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Abstract
We test the hypothesis that internal waves observed in flow over forest canopies are generated
byKelvin–Helmholtz instability. Thewaveswere observed at night, under stably stratified and
weak wind conditions, with a horizontally scanning aerosol lidar and an instrumented tower.
The lidar images are used to determine the salient wavelength and phase propagation velocity
of each episode. Time series data measured at the tower are then used to form vertical profiles
of background velocity and buoyancy just before each observed wave event. The profiles are
input to the Taylor–Goldstein equation to predict the phase velocity, wavelength and period
of the fastest-growing linear instability, and the results compared with the lidar observations.
The observed wavelengths tend to be longer than predicted by the Taylor–Goldstein theory,
typically by a factor of two. That discrepancy is removed when the theory is extended to
account for the effects of ambient, small-scale turbulence.

Keywords Canopy waves · Instability · Kelvin–Helmholtz instability · Stable boundary
layer · Turbulence

1 Introduction

Mean flows in the atmospheric boundary layer are often non-inflectional, i.e. there is no local
maximum in the shear except at the boundary, and inflectional instability is therefore not
expected (Smyth and Carpenter 2019), an example being the log layer (Kaimal and Finnigan
1994; Tong and Ding 2020). But a forest or other vegetation layer reduces the shear near the
ground, producing a shear maximum near the treetop height. Turbulent coherent structures
often observed in forest canopies are therefore thought to result from inflectional, or more
specificallyKelvin–Helmholtz, instability (hereafterKHI;Kelvin 1871; vonHelmholtz 1890;
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Raupach et al. 1996; Smyth and Moum 2012). Here we test this hypothesis by comparing
wavelengths, phase velocities and periods of a subset of 53 wave events observed over an
orchard canopy during stably stratified conditions with those predicted via linear stability
analysis of flowsmeasured at a nearbymeteorological tower.Wefind that the test is successful
only when the theory is extended to account for the ambient turbulence that is present just
prior to observed wave events.

1.1 CanopyWaves

Studies of turbulence in forest canopies over several decades have revealed coherent structures
with length scales on the order of the canopy height (Raupach and Thom 1981; Finnigan
2000). In unstable or neutral conditions, these appear to begin as rollers and to rapidly
evolve into arch- and hairpin-shaped structures (Bailey and Stoll 2016). In stably stratified
conditions, that evolution is suppressed, and internal waves with parallel bands of crests and
troughs perpendicular to the mean flow are observed (Mayor 2017, hereafter M17).

For example, dramatic oscillations with wavelengths of order 100mwere observed in time
series data measured over 20-m tall forest canopies at CampBorden, Canada (Lee et al. 1996)
and in Prince Albert National Park, Saskatchewan, Canada (Lee et al. 1997). Regarding the
mechanical origin of such oscillations, it has been hypothesized that “the turbulence and
coherent motions near the top of a vegetation canopy are patterned on a plane mixing
layer, because of instabilities associated with the characteristic strong inflection in the mean
velocity profile.” (Raupach et al. 1996). In other words, canopy waves are believed to be
created via the mechanism of KHI, which we describe next.

1.2 Kelvin–Helmholtz Instability

We begin with some definitions. The local atmosphere is measured by a Cartesian coordinate
system in which {x, y, z} are zonal (increasing eastward), meridional (increasing northward)
and vertically upwards coordinates, {u, v, w} are the corresponding velocity components.
The background horizontal velocity is denoted uh = {ū, v̄}. In our theoretical analyses, the
overbar is taken to indicate a horizontal average. In the analysis of point data, as from a
meteorological tower, it indicates a temporal average, here over a 5-min period.

Inflectional instability draws energy from the background flow at an inflection point of the
background velocity profile or, more generally, at a local maximum of the shear magnitude:

S =
√(

∂ ū

∂z

)2

+
(

∂v̄

∂z

)2

. (1)

The instability mechanism is most easily understood as a constructive interference between
vorticity waves that propagate horizontally above and below the inflection point and are
therefore able to phase-lock (e.g.,Carpenter et al. 2013; Smyth and Carpenter 2019; Liu et al.
2022).

