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Abstract Genomic instability at microsatellite loci is a

hallmark of many cancers, including breast cancer. How-

ever, much of the genomic variation and many of the

hereditary components responsible for breast cancer

remain undetected. We hypothesized that variation at

microsatellites could provide additional genomic markers

for breast cancer risk assessment. A total of 1,345 germline

and tumor DNA samples from individuals diagnosed with

breast cancer, exome sequenced as part of The Cancer

Genome Atlas, were analyzed for microsatellite variation.

The comparison group for our analysis, representing heal-

thy individuals, consisted of 249 females which were ex-

ome sequenced as part of the 1,000 Genomes Project. We

applied our microsatellite-based genotyping pipeline to

identify 55 microsatellite loci that can distinguish between

the germline of individuals diagnosed with breast cancer

and healthy individuals with a sensitivity of 88.4 % and a

specificity of 77.1 %. Further, we identified additional

microsatellite loci that are potentially useful for distin-

guishing between breast cancer subtypes, revealing a pos-

sible fifth subtype. These findings are of clinical interest as

possible risk diagnostics and reveal genes that may be of

potential therapeutic value, including genes previously not

associated with breast cancer.
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Introduction

The American Cancer Society predicts 232,340 new cases

of invasive breast carcinoma (BC) will be diagnosed in

2013 and females have 1 in 8 chance of developing this

cancer within their lifetime. An individual’s predisposi-

tion, prognosis, and response to therapy of complex dis-

eases such as cancer are mediated to varying degrees by

their genomic makeup. Breast cancers have significant

known inherited or spontaneous components. However,

the accumulated knowledge from extensive studies, many

of which have focused on single nucleotide polymor-

phisms (SNPs), explains less than half of heritable

components to date. For example, several dozen variants

in the well-studied BRCA1 and BRCA2 genes account

for only 5 and 10 % of inherited BC susceptibility,

respectively [1–6], and the recent iCOS studies empha-

size that there is still a discrepancy between the known

BC susceptibility loci and the expected heritable com-

ponent of BC [7–9]. There is sustained debate between

those who believe the missing disease contributions will

be explained by rare variants with a large effect or

common variants with small effects. However, the truth is

probably somewhere in between as it is difficult to

explain by large SNP-based Genome Wide Association

Studies alone. We hypothesize that much of these sig-

nificant missing genetic components may be explained by

variation in parts of the genome, which have not been

explored previously, namely, microsatellite or repetitive

DNA loci, notably referred to as ‘‘Junk DNA’’ or more

recently ‘‘Dark Matter’’ [10]. Cancer is highly responsive
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to treatment when diagnosed early; therefore, there is a

significant advantage to identifying additional informa-

tive, actionable markers that may account for some of the

differences between the estimated heritability and the

portion of risk that can be explained by known genetic

polymorphisms.

Microsatellites are repetitive DNA regions that occur

throughout the genome, and variations within microsatel-

lites can affect cellular function through mechanisms

including promoting alternative splicing [11], altering

protein sequence [12], and affecting gene regulation [13,

14]. Several previous studies on microsatellite variation

and its implied instability in cancer focus on variation

found between the tumor and somatic genomes of an

individual at five mononucleotide ‘‘Bethesda’’ markers

[15], which capture a small fraction of variation from the

*1 million microsatellite loci [16]. While variation within

the larger set of loci has been generally understudied, two

recent technological advances have enabled us to thor-

oughly characterize microsatellite variation genome-wide:

(1) The public release of single-strand, high-throughput

next-generation sequence data [17–19]; and (2) The

development of algorithms and analytic approaches that

enable accurate genotype determination at numerous

microsatellite loci [20, 21].

