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EPIDEMIOLOGY

Exome sequencing reveals frequent deleterious germline variants
in cancer susceptibility genes in women with invasive breast
cancer undergoing neoadjuvant chemotherapy
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Abstract When sequencing blood and tumor samples to
identify targetable somatic variants for cancer therapy,
clinically relevant germline variants may be uncovered. We
evaluated the prevalence of deleterious germline variants in
cancer susceptibility genes in women with breast cancer
referred for neoadjuvant chemotherapy and returned clini-
cally actionable results to patients. Exome sequencing was
performed on blood samples from women with invasive
breast cancer referred for neoadjuvant chemotherapy.
Germline variants within 142 hereditary cancer susceptibil-
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ity genes were filtered and reviewed for pathogenicity.
Return of results was offered to patients with deleterious
variants in actionable genes if they were not aware of their
result through clinical testing. 124 patients were enrolled
(median age 51) with the following subtypes: triple negative
(n = 43, 347 %), HER2+ (n = 37, 29.8 %), luminal B
(n = 31, 25 %), and luminal A (n = 13, 10.5 %). Twenty-
eight deleterious variants were identified in 26/124 (21.0 %)
patients in the following genes: ATM (n = 3), BLM (n = 1),
BRCAI (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA
(n=1),FANCI(n = 1), FANCL (n = 1), FANCM (n = 1),
FH (n=1), MLH3 (n = 1), MUTYH (n = 2), PALB2
(n=1), and WRN (n=1). 121/124 (97.6 %) patients
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consented to return of research results. Thirteen (10.5 %)
had actionable variants, including four that were returned to
patients and led to changes in medical management. Dele-
terious variants in cancer susceptibility genes are highly
prevalent in patients with invasive breast cancer referred for
neoadjuvant chemotherapy undergoing exome sequencing.
Detection of these variants impacts medical management.

Keywords Breast cancer - Neoadjuvant chemotherapy -
High-risk breast cancer - Return of results - Exome
sequencing - Germline mutation/pathogenic germline
variant

Introduction

Advances in genomic sequencing have resulted in oppor-
tunities to individualize patient care. The advent of next-
generation sequencing has allowed for interrogation of the
genome at a significantly reduced cost and may provide the
opportunity for some cancer patients to pursue genome-
guided therapy by identifying targetable somatic variants
[18]. In order to determine which variants are unique to the
tumor, germline sequence variants are subtracted from the
tumor sequence [16]. Through this process, clinically
important germline variants may be uncovered [3].
Although these variants are often labeled “incidental
findings,” research has demonstrated that the identification
of deleterious variants causative of hereditary cancer syn-
dromes should be anticipated in individuals undergoing
next-generation sequencing tests [2, 5, 7, 10]. The identi-
fication of such variants can have a significant impact on
the clinical management of a patient, including prophy-
lactic surgeries, surveillance protocols, tailored screening,
or change in therapy (e.g., chemoprevention).

The Breast Cancer Genome-Guided Therapy Study
(BEAUTY) is a clinical study for patients with newly diag-
nosed breast cancer referred for neoadjuvant chemotherapy.
The primary goal of BEAUTY is to identify novel somatic
mutations associated with response to neoadjuvant
chemotherapy. An additional goal of the study, which is
presented here, is to determine the prevalence of deleterious
germline variants in cancer susceptibility genes in these
patients. Additionally, we assessed whether patients would
desire to receive their germline research results and devel-
oped a procedure for return of clinically actionable results.

Methods
Participant eligibility and accrual

Patients were enrolled in BEAUTY (NCT02022202) from
March 5, 2012, to May 1, 2014. Inclusion criteria were
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patients age >18 years with newly diagnosed stage I-III
breast cancer who were recommended for NAC.

Sample preparation, whole exome sequencing,
and bioinformatics analyses

Methodology is described in the Online Resources.
Gene selection

A list of 142 genes associated with hereditary cancers
(Online Resources, Table I) was developed by reviewing
clinically available hereditary cancer gene panels, the
Concise Handbook of Familial Cancer Susceptibility Syn-
dromes, Online Mendelian Inheritance in Man (OMIM),
and published literature [15, 17, 24]. Genes were divided
into two tiers for analysis; tier one included genes associ-
ated with hereditary breast cancer while tier two included
genes associated with other hereditary cancers.

