAS  Google Scholar 

  58. Conrad, S., Kauffmann, H. M., Ito, K., Deeley, R. G., Cole, S. P., & Schrenk, D. (2001). Identification of human multidrug resistance protein 1 (MRP1) mutations and characterization of a G671V substitution. Journal of Human Genetics, 46, 656–663.

    Article  PubMed  CAS  Google Scholar 

  59. Conrad, S., Kauffmann, H. M., Ito, K., Leslie, E. M., Deeley, R. G., Schrenk, D., et al. (2002). A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics, 12, 321–330.

    Article  PubMed  CAS  Google Scholar 

  60. Leslie, E. M., Letourneau, I. J., Deeley, R. G., & Cole, S. P. (2003). Functional and structural consequences of cysteine substitutions in the NH2 proximal region of the human multidrug resistance protein 1 (MRP1/ABCC1). Biochemistry, 42, 5214–5224.

    Article  PubMed  CAS  Google Scholar 

  61. Letourneau, I. J., Deeley, R. G., & Cole, S. P. (2005). Functional characterization of non-synonymous single nucleotide polymorphisms in the gene encoding human multidrug resistance protein 1 (MRP1/ABCC1). Pharmacogenetics and Genomics, 15, 647–657.

    PubMed  CAS  Google Scholar 

  62. Wang, Z., Wang, B., Tang, K., Lee, E. J., Chong, S. S., & Lee, C. G. (2005). A functional polymorphism within the MRP1 gene locus identified through its genomic signature of positive selection. Human Molecular Genetics, 14, 2075–2087.

    Article  PubMed  CAS  Google Scholar 

  63. Wojnowski, L., Kulle, B., Schirmer, M., Schluter, G., Schmidt, A., Rosenberger, A., et al. (2005). NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation, 112, 3754–3762.

    Article  PubMed  CAS  Google Scholar 

  64. Taniguchi, K., Wada, M., Kohno, K., Nakamura, T., Kawabe, T., Kawakami, M., et al. (1996). A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human cancer cell lines with decreased drug accumulation. Cancer Research, 56, 4124–4129.

    PubMed  CAS  Google Scholar 

  65. Borst, P., & Elferink, R. O. (2002). Mammalian ABC transporters in health and disease. Annual Review of Biochemistry, 71, 537–592.

    Article  PubMed  CAS  Google Scholar 

  66. Ito, K., Oleschuk, C. J., Westlake, C., Vasa, M. Z., Deeley, R. G., & Cole, S. P. (2001). Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. Journal of Biological Chemistry, 276, 38108–38114.

    PubMed  CAS  Google Scholar 

  67. Liang, X. J., & Aszalos, A. (2006). Multidrug transporters as drug targets. Current Drug Targets, 7, 911–921.

    Article  PubMed  CAS  Google Scholar 

  68. Hinoshita, E., Uchiumi, T., Taguchi, K., Kinukawa, N., Tsuneyoshi, M., Maehara, Y., et al. (2000). Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clinical Cancer Research, 6, 2401–2407.

    PubMed  CAS  Google Scholar 

  69. Borst, P., Zelcer, N., & van de Wetering, K. (2006). MRP2 and 3 in health and disease. Cancer Letter, 234, 51–61.

    Article  CAS  Google Scholar 

  70. Dietrich, C. G., de Waart, D. R., Ottenhoff, R., Schoots, I. G., & Elferink, R. P. (2001). Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in MRP2-deficient rats. Molecular Pharmacology, 59, 974–980.

    PubMed  CAS  Google Scholar 

  71. Kala, S. V., Neely, M. W., Kala, G., Prater, C. I., Atwood, D. W., Rice, J. S., et al. (2000). The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. Journal of Biological Chemistry, 275, 33404–33408.

    Article  PubMed  CAS  Google Scholar 

  72. Kartenbeck, J., Leuschner, U., Mayer, R., & Keppler, D. (1996). Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin–Johnson syndrome. Hepatology, 23, 1061–1066.