The resulting resonance creates exponentially growing plane wave structures in which
departures from the mean state, e.g. u′ = u − ū, have the form:

u′(x, y, z, t) =
[
û(z)eσ t+ι(kx+�y)

]
r
, (2)

where û(z) is a complex vertical structure function, σ is the complex growth rate, subscript r
indicates the real part, and ι = √−1. The wave vector k = {k, �} points horizontally. It may
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also be represented in polar form in terms of its magnitude κ = √
k2 + �2 and its direction

φ = tan−1(�/k), measured counterclockwise from eastward. The wavelength is λ = 2π/κ ,
the phase propagation speed is c = −σi/κ and the period is τ = λ/c.

To optimize the inflectional instability process, thewave vector alignswith the background
shear {ūz, v̄z} at the shear maximum. The phase speed lies between the minimum and the
maximum of ũ(z), the component of the background velocity profile in the direction of the
maximum shear defined above (the semicircle theorem; (Howard 1961)). The wavelength
of these plane waves scales with the thickness of the shear maximum where the instability
is focused. For example, in an idealized shear layer ū ∝ tanh(2z/h), where h is the layer
thickness, the wavelength is approximately 7h. The scale factor 7 can vary considerably,
though, when the velocity profile has a more complicated form or when other effects are
active.

KHI is the variant of the inflectional instability that occurs in a stably stratified fluid. That
state is defined by the positivity of the squared buoyancy frequency, computed here as:

N 2 = g

T v

∂�v

∂z
, (3)

where g is the gravitational acceleration (here taken to be 9.81m s−2), T v is the background
virtual temperature and�v is the corresponding potential temperature. The gradient Richard-
son number is a dimensionless number that quantifies the strength of the shear relative to the
stratification:

Ri = N 2

S2 . (4)

The growth rate of the inflectional instability vanishes if the stratification is strong enough
that the minimum gradient Richardson number, minz {Ri}, exceeds 1/4, i.e. the buoyancy
frequency N > S/2 at all z (Miles 1961;Howard 1961). On the other hand, if the stratification
is weak enough, the instability grows. The wave vector is aligned with the background shear
vector as in unstratified flow, and thewavelength is only slightlymodified. At large amplitude,
the instability is manifested in trains of overturning billows that we call KH billows or
(casually) KHI.

Stably stratified shear flows also support constructive interference involving gravitywaves,
leading to distinctmechanisms such as theHolmboe andTaylor-Caulfield instabilities (Smyth
and Carpenter 2019; Arnqvist et al. 2016). These will not be considered here.

Because it grows on parallel shear flows with minz {Ri} < 1/4, we associate KHI with
low Ri , i.e. strong shear and/or weak stratification. Moreover, as the instability grows to
finite amplitude, it suffers a sequence of secondary instabilities that lead to a fully turbulent
state (Klaassen and Peltier 1985, 1991; Caulfield and Peltier 1994; Mashayek and Peltier
2012a, b). We therefore expect to observe enhanced turbulence associated with KHI. As we
will see, the observed canopy waves behave differently: they appear at times when Ri is not
especially small, and turbulence is weak.

Stratified shear flows are subject to both viscous and diffusive effects (Thorpe et al.
2013). These need not be molecular in origin; they can also result from turbulence on scales
much smaller than the instability, possibly left over from previous instabilities (Smyth et al.
2013; Kaminski and Smyth 2019). While the classical KHI model describes an infinitesimal
disturbance growing on an otherwise parallel shear flow, natural flows almost always exhibit
some degree of small-scale turbulence. Viscosity, eithermolecular or turbulent, tends to damp
KHI in two ways: by directly retarding the unstable motions and by diffusing the background
shear that drives them. Diffusion acts similarly to smooth out the instability, but its effect on
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a stably stratified background flow is to reduce the stratification, thus enhancing the growth
of the instability. Ambient turbulence generally varies with height, which can lead to more
complex effects (Li et al. 2015).