Variant filtering and classification

Germline variants were filtered to identify missense, non-
sense, frameshift, and splice-site variants within 142
hereditary cancer susceptibility genes. We also filtered for
all intronic variants captured by exome sequencing in this
list of genes that were previously reported as deleterious or
pathogenic in the Human Gene Mutation Database
(HGMD) or ClinVar [13, 25]. Variants were classified by a
Certified Genetic Counselor according to the 2007 Amer-
ican College of Medical Genetics (ACMG) recommenda-
tions as either deleterious (category 1), likely deleterious
(category 2), variant of uncertain significance (category 3),
likely benign (category 4), or benign (category 5) [21].
Variant classification was determined based on reported
minor allele frequencies from the Exome Variant Server,
1000 Genomes, and dbSNP; predicted protein impact; in
silico models; review of databases such as HGMD, Clin-
Var, and locus specific databases; and review of published
literature [1, 8, 13, 22, 25, 26].

After classifying variants from the first 91 patients, fil-
tering strategies were designed that reduced the total number
of variants for review. In the remaining patients, all tier two
variants were filtered to include only those with a minor
allele frequency of less than one percent that were either
classified as a “disease causing mutation” in HGMD or
predicted to be protein truncating [25]. Tier one variants
were not filtered in this manner given our desire to maximize
sensitivity and the greater likelihood of identifying clinically
actionable variants in breast cancer-associated genes.

As an internal validation, we randomly selected
approximately 10 % of all variants, making sure to sample
all deleterious and likely deleterious variants (hereafter,
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collectively termed deleterious). These variants were then
independently classified by a second Certified Genetic
Counselor. In scenarios where variant classifications were
discrepant between the reviewers, the reviewers met to
discuss the discrepancy and to reach a consensus about the
final classification.

Return of results

Patients were invited to consent to the return of germline
research results. Patients who consented to the return of
results were informed that they would be contacted by a
genetic counselor if a clinically actionable deleterious
result that the patient was unaware of was identified. After
identification of a clinically actionable deleterious variant,
a study coordinator contacted eligible patients by telephone
to offer an appointment with a genetic counselor. Risks,
benefits, and limitations of receiving results were discussed
during the genetic counseling appointment. If the patient
was interested in receiving results, a second appointment
was scheduled for results disclosure. Appointments
occurred in-person or by telephone. It was highly recom-
mended that patients proceed with confirmatory testing in a
Clinical Laboratory Improvement Amendments (CLIA)-
certified laboratory prior to making any medical manage-
ment decisions based on the research results.

From the list of 142 cancer susceptibility genes (Online
Resources, Table 1), a subset of 39 genes were chosen for
inclusion in the return of results protocol as they were
determined to be “clinically actionable” based upon having
existing medical management guidelines (National Com-
prehensive Cancer Network or other guidelines in published
literature available on PubMed). Return of results was not
performed for childhood-onset conditions, autosomal
recessive conditions (as it was not possible to determine
whether two variants identified within a gene were in cis or in
trans), or carrier status for autosomal recessive conditions.

Ethics

This study was approved by the Mayo Clinic Institutional
Review Board. All patients were required to provide
written informed consent before participation, and patients

were consented to the use of blood and tumor samples for
whole exome sequencing as well as return of results

Results
Patient characteristics

The patient and disease characteristics are provided in
Table 1. The median age was 51 (range 21-73) and most

women had high-risk disease based upon the clinical
T-stage [median tumor size 5 cm (1.1-9.9)], nodal status
(56.4 % node positive), and clinical molecular subtype
[89.5 % with luminal B, HER2+, or triple negative breast
cancer (TNBC)].

Clinical genetic test results

Review of medical records showed that of the 124 patients
enrolled, 81 (65.3 %) discussed the option of genetic
testing with a clinical provider independent of the study,
and 66/81 (81.5 %) underwent clinical genetic testing,
including: single site BRCAI (n = 2), BRCAI/BRCA2
sequencing (n = 7), BRCAI/BRCA2 sequencing and dele-
tion/duplication analysis (n = 45), BRCAI/BRCA2 and
TP53 sequencing and deletion/duplication analysis
(n = 2), a hereditary breast cancer panel (n =9), and
immunohistochemistry screening for Lynch syndrome
(n = 1) (Online Resources, Table II). Nine patients tested
positive for deleterious germline variants, including four in
BRCAI and five in BRCA2.

