Skip to main content

Advertisement

Log in

Angiopoietin pathway gene expression associated with poor breast cancer survival

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Angiogenesis is one of the hallmarks of cancer and is essential for cancer progression and metastasis. However, clinical trials with vascular endothelial growth factor (VEGF) pathway inhibitors have failed to show overall survival benefit in breast cancer. Targeted therapy against the angiopoietin pathway, a downstream angiogenesis cascade, could be effective in breast cancer. This study investigates the association of angiopoietin pathway gene expression with breast cancer survival using a “big data” approach employing RNA sequencing data from The Cancer Genome Atlas (TCGA).

Methods

A total of 888 patients with adequate gene expression, disease-free survival (DFS), and overall survival (OS) data were selected for analysis. DFS and OS were calculated for patients with high and low expression of angiopoietin and VEGF pathway genes using TCGA data. Gene-specific thresholds to dichotomize patients into high and low expression were determined and survival plots were generated.

Results

The TCGA cohort was representative of national breast cancer patients with respect to stage, pathology, and survival. High Ang2 gene expression was associated with not only decreased DFS (p = 0.05), but also decreased OS (p < 0.05). High co-expression of Ang2 and its receptor Tie2 was associated with both decreased DFS and OS (p < 0.05). There was strong correlation between angiopoietin and VEGF pathway genes. While high expression of VEGFA alone was not associated with survival, high co-expression with Ang2 was associated with decreased OS.

Conclusions

This study validates TCGA as a representative database providing genomic data and survival outcomes in breast cancer. Our TCGA data support the angiopoietin pathway as a key mediator in the pathologic angiogenic switch in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. DeSantis CE, Fedewa SA, Goding Sauer A et al (2016) Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin 66:31–42

    Article  PubMed  Google Scholar 

  2. Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pepper MS (2001) Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7:462–468

    CAS  PubMed  Google Scholar 

  4. Ribatti D, Djonov V (2012) Intussusceptive microvascular growth in tumors. Cancer Lett 316:126–131

    Article  CAS  PubMed  Google Scholar 

  5. Cao Y, Arbiser J, D’Amato RJ et al (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3:114rv3

    PubMed  Google Scholar 

  6. Augustin HG, Koh GY, Thurston G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177

    Article  CAS  PubMed  Google Scholar 

  7. Thomas M, Augustin HG (2009) The role of the angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137

    Article  CAS  PubMed  Google Scholar 

  8. Gerald D, Chintharlapalli S, Augustin HG et al (2013) Angiopoietin-2: an attractive target for improved antiangiogenic tumor therapy. Cancer Res 73:1649–1657

    Article  CAS  PubMed  Google Scholar 

  9. Scharpfenecker M, Fiedler U, Reiss Y et al (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780

    Article  CAS  PubMed  Google Scholar 

  10. Keskin D, Kim J, Cooke VG et al (2015) Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep 10:1066–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dieras V, Wildiers H, Jassem J et al (2015) Trebananib (AMG 386) plus weekly paclitaxel with or without bevacizumab as first-line therapy for HER2-negative locally recurrent or metastatic breast cancer: a phase 2 randomized study. Breast 24:182–190

    Article  PubMed  Google Scholar 

  12. D’Angelo SP, Mahoney MR, Van Tine BA et al (2015) Alliance A091103 a phase II study of the angiopoietin 1 and 2 peptibody trebananib for the treatment of angiosarcoma. Cancer Chemother Pharmacol 75:629–638

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hong DS, Kurzrock R, Mulay M et al (2014) A phase 1b, open-label study of trebananib plus bevacizumab or motesanib in patients with solid tumours. Oncotarget 5:11154–11167

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang SD (2013) Opportunities and challenges of clinical research in the big-data era: from RCT to BCT. J Thorac Dis 5:721–723

    PubMed  PubMed Central  Google Scholar 

  15. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  16. Ritchie ME, Phipson B, Wu D et al (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47

    Article  PubMed  PubMed Central  Google Scholar 

  17. Therneau T (2015) A package for survival analysis in S, v2.38

  18. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds) (1975–2012) SEER cancer statistics review. National Cancer Institute, Bethesda

