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Abstract With great interest, we read the recent article

entitled ‘‘Association between BRIP1 (BACH1) polymor-

phisms and breast cancer risk: a meta-analysis’’ published

online in Pabalan et al. (Breast Cancer Res Treat

137:553–558, 2013). This article suggests that overall

summary estimates imply no associations but suggest

susceptibility among carriers of the C47G polymorphism

and Pro-Ser genotype in premenopausal women. The result

is encouraging. Nevertheless, several key issues in this

meta-analysis are worth noticing.
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Recently, we read with great interest the article entitled

‘‘Association between BRIP1 (BACH1) polymorphisms

and breast cancer risk: a meta-analysis’’ published online in

Breast Cancer Res Treat, 2013, 137: 553–558 [1]. Pabalan

et al. conducted a meta-analysis to examine the association

between the Pro919Ser polymorphisms in the BRCA1 in-

teracting protein 1 (BRIP1) gene and breast cancer risk on

the basis of eight case–control studies with 5122 cases and

5735 controls. They also studied the risk associated with

the two additional BRIP1 C47G and G64A polymorphisms

and breast cancer risk on the basis of 1539 cases and 1183

controls, and 667 cases and 782 controls, respectively. The

authors found that the association was lacking between the

Pro919Ser polymorphisms and breast cancer risk in overall

analysis [odds ratio (OR) 0.98–1.02], materially unchanged

when confined to subjects of European ancestry (OR

0.96–1.03) or even in the high-powered studies (OR

0.97–1.03). In the menopausal subgroups, premenopausal

women followed the null pattern (OR 0.94–0.98) for the

Pro and Ser allele contrasts, but not for the Pro-Ser

genotype comparison where significant increased risk was

observed (OR 1.39, P = 0.002). The G64A polymorphism

effects were essentially null (OR 0.90–0.98), but C47G was

found to confer nonsignificantly increased risk under all

genetic models (OR 1.27–1.40). It is an interesting study.

Nevertheless, careful examinations of the data provided

by Pabalan et al. [1] (shown in Table 1 in their original

text) reveal four key issues that are worth noticing. Firstly,

the data reported by Pabalan et al. [1] for the study of

Rutter et al. [2] did not seem in line with the data provided

by Rutter et al. [2] in their original publication. The

numbers reported by Rutter et al. for cases and controls, are

58 and 30, respectively [2]. Interestingly enough, after

carefully examining the data reported by Pabalan et al. [1],

the numbers are 116 in cases and 60 in controls, respec-

tively. Secondly, Rutter et al. [2] also reported the asso-

ciation of BRIP1 G64A polymorphisms with breast cancer

risk. But the data were not included in Pabalan et al’s study

[1]. Thirdly, one eligible paper [3] focusing on the asso-

ciation of BRIP1 G64A polymorphisms with breast cancer

risk was not included in Pabalan et al’s study [1]. Fourthly,

one eligible paper [4] focusing on the association of BRIP1

Pro919Ser polymorphisms with breast cancer risk was not

included in Pabalan et al’s study [1]. Therefore, the con-

clusions by Pabalan et al. [1] are not entirely reliable. It is

required to clarify the association between BRIP1 poly-

morphisms and the risk of breast cancer comprehensively
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and objectively. We re-evaluated this association by per-

forming an updated meta-analysis on the basis of a total of

ten studies with 6491 cases and 7181 controls for

Pro919Ser, three studies with 1481 cases and 1154 controls

for C47G and five studies with 3214 cases and 3381 con-

trols for G64A. Further subgroup analysis was also con-

ducted in this study stratified by source of control and

ethnicity. In addition, cumulative meta-analysis was per-

formed to investigate the tendency of results by accumu-

lating single study year by year, which could be used to

determine whether new relevant studies are needed or not.

We believe that our results will provide objective and

comprehensive evidence for the association between

BRIP1 polymorphisms and breast cancer risk.

Table 1 listed the general information of selected studies

in this meta-analysis. Table 2 listed the summary odds

ratios of the association between BRIP1 polymorphisms

and breast cancer risk. Overall, we did not observe sig-

nificant association between BRIP1 Pro919Ser polymor-

phisms and breast cancer risk under the genetic model of

Ser-allele versus Pro-allele (OR = 0.99, 95 % CI

0.97–1.01) (Fig. 1a). We did not observe the association of

BRIP1 C47G polymorphisms with breast cancer risk under

the genetic model of G-allele versus C-allele (OR = 1.02,

95 % CI 0.99–1.05) (Fig. 1b). We also did not observe the

association of BRIP1 G64A polymorphisms with breast

cancer risk under the genetic model of A-allele versus G-

allele (OR = 0.99, 95 % CI 0.97–1.02) (Fig. 1c). The

Table 1 Characteristics of the included studies associating BRIP1 polymorphisms in breast cancer