Whole exome sequencing, variant filtering,
and variant classification

After filtering for missense, nonsense, frameshift, splice-
site, and previously reported deleterious/pathogenic intro-
nic variants, 694 unique variants (observed 8214 times)
were identified in 111 (78.2 %) of the 142 hereditary
cancer susceptibility genes examined. Twenty-eight vari-
ants were classified as deleterious or likely deleterious, and
were present in 26 of the 124 (21.0 %) patients in the
following genes: ATM (n = 3), BLM (n = 1), BRCAI
(n=4), BRCA2 (n=8), CHEK2 (n=2), FANCA
(n=1), FANCI (n=1), FANCL (n=1), FANCM
(m=1), FH (n=1), MLH3 (n=1), MUTYH (n = 2),
PALB2 (n = 1), and WRN (n = 1) (Table 2). Twenty-four
of the 124 (19.4 %) patients had one deleterious variant
while two patients (1.6 %) had two deleterious variants.

For the internal validation of variant classification, 81
variants were selected, independently reviewed, and classi-
fied by a second Certified Genetic Counselor. Twelve
(14.8 %) were discrepant between the reviewers, including
five deleterious versus likely deleterious, three likely dele-
terious versus uncertain significance, three uncertain sig-
nificance versus likely benign, and one likely benign versus
benign. The reviewers met to discuss the discrepancies and a
consensus classification was reached for all variants.

All nine deleterious variants detected clinically in a
CLIA-certified laboratory (four in BRCAI and five in
BRCA2) were identified by our research study procedures.
Classification of these nine variants was concordant in
seven cases; two BRCA?2 variants that were classified as
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Table 1 Patient characteristics

according to the presence (yes/ No (V = 98) Yes (V = 26) Total (V= 124)
no) of a deleteriO}ls or likely Age group
deleterious mutation
<30 1 (1.0 %) 1 (3.8 %) 2 (1.6 %)
30-39 17 (17.3 %) 4 (154 %) 21 (16.9 %)
4049 27 (27.6 %) 7 (26.9 %) 34 (27.4 %)
50-59 27 (27.6 %) 10 (38.5 %) 37 (29.8 %)
60-69 19 (19.4 %) 3 (11.5 %) 22 (17.7 %)
70+ 7 (7.1 %) 1 (3.8 %) 8 (6.5 %)
Race
White 86 (87.8 %) 24 (92.3 %) 110 (88.7 %)
Black or African American 5 (5.1 %) 2 (7.7 %) 7 (5.6 %)
Asian 3 (3.1 %) 0 (0.0 %) 324 %)
American Indian or Alaska Native 1 (1.0 %) 0 (0.0 %) 1 (0.8 %)
Unknown: patient unsure 3 (3.1 %) 0 (0.0 %) 3 (24 %)
Clinical molecular subtype
Luminal A 9 (9.2 %) 2 (1.7 %) 11 (8.9 %)
Luminal B 23 (23.5 %) 8 (30.8 %) 31 (25.0 %)
Luminal Unknown 1 (1.0 %) 1 (3.8 %) 2 (1.6 %)
ER+/HER2+ 17 (17.3 %) 0 (0.0 %) 17 (13.7 %)
ER—/HER2+ 16 (16.3 %) 4 (154 %) 20 (16.1 %)
Triple negative 32 (32.7 %) 11 (42.3 %) 43 (34.7 %)
Clinical T-stage
T1 10 (10.2 %) 2 (7.7 %) 12 (9.7 %)
T2 41 (41.8 %) 11 (42.3 %) 52 (41.9 %)
T3 44 (44.9 %) 12 (46.2 %) 56 (45.2 %)
T4 3 (3.1 %) 1 (3.8 %) 4 (3.2 %)
Clinical N-stage
NO 43 (43.9 %) 11 (42.3 %) 54 (43.5 %)
N1 49 (50.0 %) 14 (53.8 %) 63 (50.8 %)
N2 3 (3.1 %) 1 (3.8 %) 4 (3.2 %)
N3 3 (3.1 %) 0 (0.0 %) 324 %)

pathogenic/deleterious by the clinical laboratory were
classified as likely deleterious in our study. Four additional
deleterious variants in BRCA2 and FH were detected in our
study that had not been tested for clinically.