  19. Coutelle O, Schiffmann LM, Liwschitz M et al (2015) Dual targeting of angiopoietin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer 112:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mittendorf EA, Philips AV, Meric-Bernstam F et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2:361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang XH, Hand RA, Livasy CA et al (2003) Overexpression of the receptor tyrosine kinase Tie-1 intracellular domain in breast cancer. Tumour Biol 24:61–69

    Article  PubMed  Google Scholar 

  22. Amelio I, Tsvetkov PO, Knight RA et al (2016) SynTarget: an online tool to test the synergetic effect of genes on survival outcome in cancer. Cell Death Differ 23:912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Antonov AV (2011) BioProfiling.de: analytical web portal for high-throughput cell biology. Nucleic Acids Res 39:W323–W327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hatzis C, Pusztai L, Valero V et al (2011) A genomic predictor of response and survival following taxane–anthracycline chemotherapy for invasive breast cancer. J Am Med Assoc 305:1873–1881

    Article  CAS  Google Scholar 

  26. Itoh M, Iwamoto T, Matsuoka J et al (2014) Estrogen receptor (ER) mRNA expression and molecular subtype distribution in ER-negative/progesterone receptor-positive breast cancers. Breast Cancer Res Treat 143:403–409

    Article  CAS  PubMed  Google Scholar 

  27. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676

    Article  CAS  PubMed  Google Scholar 

  28. Pivot X, Schneeweiss A, Verma S et al (2011) Efficacy and safety of bevacizumab in combination with docetaxel for the first-line treatment of elderly patients with locally recurrent or metastatic breast cancer: results from AVADO. Eur J Cancer 47:2387–2395

    Article  CAS  PubMed  Google Scholar 

  29. Smith IE, Pierga JY, Biganzoli L et al (2011) First-line bevacizumab plus taxane-based chemotherapy for locally recurrent or metastatic breast cancer: safety and efficacy in an open-label study in 2,251 patients. Ann Oncol 22:595–602

    Article  CAS  PubMed  Google Scholar 

  30. von Minckwitz G, Puglisi F, Cortes J et al (2014) Bevacizumab plus chemotherapy versus chemotherapy alone as second-line treatment for patients with HER2-negative locally recurrent or metastatic breast cancer after first-line treatment with bevacizumab plus chemotherapy (TANIA): an open-label, randomised phase 3 trial. Lancet Oncol 15:1269–1278

    Article  Google Scholar 

  31. Gligorov J, Doval D, Bines J et al (2014) Maintenance capecitabine and bevacizumab versus bevacizumab alone after initial first-line bevacizumab and docetaxel for patients with HER2-negative metastatic breast cancer (IMELDA): a randomised, open-label, phase 3 trial. Lancet Oncol 15:1351–1360

    Article  CAS  PubMed  Google Scholar 

  32. Gianni L, Romieu GH, Lichinitser M et al (2013) AVEREL: a randomized phase III Trial evaluating bevacizumab in combination with docetaxel and trastuzumab as first-line therapy for HER2-positive locally recurrent/metastatic breast cancer. J Clin Oncol 31:1719–1725

    Article  CAS  PubMed  Google Scholar 

  33. Stevenson CE, Nagahashi M, Ramachandran S et al (2012) Bevacizumab and breast cancer: what does the future hold? Future Oncol 8:403–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    Article  CAS  PubMed  Google Scholar 

  35. von Minckwitz G, Eidtmann H, Rezai M et al (2012) Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med 366:299–309

    Article  Google Scholar 

  36. Bear HD, Tang G, Rastogi P et al (2012) Bevacizumab added to neoadjuvant chemotherapy for breast cancer. N Engl J Med 366:310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Børresen-Dale AL (2016) Molecular Evolution Under Neoadjuvant Chemotherapy. In: Proceedings of the thirty-eighth annual CTRC-AACR San Antonio breast cancer symposium: 2015 Dec 8–12, San Antonio, TX. AACR, Philadelphia

  38. Yu Q, Stamenkovic I (2001) Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Etoh T, Inoue H, Tanaka S et al (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153

