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Abstract Metastatic cancer remains the leading cause of

death for patients with breast cancer. To understand the

mechanisms underlying the development of distant

metastases to specific sites is therefore important and of

potential clinical value. From 157 primary breast tumours

of the patients with known metastatic disease, gene

expression profiling data were generated and correlated to

metastatic behaviour including site-specific metastasis,

metastasis pattern and survival outcomes. We analysed

gene expression signatures specifically associated with the

development of bone metastases. As a validation cohort,

we used a published dataset of 376 breast carcinomas for

which gene expression data and site-specific metastasis

information were available. 80.5 % of luminal-type

tumours developed bone metastasis as opposed to 41.7 %

of basal and 55.6 % of HER2-like tumours. A novel

15-gene signature identified 82.4 % of the tumours with

bone metastasis, 85.2 % of the tumours which had bone

metastasis as first site of metastasis and 100 % of the ones

with bone metastasis only (p 9.99e-09), in the training set.

In the independent dataset, 81.2 % of the positive tested

tumours had known metastatic disease to the bone

(p 4.28e-10). This 15-gene signature showed much better

correlation with the development of bone metastases than

previously identified signatures and was predictive in both

ER-positive as well as in ER-negative tumours. Multi-

variate analyses revealed that together with the molecular

subtype, our 15-gene expression signature was significantly

correlated to bone metastasis status (p \0.001, 95 % CI

3.86–48.02 in the training set; p 0.001, 95 % CI 1.54–5.00

in the independent set). The 15 genes, APOPEC3B, ATL2,

BBS1, C6orf61, C6orf167, MMS22L, KCNS1, MFAP3L,

NIP7, NUP155, PALM2, PH-4, PGD5, SFT2D2 and

STEAP3, encoded mainly membrane-bound molecules

with molecular function of protein binding. The expression

levels of the up-regulated genes (NAT1, BBS1 and PH-4)

were also found to be correlated to epithelial to mes-

enchymal transition status of the tumour. We have identi-

fied a novel 15-gene expression signature associated with

the development of bone metastases in breast cancer

patients. This bone metastasis signature is the first to be

identified using a supervised classification approach in a

large series of patients and will help forward research in

this area towards clinical applications.
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OS Overall survival

EMT Epithelial to mesenchymal transition

ECM Extracellular matrix

Introduction

After the initial treatment of primary breast cancer,

20–30 % of patients develop distant metastases [17, 47].

The survival outcomes and sites at which distant metas-

tases develop differ greatly among patients [24, 25, 29, 55].

Several studies have already reported gene expression

profiles correlated with risk of distant metastasis, which are

in the process of being validated with prospective studies

[16, 45, 61]. Moreover, breast cancer’s propensity to spread

to certain organs, so-called ‘‘non-random organ-specific

metastasis’’, has also been investigated [3, 10, 14, 30, 41].

There have been several important studies using animal

models to unravel the mechanism of site-specific distant

metastases in breast cancer [6, 7, 33, 36, 43, 44, 65, 66].

These studies focusing on organotropism of metastatic

breast cancer have used human breast cancer cell lines

which were injected in immune-compromised mice. By

combining genomic profiling of organ-tropic metastatic

variants selected in vivo from the animal models of

metastatic disease with clinical genomic studies, Massague

and his colleagues were able to identify gene expression

signatures that were associated with metastasis to bone,

lung and brain [7, 33, 43]. They have further explored the

association between specific patterns of gene expression

and metastatic pattern. The discovered candidate genes

were then further investigated and their metastatic role was

confirmed by means of overexpressing or inactivating their

expression. Hereafter they have validated these gene

expression signatures in several cohorts of primary breast

tumours with known metastatic disease.

We have recently described the metastatic behaviour

(organ-specific metastasis)-related immunophenotypic

findings of the primary tumours in a retrospective study

including 263 primary breast tumourswith knownmetastatic

disease [52]. We have shown that the time to distant

metastasis was less than 5 year in 90 % of the hormone

receptor negative breast cancer patients as compared to 66 %

of hormone receptor-positive patients. The role of estrogen

receptor (ER) positivity was found to be closely associated to

the development of bonemetastasis including bone-only and

bone-firstmetastasis in the course of the disease, whereas ER

negativity was found to be related to visceral (liver, lung or

brain) metastasis. Along with the hormone status, tumour

size and tumour grade, we found that patients who developed

visceral metastasis had worse survival outcome, in terms of

metastasis-specific survival and overall survival and

additionally they frequently developed multiple metastasis

during the course of the disease. We have concluded that

tumour types were associated with survival and pattern of

distant metastasis during the course of the disease. Gene

expression profiling patterns predicting site-specific metas-

tasis may aid in better understanding the mechanisms for the

development of distant metastases.