Materials and methods

The genotypes of microsatellite loci found within 249

ethnically matched healthy female germlines, 656 BC

germline exomes, 689 BC tumors (656 matched to the

germline samples), and 212 healthy male germlines from

exome sequences available through the 1000 Genomes

Project (disease-free females and males) or TCGA (BC

patients) were computed individually from re-assemblies

as described in our previous publications with microsatel-

lite calling accuracy being estimated to be between 94.4

and 96.5 % [20, 21]. We restricted our analysis to those

49,297 microsatellite loci that were genotyped with suffi-

cient coverage (159) in at least 10 exomes from both the

healthy and BC populations, and compared the genotype

distribution at each locus for the population. Benjamini–

Hochberg False Discovery Rate (FDR) test was applied to

the datasets to identify informative loci that distinguish

breast cancer from healthy genomes. The sensitivity and

specificity of the combined 55 loci to differentiate breast

cancer genomes from the healthy genomes were computed

using the receiver-operating characteristic (ROC). The

genotypes at these loci created a profile used as a risk

assessment tool for classifying independent sets of the

healthy or BC exomes. Detailed methods are available in

the supplemental information.

Results

Many studies attempt to link the presence or absence of

specific mutations to a disease state. This has been a suc-

cessful strategy for discovering disease-associated genes;

however, complex disease states are frequently due to

additive effects from multiple common variants, as seen, for

example, in the multiple SNPs associated with telomere

maintenance and BC risk [22]. To uncover this type of

interaction, we must employ a methodology that examines

the frequency at which alleles are seen across multiple loci in

an affected population. However, focusing solely on the

frequency at which an allele is represented may result in

missing a significant shift in the frequency at which an allele

is heterozygous. Therefore, we have performed our analysis

on the frequency of genotypes within the examined popu-

lations, using an algorithm for genotyping microsatellite loci

that we previously designed [20, 21]. We employed this

methodology to determine the genotype of all microsatellite

loci in exome sequences from the healthy females from the

1000 Genomes Project [18] and in 656 germline exomes

from BC patients sequenced as part of TCGA [19] (Suppl.

Fig. 1). Comparison of the healthy females from different

ethnic backgrounds revealed that variation at some micro-

satellite loci was correlated with ethnicity. Therefore, we

selected 249 individuals of which 87.5 % were of European

Ancestry to represent the healthy population (1kGP-EUF)

because the microsatellite profile of the BC germline sam-

ples was the closest to these exomes (Suppl. Fig. 2), and we

did not have information on the ancestry of the BC germline

samples at this time.

For each microsatellite locus, the most frequent geno-

type in the 1kGP-EUF population was identified as the

modal genotype and the frequency of alternative genotypes

present within both populations was calculated. On aver-

age, 29,809 ± 4,688 and 34,849 ± 4,371 microsatellite

loci were genotyped per 1kGP-EUF and BC germline

sample, with 283 ± 134 and 426 ± 124 nonmodal geno-

types, respectively (Suppl. Table 1). We identified 55 loci

that each individually showed a statistically significant

difference in genotype distribution between 1kGP-EUF and

BC germline (two-sided Fisher’s p with adjusted p value

B0.01 by Benjamini–Hochberg to reduce FDR). A com-

parison of females from the 1kGP randomly divided into

two subgroups did not identify any significant loci using

this FDR cut-off, showing that normal variations at loci in

two similar populations are not significant using our

methods. Figure 1 shows how the genotype distributions

for the healthy and cancer populations differ for a sample

of the 55 loci, including both those at which there were

more nonmodal genotypes present in the healthy popula-

tion and those at which there were more nonmodal geno-

types in the BC population. The genotypes for the BC and
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1kGP-EUF exomes can be visualized in Fig. 2, where any

genotype that matched the modal genotype identified in the

1kGP-EUF exomes is coded in gray and all nonmodal

genotypes are red. 25.1 ± 13.1 and 31.3 ± 9.4 % of the 55

loci were genotyped in the 1kGP-EUF and BC germline

exomes, respectively, which is not surprising given that we

use very stringent conditions for coverage and alignment,

and because Lander–Waterman distributions in random

fragment sequencing limits the number of callable loci in

each sample [23]. Notably, for the 1kGP-EUF population,

the modal genotype at 24 % of the 55 loci is heterozygous,

whereas the modal genotype for 36.4 % of the 55 loci in

the BC germline exomes is heterozygous. This confirms

that we are able to identify loci where the modal genotype

is different between the BC and healthy populations. This

is important because we are not identifying novel/rare

alleles but noting that individuals with BC are more fre-

quently heterozygotic at these loci. Analysis of the geno-

type distributions at the 55 loci revealed that 80 % (44/55)

of the loci are in Hardy–Weinberg equilibrium in the

1kGP-EUF samples, while only 40 % (22/55) are in

Hardy–Weinberg equilibrium for the BC germline (Suppl.