1.3 Are CanopyWaves Created by KH Instability?

Because the inflectional instabilitymechanism results from constructive interference between
waves above and below a shear maximum, it cannot occur when the shear maximum is at
the ground, as in a standard logarithmic wind profile. However, vegetation can mix the
background shear near the ground, creating an inflection point at which instability may grow.
This suggests a possible explanation for the observed canopy waves (Raupach et al. 1996).

Analysis of the Saskatchewan canopy wave observations indicated that the waves were
generated by shear near the top of the canopy (Lee 1997). Moreover, the observed waves
shared some identifying features of KHI: their phase speed and direction were equal to the
background wind near the center of the shear layer, and their amplitude decayed vertically
away from that layer. Linear stability analysis confirmed that the observed profiles of veloc-
ity and density supported unstable modes. The computed growth rate, however, was not a
maximum at the observed wavelength as would be expected.

A 20-m forest in Sweden produced inflectional flows and canopy waves that were well-
described by KHI theory, even though tree drag and heat transfer were neglected (Arnqvist
et al. 2016). In particular, the fastest-growing mode was identified and found to match the
observed frequency. The interpretation suggested Holmboe-type instabilities (Sect. 1.2).

Although the connection between canopy waves and KHI is theoretically plausible and
is consistent in many respects with existing observations, other processes, such as stream-
line displacement via wave-turbulence interactions (Sun et al. 2015) and the Jeffrey drag
mechanism (Pulido and Chimonas 2001), can create waves in the forest environment. These
mechanisms are alternatives to KHI for the creation of canopy waves.

1.4 The Canopy Horizontal Array Turbulence Study

The Canopy Horizontal Array Turbulence Study (CHATS; Patton et al. 2011) was conducted
in 2007 to observe the fine-scale structure of turbulent flow over an idealized forest of
uniform height and density. The experiment was conducted in a 1.6km2 walnut orchard
on flat terrain in Dixon, California, from mid-March through mid-June. The Raman-shifted
Eye-safe Aerosol Lidar (REAL; Mayor et al. 2007) was deployed at a range of 1.61km from
a 30-m tall instrumented tower installed in the orchard. The average height of the trees was
about 10m and the nearly-horizontal lidar scans intersected the tower at an altitude of about
18m above ground level.

Most observations of KHI in the lower atmosphere are made with radars (Richter 1969;
Browning and Watkins 1970; Gossard et al. 1970; Chapman and Browning 1997), instru-
mented towers (Einaudi and Finnigan 1981; Finnigan et al. 1984; De Baas and Driedonks
1985), and sodars (Emmanuel et al. 1972; Hooke et al. 1973; Emmanuel 1973; Petenko et al.
2012). The observations are often limited to vertical profiles. To obtain 2D spatial data, which
is necessary for the most reliable measurement of wavelength, scanning remote sensors are
required. For example, Blumen et al. (2001) and Newsom and Banta (2003) describe an
episode of turbulence associated with KHI observed in the stable boundary layer using a
scanning Doppler lidar. In that work, the Doppler lidar scans provided vertical cross-sections
of the waves from one event.
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Fig. 1 Examples of canopy waves observed by the REAL during CHATS. In the labeling of M17 these are
samples of events 16 (a), 24 (b), 19 (c), 20 (d). Each tile results from a single horizontal scan and shows a
1km2 area. The star in the middle of each panel indicates the position of the 30-m tower from which in situ
data were obtained. White streaks on the left side of each image are the result of reflections from a few very
tall trees

In our work (M17), the REAL was able to observe the waves on near-horizontal cross-
sections and to capture 53 events over three months (Fig. 1). Graphical analysis of the
images resulted in a wavelength assessment for 52 of these cases. The power and fast scan
update rate of the REAL enabled the determination of the phase propagation velocity in 39
episodes where the lidar frame rate was fast enough to unambiguously determine wave crest
displacement. We are not aware of any other atmospheric observational datasets that provide
horizontal images of canopy wave spacing and phase velocity and coincident vertical profiles
of thermodynamic and wind data. Herein we use these data to see how the prevailing KHI
theory can be modified to link the observed vertical profiles and the wave characteristics
revealed by the lidar.