In this study, we analysed the gene expression profile of

157 primary tumours that are all metastasized. In order to

identify and validate tumour factors of metastatic breast

cancer that are predictive of metastatic behaviour, gene

expression profiling of primary tumours is correlated to

metastasis pattern, and subsequently, gene expression sig-

natures are investigated for prediction of the site-specific

distant metastasis.

Materials and methods

The methodology for selection of patient and tumour

samples, gene expression profiling experiments, microarray

data analysis/bioinformatics and identification and valida-

tion of site-specific metastasis signature is described in

details in a supplementary file (Supplementary file 1).

Results

For 157 primary invasive breast carcinomas from patients

who all developed metastatic disease, mRNA expression

signatures were assessed using microarray analysis. The

patient characteristics and metastasis patterns are described

in Table 1. Tumours were subdivided into 5 molecular

subtypes using the PAM50 classifier [48]. Out of 157 cases,

67 (42.7 %) were identified as Luminal A, 46 (29.3 %) as

Luminal B, 18 (11.5 %) as HER2-like and 25 (15.9 %) as

basal type. One (0.6 %) of these tumours was identified as

normal-like. For statistical purposes, the normal-like breast

tumour was excluded from the multivariate analysis.

Median follow-up time for patients who were alive was

11.5 years (range 6.2–17.3 years). 79.4 % of the patients

with Luminal A, 72.5 % of Luminal B, 78.6 % HER2-like

and 87.5 % of basal-type tumours received adjuvant ther-

apy. None of the patients received trastuzumab as adjuvant

therapy; a subgroup of patients (n = 10) received trastu-

zumab for treatment of metastatic disease.

Bone was the most frequent site of distant metastasis

(71.5 %) followed by liver (51.7 %) and lung (34.4 %).

74.2 % of the patients developed visceral organ metastasis

(lung, liver or brain).

Survival analysis revealed that luminal-type tumours

had better outcomes in terms of metastasis-specific and

overall survival compared to basal-type tumours and
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HER2-like tumours (p\ 0.000). Median time to develop

metastasis was 37, 27, 19 and 15 months for Luminal A,

Luminal B, HER2-like tumours and basal-type tumours,

respectively. 88.3 % of basal-type and HER2-like tumours

developed metastases within 5 years versus 72.7 % of

luminal A and 76.7 % of Luminal B tumours.

Among luminal subtype 80.5 % of the tumours devel-

oped bone metastasis as opposed to, respectively, 41.7 and

55.6 % of basal-type and HER2-like tumours (p 0.001).

This group of tumours also composed the 81.8 % of the

tumours which metastasized to bone as initial site of

metastasis (p 0.001). The rates of development of visceral

metastasis were 70.4 % in luminal-type tumours, 87.5 % in

basal-type tumours and 77.8 % in HER2-like tumours. Of

basal-type tumours, 66.7 % developed visceral metastasis

as first metastasis site and 29.2 % of these tumours had

only visceral site metastasis during the course of disease

(p 0.061 and p 0.034).

The tumour samples from all patients were assigned to

the poor prognostic group according to the 70-gene sig-

nature [61]. Based on recently published epithelial mes-

enchymal transition (EMT) gene classifiers [26], 100 of the

tumours allocated as EMT-activated and the rest, n = 51,

as EMT-non-activated.

Validation of a previously identified gene signature

for bone-specific metastasis

First, we have studied the predictive value of the previ-

ously published bone metastasis signature of Kang et al.