Table 2), raising the possibility that there is a reduction in

selective pressure in BC germline genomes that may result

in the increased susceptibility to BC.

Thirty-two of the genes associated with the 55 microsat-

ellite loci have previously been associated with cancer, and

18 are specifically linked to BC (Table 1). 49 of the same loci

are located in introns, of which 24 are within 50 nt of an

exon/intron boundary; three additional loci are intergenic.

Notably, four are in the 30UTRs of PIAS2, WWC3, MT1X,

and TBP, and one is exonic (a CAG repeat in FAM157A; see

Suppl. Fig. 3 for detailed analysis of this variant).

The genotypic differences at these 55 loci appear to

have two effects on the likelihood of BC. At 30 of the 55

loci, the presence of a nonmodal genotype is potentially

protective against BC (relative risk of \0.6; Suppl.

Table 2), whereas at 25 of the loci, a nonmodal genotype

appears to promote BC (relative risk[1.3). Gene ontology

enrichment analysis showed that genes involved in notch

Fig. 1 Individual microsatellite loci vary significantly between breast

cancer and healthy genomes. Genotype distributions for a represen-

tative subset of our 55 signature loci are shown. Gray bars represent

genotypes present in the healthy population, and red bars represent

genotypes in the BC samples

Table 1 Many of the genes associated with our 55 signature

microsatellite loci are known to be associated with cancer generally,

specifically with BC, or are involved in other cellular pathways

associated with cancer

Cancer NUFIP1, KDM1A, SPHK2, STC1, PIAS2, MLL,

TLN2, CUL1, POP4, PDGFRA, NCOR1, MME,

RASA1, ANAPC7, HSP90AA1, FANCI, WRN, TBP,

DNAH3, MT1X, PTPN22, NUP54, ADAM2, KIF1B,

CORIN, ADAMTSL3, CPOX, ACRC, NXF1, RDX,

CDS2, SLC13A1

Breast

cancer

NUFIP1, KDM1A, SPHK2, STC1, PIAS2, MLL,

TLN2, CUL1, POP4, PDGFRA, NCOR1, MME,

RASA1, ANAPC7, HSP90AA1, FANCI, WRN, TBP

Cell cycle CUL1, PTPN22, KIF1B, DNAH3, PDGFA, CCDC46,

WRN, MICALL1, ANAPC7

Apoptosis CUL1, SPHK2, ADAM2, PDGFRA, PDCD6IP
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signaling were enriched among those potential BC-pro-

moting loci, while the set that potentially protects against

BC includes proteins known to be involved in maintaining

genomic stability (e.g., WRN, FANCI, HSP90) and pro-

grammed cell death (e.g., PDCD6IP). Supplementary

Fig. 4 highlights some of the genes involved in signaling

pathways including p53, integrin, and MAPKK pathways.

We performed a similar analysis on the 508 BC germ-

line exomes that were classified as ‘‘white’’ once the

information on the ancestry of the BC samples was made

available. This analysis identified a set of 52 microsatellite

loci, of which 42 overlapped with the original 55 loci set.

Of the loci that ‘‘fell out’’, 9 loci fell below our statistical

cut-offs (had adjusted p-values of 0.05–0.01). In addition,

gene ontology analysis of the 52 loci was similar to that of

the original 55 loci. This analysis not only gives us confi-

dence in our original loci set as robust, but also shows that

there are likely additional informative loci that can be

identified as more BC exomes are available.