During the 53 events identified by M17, a shear maximum was almost always found
near z = 10m, the nominal treetop height. Most of the horizontal lidar images intersect
the tower (and therefore the vertical profiles) near 18m height. Plane wave crests were
nearly perpendicular to the background shear, consistent with the KHI theory outlined above.
Moreover, waves propagated in the direction of the wind, and with about half the maximum
wind velocity, consistent with the semicircle theorem (M17). Observed wavelengths were
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Fig. 2 Vertical structure of shear
and stratification just prior to
observed wave events. a Median
squared shear /4 (blue), squared
buoyancy frequency (red). b
Median gradient Richardson
number. Solid curves represent
the median of 5-min averages
during observed events; dotted
curves represent the quartiles.
Horizontal solid lines show the
nominal treetop height, z = 10m;
vertical dashed line on (b) shows
Ri = 0.25

not evidently related to the length scale of the background shear, as is the case with KHI. As
a first estimate, we may take the thickness h of the shear layer to be 3–5m (M17), in which
case the KHI wavelength estimate 7h becomes 21–35m. In fact, based on the lidar images,
the observed wavelengths ranged from 30 to 100m, considerably longer than the theoretical
estimate. That disparity is the primary motivation for the present study. We will argue that it
results from ambient turbulence, which greatly affects the preferred wavelength of KHI.

1.5 Outline

The discussion is organized as follows. In Sect. 2 we composite the tower data to examine the
evolution of the background flow, waves and turbulence over a diurnal cycle (Sect. 2.1) and
over a canonical canopy wave event (Sect. 2.2). In Sect. 3 we use profiles of observed shear
and density from the CHATS tower data, together with ambient turbulence having various
assumed amplitudes, to calculate wave characteristics such as wavelength and phase velocity
based on linear stability analysis.We then compare the results with observations fromREAL.
Conclusions are summarized in Sect. 4.

2 Evolution of theMean Flow, Waves and Turbulence

In this section we examine the time-dependent relationship between KHI, canopy waves,
turbulence and the evolving background state using composite representations of a diurnal
cycle and of a canopy wave event. We also take an initial look at turbulent, or eddy, viscosity
based on the tower data.
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Fig. 3 Nocturnal probability
density functions for the
logarithm of a the minimum
value of Ri and b the vertical
velocity variance for
9 < z < 18m and 19:00-07:00
local time. c Values measured
over 5-min intervals immediately
preceding canopy wave
observations

2.1 Flow Properties Prior to CanopyWave Events

For each wave episode registered by REAL, a mean (or “background”) state is defined by
averaging tower measurements of wind velocity, temperature and humidity at over a 5-min
period immediately prior to the appearance of the waves. In these states, the shear magnitude
S(z) is a maximum near z = 10m, coinciding with the nominal treetop height (Fig. 2a,
blue curve). This height is also a local minimum of the squared buoyancy frequency N 2 and
of Ri (Fig. 2b). The minimum of Ri is less than 1/4 just prior to all wave events (Fig. 3),
consistent with KHI theory (Sect. 1.2). The layer in which Ri < 1/4 extends from slightly
below z = 10m to approximately z = 16m.

The probability density function of Ri for nighttime data is unimodal with mode near 0.04
(Fig. 3a). Also unimodal was the vertical velocity variance w′w′ (Fig. 3b). Canopy waves
emerged only when Ri was less than 1/4 and w′w′ was relatively small (Fig. 3c), indicating
minimal small-scale turbulent transport despite the potential for KH instability.

2.2 The Composite Diurnal Cycle

Properties of the composite day (Figs. 4, 5, and 6) are educed by compositing the tower data
recorded during each hour of the day for the 3-month duration of CHATS. For context, we
begin by examining the upper level wind velocity, averaged over sensors at z = 23 and 29m
and over each instance of each hour. The meridional component (Fig. 4a, red curve) shows
a diurnal variation with northerly flow from 04:00 to 14:30 LT and southerly flow at other
times. This reversal coincides approximately with minima in the resultant averaged wind
speed (blue). The zonal wind (Fig. 4a, yellow) is westerly and is relatively weak and steady.