    CAS  PubMed  Google Scholar 

  40. Hu B, Guo P, Fang Q et al (2003) Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA 100:8904–8909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oliner J, Min H, Leal J et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6:507–516

    Article  CAS  PubMed  Google Scholar 

  42. Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou YZ, Fang XQ, Li H et al (2007) Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors. Chin Med J (Engl) 120:1216–1219

    CAS  Google Scholar 

  44. Kuboki S, Shimizu H, Mitsuhashi N et al (2008) Angiopoietin-2 levels in the hepatic vein as a useful predictor of tumor invasiveness and prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 23:e157–e164

    Article  CAS  PubMed  Google Scholar 

  45. Helfrich I, Edler L, Sucker A et al (2009) Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res 15:1384–1392

    Article  CAS  PubMed  Google Scholar 

  46. Park JH, Park KJ, Kim YS et al (2007) Serum angiopoietin-2 as a clinical marker for lung cancer. Chest 132:200–206

    Article  CAS  PubMed  Google Scholar 

  47. Takanami I (2004) Overexpression of Ang-2 mRNA in non-small cell lung cancer: association with angiogenesis and poor prognosis. Oncol Rep 12:849–853

    CAS  PubMed  Google Scholar 

  48. Srivastava K, Hu J, Korn C et al (2014) Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell 26:880–895

    Article  CAS  PubMed  Google Scholar 

  49. Herbst RS, Hong D, Chap L et al (2009) Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 27:3557–3565

    Article  CAS  PubMed  Google Scholar 

  50. Nagahashi M, Ramachandran S, Rashid OM et al (2010) Lymphangiogenesis: a new player in cancer progression. World J Gastroenterol 16:4003–4012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nagahashi M, Ramachandran S, Kim EY et al (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72:726–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by CTSA award No. UL1TR000058 from the National Center for Advancing Translational Sciences; NIH/NCI grant R01CA160688; and Susan G. Komen Investigator Initiated Research Grant IIR12222224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Takabe.

Ethics declarations

Conflict of interest

All authors declare that he/she has no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors. Ethics approval was waived by the Virginia Commonwealth University Institutional Review Board.

Additional information

Rajesh Ramanathan and Amy L. Olex have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Gene-specific expression level thresholds for generating survival plots. Gene-specific thresholds for each gene and survival type (overall and disease-free) were generated as described in Methods. Each plot here shows the density of gene expression values for each of the interrogated genes (listed in top left corner). Black line: the mean expression value across all 1092 breast cancer patients with gene expression data. Red line: The expression cutoff chosen from the overall survival analysis. Blue line: The expression cutoff chosen from the disease-free survival analysis. Gene expression values are reported as the normalized log2 transformed RSEM-derived transcripts per million (PDF 41 kb)

Supplementary Fig. 2

Stage-specific survival analysis by Ang2 expression. Survival based on high or low Ang2 expression is shown with significant decrease in OS and DFS by stage in tissues with high and low Ang2 expression. (a) DFS in samples with low Ang2 expression. (b) DFS in samples with high Ang2 expression. (c) OS in samples with low Ang2 expression. (d) OS in samples with high Ang2 expression (EPS 71 kb)

Supplementary Fig. 3

SynTarget survival analyses for microarray data sets. SynTarget was used to assess the synergistic survival relationships resulting from gene expression of combinations of Ang2, Tie2 and VEGFA genes in the METABRIC data set. After choosing the data set, official gene symbols were entered and the analysis was run. All figures shown are from the METABRIC data set. (a) OS for Ang2 expression. (b) OS for low Ang2 and high Tie. (c) OS for high VEGFA and high Ang2. (d) OS for low VEGFA and low Ang2 (PDF 117 kb)

Supplementary Tables 1–8

Gene expression cutoffs tested for each gene (DOCX 187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, R., Olex, A.L., Dozmorov, M. et al. Angiopoietin pathway gene expression associated with poor breast cancer survival. Breast Cancer Res Treat 162, 191–198 (2017). https://doi.org/10.1007/s10549-017-4102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-017-4102-2

Keywords

Navigation