    PubMed  CAS  Google Scholar 

  73. Tsujii, H., Konig, J., Rost, D., Stockel, B., Leuschner, U., & Keppler, D. (1999). Exon–intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin–Johnson syndrome. Gastroenterology, 117, 653–660.

    Article  PubMed  CAS  Google Scholar 

  74. Suzuki, H., & Sugiyama, Y. (2002). Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ABCC2): Its impact on drug disposition. Advanced Drug Delivery Reviews, 54, 1311–1331.

    Article  PubMed  CAS  Google Scholar 

  75. Machida, I., Wakusawa, S., Sanae, F., Hayashi, H., Kusakabe, A., Ninomiya, H., et al. (2005). Mutational analysis of the MRP2 gene and long-term follow-up of Dubin–Johnson syndrome in Japan. Journal of Gastroenterology, 40, 366–370.

    Article  PubMed  CAS  Google Scholar 

  76. Sugiyama, Y., Kato, Y., & Chu, X. (1998). Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: Role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemotherapy and Pharmacology, 42(Suppl), S44–S49.

    Article  PubMed  CAS  Google Scholar 

  77. Ito, S., Ieiri, I., Tanabe, M., Suzuki, A., Higuchi, S., & Otsubo, K. (2001). Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics, 11, 175–184.

    Article  PubMed  CAS  Google Scholar 

  78. Itoda, M., Saito, Y., Soyama, A., Saeki, M., Murayama, N., Ishida, S., et al. (2002). Polymorphisms in the ABCC2 (cMOAT/MRP2) gene found in 72 established cell lines derived from Japanese individuals: An association between single nucleotide polymorphisms in the 5′-untranslated region and exon 28. Drug Metabolism and Disposition, 30, 363–364.

    Article  PubMed  CAS  Google Scholar 

  79. Hulot, J. S., Villard, E., Maguy, A., Morel, V., Mir, L., Tostivint, I., et al. (2005). A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination. Pharmacogenetics and Genomics, 15, 277–285.

    Article  PubMed  CAS  Google Scholar 

  80. Innocenti, F., Undevia, S. D., Chen, P. X., Das, S., Ramirez, J., Dolan, M. E., et al. (2004). Pharmacogenetic analysis of interindividual irinotecan (CPT-11) pharmacokinetic (PK) variability: Evidence for a functional variant of ABCC2. Proceedings of ASCO, 22 abstract 2010.

  81. Zamboni, W. C., Ramanathan, R. K., McLeod, H. L., Mani, S., Potter, D. M., Strychor, S., et al. (2006). Disposition of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite in relation to ABC transporter genotypes. Investigational New Drugs, 24, 393–401.

    Article  PubMed  CAS  Google Scholar 

  82. de Jong, F. A., de Jonge, M. J., Verweij, J., & Mathijssen, R. H. (2006). Role of pharmacogenetics in irinotecan therapy. Cancer Letter, 234, 90–106.

    Article  CAS  Google Scholar 

  83. Fromm, M. F., Kauffmann, H. M., Fritz, P., Burk, O., Kroemer, H. K., Warzok, R. W., et al. (2000). The effect of rifampin treatment on intestinal expression of human MRP transporters. American Journal of Pathology, 157, 1575–1580.

    PubMed  CAS  Google Scholar 

  84. Hinoshita, E., Taguchi, K., Inokuchi, A., Uchiumi, T., Kinukawa, N., Shimada, M., et al. (2001). Decreased expression of an ATP-binding cassette transporter, MRP2, in human livers with hepatitis C virus infection. Journal of Hepatology, 35, 765–773.

    Article  PubMed  CAS  Google Scholar 

  85. Doyle, L. A., Yang, W., Abruzzo, L. V., Krogmann, T., Gao, Y., Rishi, A. K., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  86. Doyle, L. A., & Ross, D. D. (2003). Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene, 22, 7340–7358.