Risk classifier

We used the frequency of modal or nonmodal genotypes at

each of the original 55 informative loci within the BC

population relative to the 1kGP-EUF population to create a

breast cancer profile, i.e., we assigned a ‘‘modal’’ or

‘‘nonmodal’’ designation for each of the loci depending on

the overall consensus for the BC germline samples in

relation to the 1kGP-EUF. We then determined for each

individual sample whether it matched the BC cancer profile

at each locus at which it was genotyped. Figure 3 shows

the distribution of exomes based on the number of geno-

types at the 55 signature loci that match the cancer profile.

Using the false positive and false negative rates within the

training set, we were able determine the ROC for the 55

loci. By means of maximizing the area under the ROC

curve, we determined the optimal cut-off for a classifier as

having 76 % of the 55 BC loci matching the breast cancer

genotype profile (Suppl. Fig. 5). We were then able to

classify the BC germline exomes as ‘‘cancer-like’’

(C76 %) or the healthy (\76 %) with a sensitivity of

88.4 % and a specificity of 77.1 % (Fig. 3). A similar risk

classifier analysis done using the 52 loci from the ‘‘white’’

BC exomes had the same high sensitivity (88.4 %), but the

specificity was only 59 % (Suppl. Fig. 5B). Using these

risk classifiers on a set of BC tumor samples, we identified

88.1 % of the BC tumor exomes as cancer-like using the 55

loci set from all BC exomes and 88 % of the ‘‘white’’ BC

Fig. 2 Modal and nonmodal genotypes present in germline exomes

of BC and healthy individuals. Individuals with BC show a distinct

genotype pattern compared with the healthy females. Gray modal, red

nonmodal. luminal A [LA], luminal B [LB], ERBB2/HER2?

[HER2], and basal-like [BL], UNKNOWN = no indicated subtype,

BC germline IND [independent set of BC germline exomes of mixed

ethnicity], BC germline IND-2 [independent set of BC germline

exomes of ‘‘white’’ ethnicity], 1kGP-EUF, IND [independent set of

healthy females, aka 1kGP-EUF IND]
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tumor exomes as ‘‘cancer-like’’ using the 52 loci from the

‘‘white’’ BC exomes, a difference that was not statistically

significant from the number of germline BC samples that

were cancer-like in either case (Fig. 3; Suppl. Fig. 6). This

is in contrast to the 1kGP-EUF samples, of which 77.1 %

were normal, and only 22.9 % were cancer-like (Fig. 3;

Table 2). In addition, two independent sets of BC germline

samples (BC IND with 60 samples of mixed ethnicity and

BC IND-2 with 137 samples that were all ‘‘white’’) showed

a similar frequency of exomes classified as ‘‘cancer-like’’,

whereas the other healthy individuals, including males and

nonEuropean females, and an independent set of 52

European females are more similar to the 1kGP-EUF ex-

omes (Table 2; Suppl. Fig. 7).

The 55 signature loci were derived from the analysis of

BC germline exomes regardless of BC subtype. We divided

the BC samples into their subtypes and a set of samples

where a subtype was not specified (unknown) to determine

if we are able to classify exomes according to subset.

Surprisingly, the BC ‘‘unknown’’ exome samples appeared

to have a distinct profile within the 55 informative loci,

distinguishing them from established BC subtypes (Fig. 2).