[33]. This signature was assessed as positive in 110 of the

tumours in the current study set. All (100 %) Luminal A

tumours and 90.7 % of the Luminal B tumours were found

be positive for the signature, whereas 33 % of the HER2-

like tumours were positive. None of the basal-type tumours

were found to be positive for this site-specific metastasis

signature. Within this site-specific signature positive sub-

group of tumours, 80 % had clinically identified bone

metastasis (n = 88, p 4.26e-04). Kang et al’ s 102-gene

expression signature for bone metastasis was able to

identify 81.5 % of the tumours with bone metastasis,

84.1 % of the tumours which had bone as initial site of

metastasis and 100 % (n = 18) of the tumours which had

bone-only metastasis in the training set (p values\ 0.001,

\0.001 and 0.002, respectively. Sensitivity: 81.5 % and

specificity: 48.8 %). When tested in ER-positive (n = 108)

and ER-negative (n = 43) groups separately, 61.1 %

(n = 66) of the ER-positive tumours and 60.4 % (n = 26)

of the ER-negative tumours were tested to be positive with

this 102-gene expression signature. Out of positively tested

ER-positive tumours (n = 66), 83.3 % had clinically evi-

dent bone metastasis (p 0.456). Of the 26 bone signature

positive tested ER-negative tumours, 50 % had bone

metastatic disease (p 1.000).

Supervised classification of bone (specific)

metastasis-related genes

To identify site-specific metastasis genes, differentially

expressed genes between tumours with bone metastasis and

the ones without bone metastasis were explored. A t test

was conducted with a p value of\0.01. After application of

Table 1 Clinical and pathological characteristics of metastatic breast

cancer patients

N %

Age at diagnosis, years

\50 83 52.9

[50 74 47.1

Surgical procedure

None 4 2.8

Mastectomy 73 51.8

Breast conserving 64 45.4

Adjuvant therapy

None 30 21.1

Only CT 50 35.2

Only HT 17 12.0

CT ? HT 45 31.7

Lymph node status

None 43 29.3

1–3 positive 48 32.7

[3 positive 56 38.1

Histology

Ductal 134 86.5

Lobular 14 9.0

Other 7 4.5

Tumour grade

1 13 8.6

2 84 55.3

3 55 36.2

Time to distant metastasisa

Early 117 77.0

Late 35 23.0

Metastasis at first presentation

No 141 92.8

Yes 11 7.2

Multiple metastasis sites at first presentation

No 97 64.2

Yes 54 35.8

Multiple metastasis sites during follow-up

No 37 24.5

Yes 114 75.5

CT chemotherapy, HT hormonal therapy
a Cut-off point 5 years
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filtering criteria, differentially expressed genes were iden-

tified between two subgroups of tumours with and without

bone metastasis. The group of differentially expressed

genes were subsequently validated in the training dataset as

well as in the independent dataset with the help of K-means

and t testing.

We identified 15 differentially expressed genes between

tumours with bone metastasis and the ones without bone

metastasis (Table 2). The heat map with gene expression

pattern of these 15 genes is displayed in Fig. 1. None of the

genes in this set overlapped with the bone signature of

Kang et al. Three genes, namely NAT1, PH-4 and BBS1,

were up-regulated and the other genes were found to be

down-regulated. Mapping into the Gene Ontology and

Kyoto Encyclopaedia of Genes and Genomes databases

showed an overrepresentation of membrane-bound mole-

cules with molecular function of protein binding (APO-

PEC3B, ATL2, BBS1, MMS22L, KCNS1, MFAP3L, NIP7,

NUP155, PALM2, PH-4 and STEAP3).

In order to validate this gene expression signature,

conjointly with our training set, an independent large

combined microarray dataset of four studies was analysed.

This combined dataset was previously published by Harrell

et al. [27]. With the help of K-means clustering method, we

have grouped our training dataset and independent dataset

into two groups based on their expression levels for our

newly developed bone metastasis gene expression

signature and subsequently these two groups were com-

pared using a t test.

The 15-gene bone metastasis gene signature was found

to be present in 103 tumours in the training dataset. With

the help of this signature, 82.4 % of the tumours with

known metastatic disease, 85.2 % of the tumours which

had bone metastasis as first metastasis site and 100 % of

the ones with bone metastasis only were identified

(p 9.99e-09, sensitivity: 82.4 % and specificity: 67.4 %).

When analysed in the independent dataset, the 15-gene

expression signature was found to be present in 160

tumours (total n = 376) and 81.2 % of these positive tested

tumours had also clinically evident bone metastatic disease

(p 4.28e-10, sensitivity 54.6 % and specificity: 78.2 %).

The independent database of Harrell et al. was also utilized

to test the bone-specific metastasis of Kang et al. The

102-gene expression signature was assessed as present in

201 tumours (total = 376) and 72.6 % of these tumours

reported to have bone metastasis (p 6.92e-05, sensitivity:

61.3 % and specificity: 60.1 %).