    Article  PubMed  CAS  Google Scholar 

  87. Sarkadi, B., Ozvegy-Laczka, C., Nemet, K., & Varadi, A. (2004). ABCG2—a transporter for all seasons. FEBS Letters, 567, 116–120.

    Article  PubMed  CAS  Google Scholar 

  88. Burger, H., van Tol, H., Boersma, A. W., Brok, M., Wiemer, E. A., Stoter, G., et al. (2004). Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood, 104, 2940–2942.

    Article  PubMed  CAS  Google Scholar 

  89. Houghton, P. J., Germain, G. S., Harwood, F. C., Schuetz, J. D., Stewart, C. F., Buchdunger, E., et al. (2004). Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Research, 64, 2333–2337.

    Article  PubMed  CAS  Google Scholar 

  90. Kusuhara, H., & Sugiyama, Y. (2006). ATP-binding cassette, subfamily G (ABCG family). Pflügers Archiv.

  91. Maliepaard, M., Scheffer, G. L., Faneyte, I. F., van Gastelen, M. A., Pijnenborg, A. C., Schinkel, A. H., et al. (2001). Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Research, 61, 3458–3464.

    PubMed  CAS  Google Scholar 

  92. Meyer zu Schwabedissen, H. E., Grube, M., Dreisbach, A., Jedlitschky, G., Meissner, K., Linnemann, K., et al. (2006). Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of abcg2 (bcrp). Drug Metabolism and Disposition, 34, 524–533.

    Article  PubMed  CAS  Google Scholar 

  93. Yanase, K., Tsukahara, S., Mitsuhashi, J., & Sugimoto, Y. (2006). Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Letter, 234, 73–80.

    Article  CAS  Google Scholar 

  94. Imai, Y., Nakane, M., Kage, K., Tsukahara, S., Ishikawa, E., Tsuruo, T., et al. (2002). C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Molecular Cancer Therapeutics, 1, 611–616.

    PubMed  CAS  Google Scholar 

  95. Kondo, C., Suzuki, H., Itoda, M., Ozawa, S., Sawada, J., Kobayashi, D., et al. (2004). Functional analysis of SNPs variants of BCRP/ABCG2. Pharmaceutical Research, 21, 1895–1903.

    Article  PubMed  CAS  Google Scholar 

  96. Gardner, E. R., Burger, H., van Schaik, R. H., van Oosterom, A. T., de Bruijn, E. A., Guetens, G., et al. (2006). Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clinical Pharmacology and Therapeutics, 80, 192–201.

    Article  PubMed  CAS  Google Scholar 

  97. Mizuarai, S., Aozasa, N., & Kotani, H. (2004). Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. International Journal of Cancer, 109, 238–246.

    Article  CAS  Google Scholar 

  98. Kobayashi, D., Ieiri, I., Hirota, T., Takane, H., Maegawa, S., Kigawa, J., et al. (2005). Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metabolism and Disposition, 33, 94–101.

    Article  PubMed  CAS  Google Scholar 

  99. Zamber, C. P., Lamba, J. K., Yasuda, K., Farnum, J., Thummel, K., Schuetz, J. D., et al. (2003). Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics, 13, 19–28.

    Article  PubMed  CAS  Google Scholar 

  100. Sparreboom, A., Gelderblom, H., Marsh, S., Ahluwalia, R., Obach, R., Principe, P., et al. (2004). Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clinical Pharmacology and Therapeutics, 76, 38–44.

    Article  PubMed  CAS  Google Scholar 

  101. Sparreboom, A., Loos, W. J., Burger, H., Sissung, T. M., Verweij, J., Figg, W. D., et al. (2005). Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biology and Therapy, 4, 650–658.

    Article  PubMed  CAS  Google Scholar 

  102. de Jong, F. A., Marsh, S., Mathijssen, R. H., King, C., Verweij, J., Sparreboom, A., et al. (2004). ABCG2 pharmacogenetics: Ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clinical Cancer Research, 10, 5889–5894.

