Skip to main content

Advertisement

Log in

Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

A majority of breast cancers are estrogen receptor (ER) positive and have a luminal epithelial phenotype. However, these ER+ tumors often contain heterogeneous subpopulations of ER tumor cells. We previously identified a population of cytokeratin 5 (CK5) positive cells within ER+ and progesterone receptor positive (PR+) tumors that is both ERPR and CD44+, a marker of breast tumor-initiating cells (TICs). These CK5+ cells have properties of TICs in luminal tumor xenografts, and we speculated that they are more resistant to chemo- and anti-ER-targeted therapies than their ER+ neighbors. To test this, we used ER+PR+ T47D and MCF7 breast cancer cells. CK5+ cells had lower proliferative indices than CK5 cells, were less sensitive to 5-fluorouracil and docetaxel, and cultures became enriched for CK5+ cells after treatments. CK5+ cells were less prone to drug-induced apoptosis than CK5 cells. In cells treated with 17β-estradiol (E) plus anti-estrogens tamoxifen or fulvestrant, ER protein levels decreased, and CK5 protein levels increased, compared to controls treated with E alone. In ER+ tumors from patients treated with neoadjuvant endocrine therapies ER gene expression decreased, and CK5 gene expression increased in post compared to pre-treatment tumors. The number of CK5+ cells in tumors also increased in post- compared to pre-treatment tumors. We conclude that an ERPRCK5+ subpopulation found in many luminal tumors is resistant to standard endocrine and chemotherapies, relative to the majority ER+PR+CK5 cells. Compounds that effectively target these cells are needed to improve outcome in luminal breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AI:

Aromatase inhibitor

ALDH1:

Aldehyde dehydrogenase 1

BrdU:

5-Bromo-2-deoxyuridine

CK:

Cytokeratin

2D:

Two-dimensional

3D:

Three dimensional

DAPI:

4′,6-Diamidino-2-phenylindole

Dx:

Docetaxel

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

E:

17β-estradiol

ESA:

Epithelial specific antigen

EWD:

Estrogen withdrawal

FBS:

Fetal bovine serum

5-FU:

5-Fluorouracil

HER2:

Human epidermal growth factor receptor 2

ICC:

Immunocytochemistry

IHC:

Immunohistochemistry

Lin:

Lineage

MPA:

Medroxyprogesterone acetate

PR:

Progesterone receptor

SOC:

Sodium deoxycholate

Tam:

4-Hydroxytamoxifen

TIC:

Tumor initiating cell

TNP:

Triple negative phenotype

References

  1. Cui X, Schiff R, Arpino G et al (2005) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23:7721–7735. doi:10.1200/JCO.2005.09.004

    Article  PubMed  CAS  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752. doi:10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  3. Paik S, Tang G, Shak S et al (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 24:3726–3734. doi:10.1200/JCO.2005.04.7985

    Article  PubMed  CAS  Google Scholar 

  4. Osborne CK, Schiff R (2005) Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol 23:1616–1622

    Article  PubMed  CAS  Google Scholar 

  5. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284. doi:10.1038/nrc1590

    Article  PubMed  CAS  Google Scholar 

  6. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783. doi:10.1038/nature07733

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988. doi:10.1073/pnas.0530291100

    Article  PubMed  CAS  Google Scholar 

  8. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25. doi:10.1186/bcr1982

    Article  PubMed  Google Scholar 

  9. Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679. doi:10.1093/jnci/djn123

    Article  PubMed  CAS  Google Scholar 

  10. Phillips TM, McBride WH, Pajonk F (2006) The response of cd24(-/low)/cd44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  11. Liu R, Wang X, Chen GY et al (2007) The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med 356:217–226. doi:10.1056/NEJMoa063994

    Article  PubMed  CAS  Google Scholar 

  12. Shipitsin M, Campbell LL, Argani P et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273. doi:10.1016/j.ccr.2007.01.013

    Article  PubMed  CAS  Google Scholar 

  13. Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of cd44+/cd24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

    PubMed  CAS  Google Scholar 

  14. Honeth G, Bendahl PO, Ringner M et al (2008) The cd44+/cd24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:R53. doi:10.1186/bcr2108

    Article  PubMed  Google Scholar 

  15. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567. doi:10.1016/j.stem.2007.08.014

    Article  PubMed  CAS  Google Scholar 

  16. Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313. doi:10.1158/0008-5472.CAN-08-2741

    Article  PubMed  CAS  Google Scholar 

  17. O’Brien CS, Howell SJ, Farnie G et al (2009) Resistance to endocrine therapy: are breast cancer stem cells the culprits? J Mammary Gland Biol Neoplasia 14:45–54. doi:10.1007/s10911-009-9115-y

    Article  PubMed  Google Scholar 

  18. Horwitz KB, Dye WW, Harrell JC et al (2008) Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci USA 105:5774–5779. doi:10.1073/pnas.0706216105