In addition, the independent dataset was analysed sep-

arately in ER-positive and ER-negative tumours. Among

ER-positive tumours (n = 245), the 15-gene expression

signature was found to be present in 136 tumours and

83.1 % of these tumours had known bone metastasis;

38.5 % of the negatively tested tumours had no bone

metastasis (p 2.38e-04, sensitivity: 79.3 and specificity:

Table 2 The list of differentially expressed genes in bone metastatic disease

Accession

number

HUGO Description R value p value Level of

expression*

1 NM_004900 APOBEC3B Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-

like 3B (APOBEC3B), mRNA

-0.407 3.55e-03 \

2 NM_153485 NUP155 Nucleoporin 155 kDa (NUP155), transcript variant 1, mRNA -0.385 8.43e-03 \
3 NM_021647 MFAP3L Microfibrillar-associated protein 3-like (MFAP3L), transcript

variant 1, mRNA

-0.382 6.77e-03 \

4 NM_016101 NIP7 Nuclear import 7 homolog (S. cerevisiae) (NIP7), mRNA -0.375 8.67e-03 \
5 NM_198468 C6orf167 Chromosome 6 open reading frame 167 (C6orf167), mRNA -0.371 7.22e-03 \
6 NM_002251 KCNS1 Potassium voltage-gated channel, delayed-rectifier, subfamily S,

member 1 (KCNS1), mRNA

-0.368 7.41e-03 \

7 NM_001258311 PGBD5 PiggyBac transposable element derived 5 (PGBD5), mRNA -0.364 7.88e-03 \
8 NM_182915 STEAP3 STEAP family member 3 (STEAP3), transcript variant 1, mRNA -0.364 8.77e-03 \
9 NM_020188 C16orf61 Chromosome 16 open reading frame 61 (C16orf61), mRNA -0.357 9.84e-03 \
10 NM_053016 PALM2 Paralemmin 2 (PALM2), transcript variant 2, mRNA -0.356 9.02e-03 \
11 NM_022374 ATL2 Atlastin GTPase 2 (ATL2), mRNA -0.354 9.68e-03 \
12 NM_199344 SFT2D2 SFT2 domain containing 2 (SFT2D2), mRNA -0.353 9.66e-03 \
13 NM_001160170 NAT1 N-acetyltransferase 1 (arylamine N-acetyltransferase) (NAT1),

mRNA

0.352 9.24e-03 [

14 NM_177938 PH-4 Hypoxia-inducible factor prolyl 4-hydroxylase (PH-4), transcript

variant 2, mRNA

0.357 9.20e-03 [

15 NM_024649 BBS1 Bardet-Biedl syndrome 1 (BBS1), mRNA 0.372 8.29e-03 [

*[ up-regulated,\ down-regulated
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57.1 %). Out of 139 ER-positive tumours which were

tested to be positive for the 102-gene expression signature,

75.5 % had bone metastatic disease and 29.2 % of the

negatively tested tumours had no bone metastasis (p 0.466,

sensitivity: 63.2 % and specificity: 47.6 %). Within the

ER-negative subgroup (n = 128), 74 tumours were tested

positive for the 15-gene expression signature and 56.8 %

these tumours had bone metastasis; 70.4 % of negatively

tested tumours had no evidence of bone metastasis

(p 3.83e-03, sensitivity: 72.4 % and specificity: 56.8 %).

Out of 56 ER-negative tumours which were tested positive

for 102-gene expression signature, 55.4 % had clinically

bone metastasis; 62.5 % of negatively tested tumours had

no bone metastasis (p 0.05, sensitivity: 53.5 % and speci-

ficity 64.3 %). Table 3 summarizes the validation of gene

signatures in training and independent datasets.

In addition, in a subsequent study a subset of 50-genes

(out of initially identified 102 genes) was selected by

Massague’s group [44]; this subset of 50 genes was also

analysed in our training and in the independent datasets for

its predictive value for bone-specific metastasis The

50-gene signature was able to identify the patients with

bone metastasis in the training set (p 1.14e-03) and the

independent dataset (p 0.014). When tested in the ER-

positive and the ER-negative tumours separately, this

50-gene signature was not predictive for bone metastatic

disease.