    Article  PubMed  Google Scholar 

  103. Ishikawa, T., Sakurai, A., Kanamori, Y., Nagakura, M., Hirano, H., Takarada, Y., et al. (2005). High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms: New strategies in pharmacogenomics. Methods in Enzymology, 400, 485–510.

    PubMed  CAS  Google Scholar 

  104. Tamura, A., Watanabe, M., Saito, H., Nakagawa, H., Kamachi, T., Okura, I., et al. (2006). Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: Identification of alleles that are defective in porphyrin transport. Molecular Pharmacology, 70, 287–296.

    PubMed  CAS  Google Scholar 

  105. Honjo, Y., Hrycyna, C. A., Yan, Q. W., Medina-Perez, W. Y., Robey, R. W., van de Laar, A., et al. (2001). Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Research, 61, 6635–6639.

    PubMed  CAS  Google Scholar 

  106. Volk, E. L., & Schneider, E. (2003). Wild-type breast cancer resistance protein (BCRP/ABCG2) is a methotrexate polyglutamate transporter. Cancer Research, 63, 5538–5543.

    PubMed  CAS  Google Scholar 

  107. Hediger, M. A., Romero, M. F., Peng, J. B., Rolfs, A., Takanaga, H., & Bruford, E. A. (2004). The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflügers Archiv, 447, 465–468.

    Article  PubMed  CAS  Google Scholar 

  108. Leabman, M. K., Huang, C. C., DeYoung, J., Carlson, E. J., Taylor, T. R., de la Cruz, M., et al. (2003). Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proceedings of the National Academy of Sciences of the United States of America, 100, 5896–5901.

    Article  PubMed  CAS  Google Scholar 

  109. Urban, T. J., Sebro, R., Hurowitz, E. H., Leabman, M. K., Badagnani, I., Lagpacan, L. L., et al. (2006). Functional genomics of membrane transporters in human populations. Genome Research, 16, 223–230.

    Article  PubMed  CAS  Google Scholar 

  110. Wong, S. C., Proefke, S. A., Bhushan, A., & Matherly, L. H. (1995). Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. Journal of Biological Chemistry, 270, 17468–17475.

    Article  PubMed  CAS  Google Scholar 

  111. Rothem, L., Stark, M., Kaufman, Y., Mayo, L., & Assaraf, Y. G. (2004). Reduced folate carrier gene silencing in multiple antifolate-resistant tumor cell lines is due to a simultaneous loss of function of multiple transcription factors but not promoter methylation. Journal of Biological Chemistry, 279, 374–384.

    Article  PubMed  CAS  Google Scholar 

  112. Worm, J., Kirkin, A. F., Dzhandzhugazyan, K. N., & Guldberg, P. (2001). Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. Journal of Biological Chemistry, 276, 39990–40000.

    Article  PubMed  CAS  Google Scholar 

  113. Gifford, A. J., Haber, M., Witt, T. L., Whetstine, J. R., Taub, J. W., Matherly, L. H., et al. (2002). Role of the E45K-reduced folate carrier gene mutation in methotrexate resistance in human leukemia cells. Leukemia, 16, 2379–2387.

    Article  PubMed  CAS  Google Scholar 

  114. Kaufman, Y., Ifergan, I., Rothem, L., Jansen, G., & Assaraf, Y. G. (2006). Coexistence of multiple mechanisms of PT523 resistance in human leukemia cells harboring 3 reduced folate carrier alleles: Transcriptional silencing, inactivating mutations, and allele loss. Blood, 107, 3288–3294.

    Article  PubMed  CAS  Google Scholar 

  115. Zhao, R., Assaraf, Y. G., & Goldman, I. D. (1998). A mutated murine reduced folate carrier (RFC1) with increased affinity for folic acid, decreased affinity for methotrexate, and an obligatory anion requirement for transport function. Journal of Biological Chemistry, 273, 19065–19071.

    Article  PubMed  CAS  Google Scholar 

  116. Ranganathan, P., & McLeod, H. L. (2006). Methotrexate pharmacogenetics: The first step toward individualized therapy in rheumatoid arthritis. Arthritis and Rheumatism, 54, 1366–1377.