Based on the ‘‘unknown’’ classification, we do not know if

these samples constitute individuals with BC which would

be consistent with a known subtype but were simply not

classified or if these samples are unidentifiable using tra-

ditional subtype classification methods. We suggest that the

latter explanation is more consistent with their distinct

genotype profile within our loci set. The two independent

sets of BC germline samples had similar genotype profiles

to those BC germlines for which there was a subtype

specified as opposed to the 1kGP-EUF samples or the

unknown BC germline samples (Fig. 2), whereas the

independent set of healthy European females (IND) was

more similar to the 1kGP-EUF. We re-analyzed all

microsatellites for each subtype with respect to the 1kGP-

EUF to identify additional loci that are associated with

each or multiple subtypes. We found additional informative

loci that distinguish the LA and ‘‘unknown’’ subtypes in

addition to the 55 that distinguish all BC from the healthy

genomes (Fig. 4). For the LA subtype, we identified four

informative loci, two of which were unique to the LA

subtype. For the ‘‘unknown’’ subtype, there were 41

informative loci identified, 22 of which were unique and

included loci in genes involved in cell–cycle control,

chromatin remodeling and programmed cell death. That

there are loci unique to specific BC subtypes indicates that

our method may be useful for distinguishing between BC

Fig. 3 BC exomes have a

higher average percentage of

loci matching the breast cancer

profile. Distributions of exomes

based on their genotypes at the

55 BC-associated microsatellite

loci. We classify genomes

having C76 % of callable

genotypes as cancer-like and

those having \76 % as similar

to the healthy population

Table 2 Classification of exome sets using our BC risk classifier

Sample set Number of exomes % Healthy % Cancer-like

1kGP-EUF 249 77.1 22.9

1kGP-EUF IND 52 61.5 38.5

BC germline 656 11.6 88.4

BC IND 60 15.0 85.0

BC IND-2 137 14.6 85.4
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subtypes. No loci passed our rigorous statistical require-

ments for the luminal B (LB), ERBB2/HER2? (HER2), or

basal-like/triple negative (BL) subtypes, likely because of

the smaller number of exomes available for these BC

subtypes.

Breast cancer tumor versus germline exomes

595 of the BC germline exome samples had matched

tumor/germline exome data available (Suppl. Table 1).

Supplementary Fig. 8 shows the genotypic concordance

between the BC germline and tumor samples. For the 496

matched samples where we could genotype at least 10 of

the 55 loci in the germline and tumor, 75.2 % were cases

where the tumor and germline were cancer-like, 8.9 % the

tumor was cancer-like, while the germline was not; and

12.1 % the germline was cancer-like, while the tumor was

not (Suppl. Table 1). There were only 3.8 % of cases

where neither the germline nor the matched tumor was

cancer-like. It is important to note that no exome was

sequenced with [159 coverage at all 55 loci (Fig. 2), and

so in instances where only one of the matched germline and

tumor exomes was classified as cancer-like, the difference

may be due to differences in which loci could be genotyped

for a given sample. Comparison of the tumor and matched

germline exomes with our analytic pipeline did not reveal

additional loci that were statistically different. This is not

unexpected given that microsatellite instability associated

with tumors could re-distribute genotypes nonuniformly

across a population or even within a single individual. This

analysis highlights the strength of our methodology for

identifying cancer-like exomes from germline sequencing

data.

Thirty-three germline exome sequenced samples had

known mutations in TP53 [19]; of these, 28 were identified

by our method as cancer-like. In addition, 15 samples were

identified as having a potential mutation in BRCA1 or

BRCA2 of which 14 are identified by our method as

cancer-like (Suppl. Fig. 9). That the majority of exomes

with BRCA/TP53 mutations are also classified by our

method as cancer-like is not surprising since these genes

are important for maintaining genomic stability. Our

measure is not restricted to identifying individuals carrying

these known high-risk markers allowing us to identify 541

individuals who did not carry these disease–predisposing

mutations as cancer-like.

RNAseq data were available for 636 of the BC tumors

and 87 of the BC germline samples that were in our BC

exome sets. We performed genotype prediction from the

RNAseq data for 18,148 exonic microsatellite loci that

were potentially callable in the matched RNAseq geno-

types and the respective genotypes in the germline and

tumor samples. At 99.98 % of loci, the predicted genotype

from RNAseq was consistent with the genotype determined

from the matched exome sequencing. Those loci that were

genotyped differently between the matched exome and

RNASeq data were located at 72 loci,1 none of which is in

genes associated with our 55 loci. However, genes asso-

ciated with loci that differ between BC germline and

RNAseq data are enriched for the VEGF signaling path-

way, which influences vascular growth and angiogenesis.

These loci may be additional biomarkers for alternatively

spliced transcripts that may contribute to BC.