    Article  PubMed  CAS  Google Scholar 

  19. Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913. doi:10.1038/nm.2000

    Article  PubMed  CAS  Google Scholar 

  20. Boecker W, Buerger H (2003) Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif 36(Suppl 1):73–84

    Article  PubMed  Google Scholar 

  21. Boecker W, Moll R, Poremba C et al (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Investig 82:737–746. doi:0.1002/path.1241

    Google Scholar 

  22. Keydar I, Chen L, Karby S et al (1979) Establishment and characterization of a cell line of human breast carcinoma origin. Eur J Cancer 15:659–670

    PubMed  CAS  Google Scholar 

  23. Sartorius CA, Harvell DM, Shen T et al (2005) Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res 65:9779–9788. doi:10.1158/0008-5472.CAN-05-0505

    Article  PubMed  CAS  Google Scholar 

  24. Harvell DM, Spoelstra NS, Singh M et al (2008) Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Res Treat 112:475–488. doi:10.1007/s10549-008-9897-4

    Article  PubMed  CAS  Google Scholar 

  25. Cheang MC, Voduc D, Bajdik C et al (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376. doi:10.1158/1078-0432.CCR-07-1658

    Article  PubMed  CAS  Google Scholar 

  26. Hugh J, Hanson J, Cheang MC et al (2009) Breast cancer subtypes and response to docetaxel in node-positive breast cancer: use of an immunohistochemical definition in the bcirg 001 trial. J Clin Oncol 27:1168–1176. doi:10.1200/JCO.2008.18.1024

    Article  PubMed  CAS  Google Scholar 

  27. Abd El-Rehim DM, Pinder SE, Paish CE et al (2004) Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol 203:661–671. doi:10.1002/path.1559

    Article  PubMed  Google Scholar 

  28. Malzahn K, Mitze M, Thoenes M et al (1998) Biological and prognostic significance of stratified epithelial cytokeratins in infiltrating ductal breast carcinomas. Virchows Arch 433:119–129

    Article  PubMed  CAS  Google Scholar 

  29. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

    Article  PubMed  Google Scholar 

  30. Kuukasjarvi T, Kononen J, Helin H et al (1996) Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14:2584–2589

    PubMed  CAS  Google Scholar 

  31. Spataro V, Price K, Goldhirsch A et al (1992) Sequential estrogen receptor determinations from primary breast cancer and at relapse: prognostic and therapeutic relevance. The international breast cancer study group (formerly Ludwig group). Ann Oncol 3:733–740

    PubMed  CAS  Google Scholar 

  32. Creighton CJ, Li X, Landis M et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 106:13820–13825. doi:10.1073/pnas.0905718106

    Article  PubMed  CAS  Google Scholar 

  33. Creighton CJ, Massarweh S, Huang S et al (2008) Development of resistance to targeted therapies transforms the clinically associated molecular profile subtype of breast tumor xenografts. Cancer Res 68:7493–7501. doi:10.1158/0008-5472.CAN-08-1404

    Article  PubMed  CAS  Google Scholar 

  34. Massarweh S, Osborne CK, Creighton CJ et al (2008) Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res 68:826–833. doi:10.1158/0008-5472.CAN-07-2707

    Article  PubMed  CAS  Google Scholar 

  35. Clarke RB, Howell A, Potten CS et al (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    PubMed  CAS  Google Scholar 

  36. Liedtke C, Broglio K, Moulder S et al (2009) Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol 20:1953–1958. doi:10.1093/annonc/mdp263

    Article  PubMed  CAS  Google Scholar 

  37. Guarneri V, Giovannelli S, Ficarra G et al (2008) Comparison of her-2 and hormone receptor expression in primary breast cancers and asynchronous paired metastases: impact on patient management. Oncologist 13:838–844. doi:10.1634/theoncologist.2008-0048

    Article  PubMed  CAS  Google Scholar 

  38. Gupta PB, Onder TT, Jiang G et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659. doi:10.1016/j.cell.2009.06.034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the American Society of Clinical Oncology YIA-PN200810-161 (P. Kabos), National Institutes of Health 1 F32 CA142096-01 (J.M. Haughian), Martha Cannon Dear Professorship (A. Elias), National Institutes of Health R01 CA26869 (K.B. Horwitz), Breast Cancer Research Foundation (K.B. Horwitz), the National Foundation for Cancer Research (K.B. Horwitz), The Avon Foundation (K.B. Horwitz), The Avon Foundation (C.A. Sartorius), and the University of Colorado Cancer Center (C.A. Sartorius).

Conflicts of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Sartorius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabos, P., Haughian, J.M., Wang, X. et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat 128, 45–55 (2011). https://doi.org/10.1007/s10549-010-1078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1078-6

Keywords

Navigation