    Article  PubMed  CAS  Google Scholar 

  117. Chango, A., Emery-Fillon, N., de Courcy, G. P., Lambert, D., Pfister, M., Rosenblatt, D. S., et al. (2000). A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Molecular Genetics and Metabolism, 70, 310–315.

    Article  PubMed  CAS  Google Scholar 

  118. Laverdiere, C., Chiasson, S., Costea, I., Moghrabi, A., & Krajinovic, M. (2002). Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood, 100, 3832–3834.

    Article  PubMed  Google Scholar 

  119. Dervieux, T., Kremer, J., Lein, D. O., Capps, R., Barham, R., Meyer, G., et al. (2004). Contribution of common polymorphisms in reduced folate carrier and gamma-glutamylhydrolase to methotrexate polyglutamate levels in patients with rheumatoid arthritis. Pharmacogenetics, 14, 733–739.

    Article  PubMed  CAS  Google Scholar 

  120. Shimasaki, N., Mori, T., Samejima, H., Sato, R., Shimada, H., Yahagi, N., et al. (2006). Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. Journal of Pediatric Hematology/Oncology, 28, 64–68.

    Article  PubMed  CAS  Google Scholar 

  121. Whetstine, J. R., Gifford, A. J., Witt, T., Liu, X. Y., Flatley, R. M., Norris, M., et al. (2001). Single nucleotide polymorphisms in the human reduced folate carrier: Characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clinical Cancer Research, 7, 3416–3422.

    PubMed  CAS  Google Scholar 

  122. Robien, K., Boynton A., Ulrich C.M. (2005) Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics, 6, 673–689.

    Article  PubMed  CAS  Google Scholar 

  123. Whetstine, J. R., Witt, T. L., & Matherly, L. H. (2002). The human reduced folate carrier gene is regulated by the AP2 and sp1 transcription factor families and a functional 61-base pair polymorphism. Journal of Biological Chemistry, 277, 43873–43880.

    Article  PubMed  CAS  Google Scholar 

  124. Kaufman, Y., Drori, S., Cole, P. D., Kamen, B. A., Sirota, J., Ifergan, I., et al. (2004). Reduced folate carrier mutations are not the mechanism underlying methotrexate resistance in childhood acute lymphoblastic leukemia. Cancer, 100, 773–782.

    Article  PubMed  CAS  Google Scholar 

  125. Liu, M., Ge, Y., Payton, S. G., Aboukameel, A., Buck, S., Flatley, R. M., et al. (2006). Transcriptional regulation of the human reduced folate carrier in childhood acute lymphoblastic leukemia cells. Clinical Cancer Research, 12, 608–616.

    Article  PubMed  CAS  Google Scholar 

  126. Yang, R., Sowers, R., Mazza, B., Healey, J. H., Huvos, A., Grier, H., et al. (2003). Sequence alterations in the reduced folate carrier are observed in osteosarcoma tumor samples. Clinical Cancer Research, 9, 837–844.

    PubMed  CAS  Google Scholar 

  127. DeLeve, L. D. (2000). Liver function and hepatotoxicity in cancer. In R. C. J. Bast, et al. (Ed.), Cancer medicine (5th ed.). Hamilton, Ontario: B.C. Decker Inc.

    Google Scholar 

  128. Nozawa, T., Minami, H., Sugiura, S., Tsuji, A., & Tamai, I. (2005). Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: In vitro evidence and effect of single nucleotide polymorphisms. Drug Metabolism and Disposition, 33, 434–439.

    Article  PubMed  CAS  Google Scholar 

  129. Niemi, M., Schaeffeler, E., Lang, T., Fromm, M. F., Neuvonen, M., Kyrklund, C., et al. (2004). High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics, 14, 429–440.

    Article  PubMed  CAS  Google Scholar 

  130. Nishizato, Y., Ieiri, I., Suzuki, H., Kimura, M., Kawabata, K., Hirota, T., et al. (2003). Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: Consequences for pravastatin pharmacokinetics. Clinical Pharmacology and Therapeutics, 73, 554–565.