Gene set enrichment analysis (GSEA) [24, 25] indicated

that the 55 informative loci and those loci that were

identified in the individual subtypes were enriched for

association with genes expression of which positively

correlates with BRCA1. We analyzed the RNAseq data to

identify additional potential shifts in gene expression that

might correlate with BC. We were able to analyze the

expression level for 52 of the genes in the BC tumor ex-

omes but only 46 genes in the BC germline samples

because gene expression data were provided for 304 tumor

samples but only 39 germline samples from the TCGA

[19]. No expression information was available for

FAM157A or TRG. Of the signature loci, 48 had previ-

ously been shown to have some levels of expression in

breast tissue (Suppl. Table 2; [26]). Comparing all germ-

line and tumor samples, analysis of the expression levels of

the genes associated with the 55 informative microsatellite

loci revealed that seven of these showed [29 increased

expression in tumors, while four showed decreased

expression (Suppl. Table 3). One gene in the germline set

(CRISP1) and one gene in the tumor set (ABHD12B)

showed [29 difference in expression between individuals

who had a genotype matching the BC profile, and those

who did not. In both cases, the individuals with a genotype

that matched the BC profile showed a higher expression

level.

Fig. 4 Overlap of informative loci distinguishing BC subtypes

1 Large data file, content available upon request.
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Microsatellite variation at intronic loci may result in

alternatively spliced transcripts [11] that have the potential

to contribute to oncogenesis, with estimates that *95 % of

multi-exon genes exhibit alternative splicing [27]. In

addition, 49.0 % of the intronic loci were within 50 nt of

an exon/intron junction, a higher frequency than expected

given that only 3.4 % of all intronic microsatellites that

were genotyped in at least one exome sample were within

this boundary. This led us to hypothesize that RNA splicing

is affected. We used Cufflinks [28] to identify possible

alternative splicing events in transcripts from genes con-

taining the signature loci. For those loci at which we had

data about both the transcript splicing and genotype data,

we found that, for the germline and tumor sets respectively,

84.9 and 81.5 % of the transcripts from loci genotype of

which matched the BC profile showed possible alternative

splicing compared with 77.4 and 79.8 % of those tran-

scripts from loci genotype of which did not match the

profile.

Ten of the genes associated with the 55 loci are targets

of, or affected by, pharmaceuticals several of which are

prescribed or in clinical trials for BC (Suppl. Table 4). This

is *1.29 greater than expected given the drug–target

interactions within the CancerResource database [29].

Thus, our analysis may provide novel drug–targets or drug

re-positioning opportunities for additional or combinatorial

BC treatment plans.

Discussion

In summary, the comparison of ‘‘healthy’’ and breast can-

cer patient exomes at microsatellite loci revealed variations

in nonmodal genotype frequency, while comparably, only a

small number of variations were seen between matched

breast cancer germline and tumor exomes. We applied our

microsatellite genotyping pipeline to nearly 50,000

microsatellite loci from BC and disease-free females and

identified 55 loci at which the frequency of nonmodal

genotypes was statistically significantly different between

the two populations, of which 30 showed a risk ratio below

0.6, while 25 had a risk ratio greater than 1.3. Importantly,

the presence or the absence of nonmodal genotypes at the

55 loci was used to create a ‘‘BC profile’’ that can be used

as a risk classifier. The overwhelming majority of exomes

classified as cancer-like did not carry any known BC-

associated mutation. If the analysis is confirmed in inde-

pendent matched cohorts, then an assay consisting of these

55 loci might be clinically informative with a sensitivity of

88.4 %, which exceeds current test performance, while the

specificity is about two fold which would be expected,

given that 12 % of the ‘‘healthy’’ female population will be

future BC patients. Many of the 55 loci are within genes

implicated in breast cancer, while several represent

potential new drug–targets with protein variants resulting

from alternative splicing or, in one case, an exonic

variation.

Such surveys of large cohorts of the microsatellite

genomes of the affected individuals and the matched

‘‘healthy’’ populations could be a platform for identifying

clinically actionable risk diagnostics, companion diagnos-

tics, and drug–targets when applied to complex multigenic

diseases for which disease severity, therapy response, and

other metadata are known.
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