162 unique variants of uncertain significance (VUS)
were found in 57/142 (40.1 %) genes examined among
103/124 (83.1 %) patients. The number of VUS per patient
ranged from O to 6 (median 2.0). The number of unique
VUS per gene (excluding genes containing no variants)
ranged from O to 21 (median 2.0), with ATM containing the
highest number (21 unique VUS).

No large deletions or duplications were observed.

Tumor characteristics in patients with deleterious
variants

The approximated clinical subtypes among the 26 patients

with one or more deleterious variants included 11 (42.3 %)
TNBCs, four (15.4 %) HER2+, two (7.7 %) luminal A,
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eight (30.8 %) luminal B, and one (3.8 %) luminal
unknown breast cancer (Table 1). In contrast, the clinical
subtypes among the 98 patients without a deleterious
variant included 32 (32.7 %) TNBCs, 33 (33.6 %)
HER2+, nine (9.2 %) luminal A, 23 (23.5 %) luminal B,
and one (1.0 %) luminal unknown breast cancer.

Return of results

Nearly all of the patients (121/124; 97.6 %) consented to
the return of germline research results. Thirteen patients
were found to carry a deleterious variant in a cancer sus-
ceptibility gene that met the criteria for return of test results
(Table 2). Four of these 13 were not already aware of their
mutation through clinical testing. Their mutations included
one likely deleterious BRCA2 variant, two deleterious
BRCA?2 variants, and a likely deleterious FH (Fumarate
hydratase, causative of Hereditary Leiomyomatosis and
Renal Cell Cancer) variant. The presence of each of these
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four variants was subsequently confirmed in a CLIA-cer-
tified laboratory.

Frequency of deleterious variants in databases

Of the 28 unique deleterious variants, 16 were classified as
“DM” (disease causing mutation) in HGMD and as
pathogenic in ClinVar. Two variants were classified as DM
in HGMD but were not reported in ClinVar, and two were
classified as pathogenic in ClinVar but were not reported in
HGMD. One variant was classified as pathogenic in Clin-
Var and as a “disease-associated polymorphism with
additional supporting functional evidence” in HGMD. One
variant was classified as “DM?” (likely disease causing but
with questionable pathogenicity) in HGMD and not
reported in ClinVar. All of the remaining six deleterious
variants that were not reported in either of the databases
were predicted to be protein truncating (nonsense, frame-
shift, or splice-site variants). The deleterious variants
absent from ClinVar will be submitted for inclusion.

Discussion

In a prospective study of women with invasive breast
cancer recommended to undergo NAC, deleterious germ-
line variants in cancer susceptibility genes were highly
prevalent and identified in 26 of 124 (21.0 %) patients.
These variants were identified in a number of breast cancer
susceptibility genes, including ATM, BRCAI, BRCA2,
CHEK?2, and PALB?2. Furthermore, we identified variants in
a variety of other cancer susceptibility genes including
BLM, FANCA, FANCI, FANCL, FANCM, FH, MLH3,
MUTYH, and WRN. Although the latter variants have not
been classically associated with breast cancer, evidence
implicates a potential role for several of these genes in the
pathogenesis of breast cancer including BLM [6, 19, 27],
FANCA [23], FANCM [9], FH [14], MLH3 [4], MUTYH
[20], and WRN [28].

Thirteen patients were found to carry deleterious vari-
ants in actionable genes (Table 2). While the majority of
patients with actionable variants were already aware of
their result through clinical testing, we identified four
patients with deleterious/likely deleterious variants who
were not aware of their results, including three in BRCA2
and one in FH. All four variants were confirmed by CLIA-
certified laboratories. For these patients, the medical
management plans changed significantly including plans
for a prophylactic bilateral salpingo-oophorectomy (BSO)
in two BRCA2-positive patients, a prophylactic contralat-
eral mastectomy and BSO in one BRCA2-positive patient,
and renal cell carcinoma surveillance and enrollment in a
national Hereditary Leiomyomatosis and Renal Cell

Cancer (HLRCC) study in the patient with an FH variant.
While guidelines do not currently recommend a specific
type of chemotherapy based on the presence or absence of
deleterious germline variants, evidence suggests that
tumors that arise in patients with deleterious germline
BRCAI/BRCA?2 variants may exhibit increased sensitivity
to anthracyclines, platinum, and PARP inhibitors, and
resistance to taxanes [11].