    Article  PubMed  CAS  Google Scholar 

  131. Nozawa, T., Nakajima, M., Tamai, I., Noda, K., Nezu, J., Sai, Y., et al. (2002). Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): Allele frequencies in the Japanese population and functional analysis. Journal of Pharmacology and Experimental Therapeutics, 302, 804–813.

    Article  PubMed  CAS  Google Scholar 

  132. Tirona, R. G., Leake, B. F., Merino, G., & Kim, R. B. (2001). Polymorphisms in OATP-C: Identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. Journal of Biological Chemistry, 276, 35669–35675.

    Article  PubMed  CAS  Google Scholar 

  133. Tirona, R. G., Leake, B. F., Wolkoff, A. W., & Kim, R. B. (2003). Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. Journal of Pharmacology and Experimental Therapeutics, 304, 223–228.

    Article  PubMed  CAS  Google Scholar 

  134. Efferth, T., & Volm, M. (2005). Pharmacogenetics for individualized cancer chemotherapy. Pharmacology & Therapeutics, 107, 155–176.

    Article  CAS  Google Scholar 

  135. Gurwitz, D., Lunshof, J. E., & Altman, R. B. (2006). A call for the creation of personalized medicine databases. Nature Reviews Drug Discovery, 5, 23–26.

    Article  PubMed  CAS  Google Scholar 

  136. Sadee, W., & Dai, Z. (2005). Pharmacogenetics/genomics and personalized medicine. Human Molecular Genetics, 14(2), R207–R214.

    Article  PubMed  CAS  Google Scholar 

  137. Ulrich, C. M., Robien, K., & McLeod, H. L. (2003). Cancer pharmacogenetics: Polymorphisms, pathways and beyond. Nature Reviews Cancer, 3, 912–920.

    Article  PubMed  CAS  Google Scholar 

  138. Huang, Y., Anderle, P., Bussey, K. J., Barbacioru, C., Shankavaram, U., Dai, Z., et al. (2004). Membrane transporters and channels: Role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Research, 64, 4294–4301.

    Article  PubMed  CAS  Google Scholar 

  139. Frank, N. Y., Margaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A. M., Gasser, M., et al. (2005). ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Research, 65, 4320–4333.

    Article  PubMed  CAS  Google Scholar 

  140. Huang, Y., Blower, P. E., Yang, C., Barbacioru, C., Dai, Z., Zhang, Y., et al. (2005). Correlating gene expression with chemical scaffolds of cytotoxic agents: Ellipticines as substrates and inhibitors of MDR1. Pharmacogenomics Journal, 5, 112–125.

    Article  PubMed  CAS  Google Scholar 

  141. Huang, Y., Dai, Z., Barbacioru, C., & Sadee, W. (2005). Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Research, 65, 7446–7454.

    Article  PubMed  CAS  Google Scholar 

  142. Dai, Z., Huang, H., Sadee, W., & Blower, P. E. (2006). Chemoinformatics analysis identifies cytotoxic compounds susceptible to chemoresistance mediated by glutathione and cystine/glutamate transport system. Journal of Medicinal Chemistry, submitted.

  143. Szakacs, G., Annereau, J. P., Lababidi, S., Shankavaram, U., Arciello, A., Bussey, K. J., et al. (2004). Predicting drug sensitivity and resistance: Profiling ABC transporter genes in cancer cells. Cancer Cell, 6, 129–137.

    Article  PubMed  CAS  Google Scholar 

  144. Huang, Y., & Sadee, W. (2003). Drug sensitivity and resistance genes in cancer chemotherapy: A chemogenomics approach. Drug Discovery Today, 8, 356–363.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y. Pharmacogenetics/genomics of membrane transporters in cancer chemotherapy. Cancer Metastasis Rev 26, 183–201 (2007). https://doi.org/10.1007/s10555-007-9050-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9050-6

Keywords

Navigation