When tested among all patients with metastatic and not-

metastatic disease in the independent dataset (n = 855),

the 15-gene signature was able to identify the patients with

bone metastasis (p 5.48e04, sensitivity: 54.6 % and speci-

ficity: 58.7 %). This gene expression signature remained

statistically significant for identification of bone metastasis

when separately analysed in ER-positive and ER-negative

tumours (p 3.45e-04, sensitivity: 63.9 % and specificity:

52.2 %; p 3.82e-03, sensitivity: 75.9 % and specificity:

45.5 %, respectively).

The up-regulated genes and their correlation with

molecular subtypes and known prognostic gene signatures

were further explored. NAT1 was identified to be expressed

at the highest levels in Luminal A followed by Luminal B,

HER2-like group and being least expressed in the basal-

type group. NAT1 expression was also correlated with the

EMT-activated group, being overexpressed in this group of

tumours compared to the EMT-non-activated group

(p 5.7e-05) (Fig. 2). Similarly the other up-regulated

genes, BBS1 and PH-4, were also found to be significantly

correlated with the EMT-activated group of tumours (p:

5.8e-04 and p 0.01, respectively).

The 15-gene bone metastasis signature was positive in

96.9 % of the Luminal A tumours, in 76.7 % of luminal B

tumours and in 38.9 % of HER2-like tumours. Similar to

Kang’s bone metastasis signature, none of the basal-like

tumours were found to be positive for this signature.

Univariate analyses showed that our bone metastasis

signature was significantly correlated to the development

of bone metastasis especially in the group of patients who

developed only bone metastasis in the course of their dis-

ease (p\ 0.001). As expected, ER status and molecular

subtypes were the parameters that were closely related to

bone metastasis status (p\ 0.001). Subsequently, multi-

variate analyses were applied in order to further explore the

link between our gene signature and these parameters.

Table 4 displays the multivariate analyses results for ER

status, molecular subtypes and two separate gene datasets

(training and independent) for bone-specific metastasis. As

shown, the 15-gene signature was the only parameter that

was significantly correlated to bone metastasis status in the

training dataset (p\ 0.001, 95 % CI 3.86–48.02). In the

independent dataset, together with the molecular subtype,

the 15-gene signature was significantly correlated to bone

metastasis status (p 0.001, 95 % CI 1.54–5.00).

Discussion

The metastatic potential of the primary tumour revolves

around multistep biological processes within host tissue

and microenvironment of the distant organ site [20]. In

addition to the early origin of genetic instability [4, 19, 20]

Fig. 1 The gene expression pattern of 15 genes of bone metastasis

gene signature. Heat map shows the gene expression profiling pattern

of 15-genes among 151 patients. Primary tumours with clinically

evident bone metastasis are illustrated in blue and the ones without

bone metastasis are in yellow. For each primary tumour, the

expression level of the specific gene is exhibited as red, if up-

regulated and green, if down-regulated
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and hence the metastatic potential of the tumour cells,

several intrinsic and extrinsic factors are recognized as

potential promoters of metastatic relapse [11, 46, 53]. Upon

sustaining the elementary steps of dissemination, the

circulating tumour cells can colonize a new organ, forming

a detectable metastasis [10, 20].

Experimental models of metastasis yielded distinct sets

of genes that mediated site-specific metastasis in breast
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Fig. 2 The expression levels (log2) of NAT1 among molecular

subtypes (a) and in EMT-activated and EMT-non-activated group (b).
The box plots show that NAT1 expression was higher in Luminal-type

tumours compared to the other molecular subtypes (p 7.2e-20).

NAT1 expression was also found to be higher in the EMT (epithelial

to mesenchymal transition)-activated group (p 5.7e-05)

Table 3 Performance of the

gene expression signatures
Gene expression signatures Bone metastasis

Signature Training dataset Independent dataset

Yes No p Yes No p

102-gene expression signaturea

All

Present 88 22 4.26e-04 146 55 6.92e-05

Absent 20 21 92 83

ER-positive

Present 55 11 0.456 105 34 0.466

Absent 32 10 75 31

ER-negative

Present 13 13 1.000 27 45 0.051

Absent 8 9 31 25

15-gene expression signatureb

All

Present 89 14 9.99e-09 130 30 4.28e-10

Absent 19 29 108 108

ER-positive

Present 69 9 1.99e-03 113 23 2.38e-04

Absent 18 12 67 42

ER-negative

Present 14 6 0.015 42 32 3.83e-03

Absent 7 16 16 38

ER estrogen receptor
a The 102-gene signature by Kang et al
b The 15-gene expression signature developed in this study
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cancer [7, 33, 36, 43]. Kang et al. identified a bone