First author Year Country Source of control Pro919Ser C47G G64A P value of HWEa

Cases Controls Cases Controls Cases Controls

Loizidou [4] 2009 Cyprus PB 1108 1170 0.24

Rutter [2] 2003 USA PB 58 30 58 29 58 30 0.88

Garcia-closas [5] 2006 USA PB 1596 1254 1327 1056 0.27

Guenard [6] 2008 Canada PB 96 70 96 69 96 70 0.69

Seal [7] 2006 USA and Poland PB 1212 2081 0.34

Vahteristo [8] 2006 Finland PB 866 731 0.32

Frank [9] 2007 Germany PB 571 712 571 712 0.37

Silvestri [10] 2011 Italy PB 97 203 0.85

Song [3] 2007 England PB 2170 2264

Huo [11] 2009 China PB 568 624 0.36

Ren [12] 2013 China HB 319 306 319 305 0.61

PB population-based control, HB hospital-based control, HWE Hardy–Weinberg equilibrium
a Based on the number of controls in the Pro919Ser polymorphism

Table 2 Summary effects of BRIP1 polymorphisms in breast cancer

Genetic model Cases/controls Heterogeneity test Summary OR (95 % CI) Hypothesis test df Begg’s test Egger’s test

Q P z P z P t P

Pro919Ser: Ser-allele versus Pro-allele

Overall 6491/7181 5.00 0.834 0.99 (0.97–1.01) 0.89 0.372 9 2.15 0.032 1.93 0.090

Stratified by ethnicity

European only 5604/6251 1.70 0.974 0.99 (0.97–1.02) 0.45 0.651 7 1.36 0.174 1.73 0.135

Stratified by source of control

Population-based control 6172/6875 1.70 0.989 1.00 (0.98–1.02) 0.49 0.628 8 1.56 0.118 1.85 0.108

C47G: G-allele versus C-allele

Overall 1481/1154 4.08 0.130 1.02 (0.99–1.05) 1.12 0.261 2 1.04 0.296 2.31 0.260

G64A: A-allele versus G-allele

Overall 3214/3381 4.68 0.322 0.99 (0.97–1.02) 0.35 0.724 4 0.24 1.000 0.55 0.619

OR odds ratio, CI confidence interval
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cumulative meta-analysis accumulated the studies in ac-

cordance with the year of publications and the results

showed that there was still no significant association be-

tween BRIP1 polymorphisms and breast cancer risk under

allele models, the cumulative ORs were 0.99 with 95 % CI

0.93–1.03 for Pro919Ser, 1.07 with 95 % CI 0.95–1.22 for

C47G and 0.99 with 95 % CI 0.92–1.06 for G64A, re-

spectively (Fig. 2a, b, c). In subgroup analysis by source of

control, we did not observe a significant association be-

tween BRIP1 Pro919Ser polymorphisms and breast cancer

under the allele model of Ser-allele versus Pro-allele on the

basis of population-based controls (OR = 1.00, 95 % CI

0.98–1.02) (Table 2). We did not observe any association

between BRIP1 Pro919Ser polymorphisms and breast
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Fig. 1 Forest plots for the odds ratio of the association between

BRIP1 polymorphisms and breast cancer risk (a Ser-allele vs. Pro-

allele of Pro919Ser; b G-allele vs. C-allele of C47G; c A-allele vs. G-

allele of G64A)
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Fig. 2 Cumulative meta-analysis for the association between BRIP1

polymorphisms and breast cancer risk (a Ser-allele vs. Pro-allele of

Pro919Ser; b G-allele vs. C-allele of C47G; c A-allele vs. G-allele of

G64A)
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cancer risk among Europeans when stratified by ethnicity

(Table 2).

The shape of funnel plots seemed to be approximately

symmetrical among total population (Fig. 3a, b, c). Egger’s

test and Begg’s test suggested that there was no obvious

publication bias in this meta-analysis excerpt in the model

of Ser-allele versus Pro-allele (Table 2). To evaluate the

stability of the results of this current meta-analysis, a

sensitivity analysis was conducted through sequentially

removing each individual study. The sensitivity analysis

showed that our results were robust and were not influ-

enced by any single study (Fig. 4a, b, c).
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Fig. 3 Funnel plots for the association between BRIP1 polymor-

phisms and breast cancer risk (a Ser-allele vs. Pro-allele of

Pro919Ser; b G-allele vs. C-allele of C47G; c A-allele vs. G-allele

of G64A)
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Fig. 4 Sensitivity analysis for the association between BRIP1

polymorphisms and breast cancer risk (a Ser-allele vs. Pro-allele of

Pro919Ser; b G-allele vs. C-allele of C47G; c A-allele vs. G-allele of

G64A)
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In conclusion, the results of the study by Pabalan et al.

[1] should be explained with caution. To reach a definitive

conclusion, well-designed studies with large sample size

are required to verify the association between BRIP1

polymorphisms and breast cancer risk. We hope that this

remark will contribute to more accurate elaboration and

substantiation of the results presented by Pabalan et al. [1].
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