Our definition of actionable results was limited to
deleterious and likely deleterious variants in genes with
existing medical management guidelines. Several genes
excluded from our return of results procedure may become
actionable in the future as new guidelines are developed. If
we used the definition of “potentially actionable” adopted
by Kurian et al., which includes genes with a published
association of two-fold or greater relative risk of breast
cancer, the number of patients with variants in genes
meeting criteria for return of results would increase from
13 (9.7 %) to 21 (16.9 %) [12]. The cancer risks associated
with deleterious variants in these low—moderate penetrance
genes are poorly defined, and it remains unclear whether
additional surveillance or surgical management is war-
ranted as the risk of contralateral breast cancer and other
cancers is not well established. Thus, the clinical utility of
returning such results to patients is uncertain.

The prevalence of deleterious germline variants identi-
fied and their potential clinical importance suggests that
similar studies seeking to identify somatic variants for
targeted cancer treatments should also prioritize the anal-
ysis of germline data. Classification of germline variants
undoubtedly takes significant time and effort. When we
tested filtering methods for tier one variants after the
enrollment of 91 patients, filtering variants to include only
those with a minor allele frequency of less than 1 % that
were either categorized as DM in HGMD or predicted to be
protein truncating reduced the number of unique variants
for review from 198 to 30, while capturing all deleterious
variants. If the proposed filtering strategy had been used for
all tier one and tier two variants for all 124 patients, the
number of unique variants for review would have been
reduced from 694 to 90, while capturing 27 of 28 delete-
rious variants—CHEK?2 c.470T>C (p.I157T) would have
been missed as it is a missense variant that is listed as a
“disease-associated polymorphism with additional sup-
porting functional evidence,” not DM, in HGMD. Dewey
et al. recently reported that manual variant classification
required a median of 54 min (range 5-223) per genetic
variant [5]. Thus, we estimate that implementing these
filters would have resulted in a time savings of approxi-
mately 544 h (almost 14 full work weeks), although sen-
sitivity would have been reduced by excluding missense
mutations that are not reported as DM in HGMD. ClinVar
classification was not tested in our filtering techniques as
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the first full public release was not available at the time of
study initiation, but was reviewed retrospectively. HGMD
and ClinVar had nearly equal sensitivity, as 18/28 delete-
rious variants were classified as DM in HGMD and 19/28
deleterious variants were classified as pathogenic in Clin-
Var. Our data suggest that future studies could consider
implementing germline analysis and return of results pro-
cedures using minor allele frequency, predicted protein
impact, and inclusion in either HGMD or ClinVar as filters.

Limitations

This study has several limitations. CLIA-certified labora-
tory confirmation was not performed for all deleterious
variants identified, and thus, for the non-clinically action-
able variants, false positives may exist. It is possible that
deleterious variants could have been missed after filtering
strategies were implemented for tier two variants for the
final 33 patients. Intronic, promoter, or other rare variants
may have been missed given the limitations of whole
exome sequencing. A large number of variants were clas-
sified as VUS, highlighting the current state of genomics
knowledge and the difficulty of determining pathogenic-
ity of variants. As demonstrated in previous studies, the
burden of VUS generated by next-generation sequencing is
a significant issue [2, 10, 12]. Because the median age of
patients with breast cancer enrolled in our study was
younger than the general population (51 vs. 61 years), the
prevalence of deleterious variants is likely not generaliz-
able to older breast cancer cohorts with low-risk tumor
biology.

Conclusion

Deleterious germline variants in a variety of cancer sus-
ceptibility genes are frequent in breast cancer patients
with high-risk tumor biology who were referred for
neoadjuvant chemotherapy and their detection impacts
medical management. Studies that seek to identify
somatic variants using genomic sequencing technologies
should also seek to identify actionable deleterious germ-
line variants and return results to patients given the
potential clinical implications.
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