metastasis signature composed of 102 genes mostly

encoding cell surface and secretory proteins, with functions

including bone marrow homing and extravasation, peri-

cellular proteolysis and invasion, angiogenesis, osteoclas-

togenesis, growth factor regulation and extracellular matrix

alteration [33]. The authors concluded that this gene set

was superimposed on a poor-prognosis gene signature to

provide additional functions in order to achieve an overt

bone-specific metastasis.

Despite these interesting findings from mouse model

system and validation of the results from the mouse models

in human breast cancer, no clinical application or follow-

up research has emerged since these first findings. Here we

present results of the largest study to date on the associa-

tion between gene expression profiling of primary breast

cancer and the development of bone metastases, and the

first study in which supervised classification has been used

to identify a bone metastasis associated gene expression

signature. This gene expression signature was composed of

15 genes, with 3 (NAT1, PH-4 and BBS1) of them being

up-regulated in the primary tumour samples. The overex-

pressed genes in this bone-specific metastasis signature

were associated with metabolic (NAT1) and oxidation–re-

duction (PH-4) processes, and protein transport (BBS1), in

agreement with previous works hypothesizing their

potential role in altering the host tissue environment in

order to achieve a bone metastasis [11, 28, 49, 53].

N-acetyltransferase 1 (NAT1) was first reported to be

associated with enhanced growth and survival of breast

epithelial cells by Adam et al. [1], and later reported to be a

potential biomarker for breast cancer [15, 18, 37, 59, 60].

In several studies, inhibiting NAT1 resulted in cell mor-

phology change, a loss of surface filopodia and subsequent

reduction of invasive potential both in vitro and in vivo

[60]. Likewise, knockdown of this gene led to inhibition of

invasion and metastasis, by means of modification/rear-

rangement of filopodia (intracellular) actin [58, 59]. In

agreement with other gene expression profiling studies in

human cancer samples, here we showed that NAT1 clusters

close to the estrogen receptor with higher expression levels

in luminal-type tumours [1, 5, 56]. Tiang et al. also showed

that the loss of NAT1 resulted in alteration of cell-to-cell

contact and up-regulation of E-cadherin. Based on afore-

mentioned cell-line studies, a possible association between

this gene and EMT/MET has been speculated [58]. Inter-

estingly, in our dataset overexpression of this gene was

significantly correlated to the so-called EMT-activated

group (p = 5.7e-05). To our knowledge, this is the first

study pointing to the association between NAT1 and EMT

in human female breast cancer samples. Along with the

considerations of the potentiality of this gene as a drug

target [57, 58], we believe that further studies in human

breast cancer samples are indicated to explore this link.

The extracellular matrix (ECM) plays important role in

diverse pathological and physiological processes including

cancer invasion and metastasis [22, 32]. Collagens com-

pose the major component of ECM. Increased expression

of collagens, thereupon increase in deposition and stiffen-

ing in ECM, is associated with tumour progression [38,

50]. Collagen prolyl 4-hydroxylase (PH-4), a member of

post-transcription modification enzyme family, is required

in collagen biosynthesis and angiogenesis. Hypoxia-in-

duced collagen prolyl 4-hydroxylase expression is reported

to be associated with increased progression and mortality

in breast cancer [12, 21, 50]. Indeed, animal studies

showed that knockdown of PH-4 resulted in inhibition of

tumour growth and lung metastasis [23, 62]. With gene

expression profiling of breast cancer samples, we have

found that PH-4 was positively correlated with site-specific

metastasis to bone. This finding confirms the observations

by others [22, 32, 38, 50] and advocates for the importance

of extracellular matrix alterations in disease progression.

Twelve out of 15 genes were found to be down-regu-

lated in the primary tumours of breast cancer patients who

developed bone metastasis. One of these genes,

apolipoprotein B mRNA editing enzyme, catalytic

polypeptide-like-3B (APOBEC3B), is reported to be up-

Table 4 Multivariate analyses

results of predictive factors

among the gene datasets

B Wald x2 p Odds ratio 95 % CI

Training dataset

ER status -0.48 0.53 .468 0.620 0.17–2.25

Molecular subtype 0.53 0.07 .793 1.05 0.71–1.57

15-gene signaturea 2.61 16.49 \.000 13.61 3.86–48.03

Independent dataset

ER status 0.25 0.06 .939 1.02 0.54–1.96

Molecular subtype 0.30 10.70 .001 1.36 1.13–1.64

15-gene signaturea 2.62 11.54 .001 2.78 1.54–5.00

ER estrogen receptor, CI confidence interval
a Novel gene expression signature
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regulated in a large proportion of breast tumours and high

levels of APOBEC3B were found to be associated with

worse disease-free and overall survival [8, 9, 51, 54].

Recently, several independent genome-wide association

studies have shown a deletion resulting in complete elim-

ination of the APOBEC3B gene-encoding region [34, 40,

63]. This deletion has been indicated to be associated with

decreased expression of APOBEC3B in breast cancer cells

[34]. In this study, we have also shown that APOBEC3B

was significantly down-regulated in the group of tumours

with bone metastatic disease (p 3.55e-03). We believe that

further copy number variations studies are required to

explore such an association between APOBEC3B deletion

and site-specific metastasis. Six-transmembrane epithelial

antigen of prostate 3 (STEAP3), which is thought be

involved in apoptosis and cell-cycle progression [2, 39,

64], is also found to be down-regulated in the bone meta-

static group of primary breast tumours in our study.

STEAP3 expression is shown to be diminished in hepato-

cellular carcinoma nodules compared to cirrhotic peritu-

moral tissue and healthy liver [13]. Another family member

of these proteins, STEAP1, has already shown to be

overexpressed in breast cancer cells [31, 35, 42]. However,

we could not retrieve any similar data pointing STEAP3

expression levels in breast cancer tissues.

In order to determine the validity of the experimentally

derived 102 gene bone metastasis signature, Kang et al.

have utilized a cohort of 63 primary breast carcinomas to

test this signature. The authors have selected a subset of 50

genes to carry on their validation studies and they have

shown that this gene set was not able to identify the group

of tumours with bone metastasis. When the authors

restricted their analyses to 25 breast tumours with known

metastatic disease, they were able to distinguish the

tumours preferentially metastasized to bone rather than

other distant organs [44]. In this current study along with

new identified 15-gene expression signature, we have

shown that the 102-gene expression signature and the

subset of 50 genes as reported by Kang et al. were infor-

mative in identifying likelihood of developing bone

metastasis in the training and the independent datasets.

However, when datasets subdivided into two groups

according to their ER status, the 102-gene expression sig-

nature as well as the 50-gene signature were not effective

in predicting bone metastasis, whereas herein identified

15-gene expression signature remained associated with the

likelihood of bone metastasis development in ER-positive

and ER-negative tumour groups.

Notably, the bone-specific metastasis signature pre-

sented in this study did not include any of the genes from

already published Kang’s bone signature [33]. The absence

of overlap between these gene sets could be justified with

the fact that in the former study tumour cells from the

metastasis site were utilized to generate gene signatures in

contrast to primary tumours in the current study. Consid-

ering that tumour progression and development of metas-

tasis requires compiled steps of modification, we may

assume that these two different gene signature sets play a

complementary role in separate levels of this multi-com-

plex process.

Notwithstanding several well-received studies focusing

on the biology of metastatic breast cancer, little progress

has been made over the past years to identify a robust

gene expression signature for site-specific metastasis.

Moreover, the experimentally derived gene expression

signatures when tested in human breast carcinomas were

not as strongly associated with site-specific metastasis as

in the experimental conditions. A reproducible gene

expression signature associated with the development of

bone metastases in breast cancer will have clinical utility

in two ways: first, the knowledge of the specific gene

expressed at higher or lower levels in the metastatic dis-

ease will lead to the investigation of targeted therapy

options directed to the altered mechanism related to this

gene, and second, reliable identification of the patients at

high risk of developing bone metastases may lead to

therapeutic interventions specifically aimed at preventing

the development of bone metastases, for example treat-

ment with bisphosphonates.

In summary, we present the largest study to date

revealing the association between the gene expression

profiling patterns and bone-specific metastasis in breast

carcinomas. The identification of novel 15-gene expression

signature will forward this area of research, including

subsequent exploration of the underlying mechanisms of

metastatic behaviour and ultimately help improve outcome

for breast cancer patients.
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