The cause of themeridional wind reversal is the diurnal heating and cooling of California’s
Central Valley relative to the steadier marine airmass over the Pacific Ocean 100km to the
west (Zaremba and Carroll 1999). The California Coast Ranges separate the cool marine air
from the diurnally changing inland air except for a gap in the San Francisco Bay area. Air
entering the Central Valley through the gap (approximately 55km to the southwest) moves
northward over Dixon during the afternoon and evening until late night and early morning
cooling in the Central Valley relaxes the horizontal pressure gradient enabling a northerly
prevailing flow. The prevailing northerly flow is the result of the north–south orientation of
the Central Valley and synoptic scale flow around a semi-permanent anticyclone that exists
over this region.
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Fig. 4 Composite diurnal cycle of a upper level mean wind components (average of sensors at 23 and 29m),
and b mean shear components evaluated at the maximum of shear magnitude, z = zS . Local time is UTC -
7h. Subscripts in the curve labels indicate differentiation

Fig. 5 Composite diurnal cycle of a the squared shear (/4) and buoyancy frequency, and b the gradient
Richardson number, all evaluated at the shear maximum. Thick and thin curves indicate the median and its
95% bootstrap confidence limits, respectively, evaluated over the full 3-month observational period. Limits of
themedian N2 are indistinguishable. Negative daytime values of Ri are not shown. Shaded bars, corresponding
to the right-hand axis, indicate the number of wave events originating in each hour of the diurnal cycle

Evaluating the vertical derivatives ∂ ū/∂z and ∂v̄/∂z at the height where the shear mag-
nitude is a maximum (usually near 10m), and repeating the same compositing operations
described above, we have the diurnal cycle of the shear magnitude and the zonal and merid-
ional shear components (Fig. 4b). These vary similarly to the upper level winds: ∂ ū/∂z
(yellow curve) is weak and approximately constant while the dominant component ∂ ū/∂z
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Fig. 6 Composite diurnal cycle of a the turbulent heat flux, b the variance of the vertical velocity component,
each evaluated as the median over 9m< z <18m. Thin curves indicate the 95% bootstrap confidence limits in
the median during each hour, evaluated over the full 3-month observational period. Shaded bars are histograms
of the event count for each hour

(red) changes sign in the early morning and the early evening. The resultant shear magni-
tude (blue) decreased monotonically from midnight to sunrise, reaching an early morning
minimum roughly coincident with the meridional shear reversal.

The squared buoyancy frequency N 2 (Fig. 5a), evaluated at the shear maximum, is consid-
erably smaller than S2/4, suggesting a strong likelihood of instability (Miles 1961; Howard
1961). During the day, N 2 dropped to near or below zero, indicating statically neutral or
unstable conditions. Underlying the S2 and N 2 curves on Fig. 5 is a histogram of the number
of wave events observed in each hour of the REAL imagery. All observed events occurred at
night, with event frequency increasing to a maximum at 06:00, just before sunrise.

This composite diurnal cycle presents some surprises. Ordinarily, we associate KHI with
strong shear andweak stratification, or low Ri . But the present observations suggest a different
scenario, in which instability is detected when shear is relatively weak, stratification is strong
and thus Ri is higher than usual. Reflecting the variation of the shear, Ri is low during the
day, rises rapidly around sunset and then more gradually to a maximum before dropping
rapidly around sunrise (Fig. 5b, blue curve).

Contrary to the usual KHI model, wave events are not associated with the lowest Ri .
Instead, the Miles-Howard criterion minz {Ri} < 1/4 is virtually always satisfied, usually by
a large margin. In this near-homogeneous state, shear instabilities evolve rapidly and chaot-
ically, transferring energy both downscale (as turbulence) and upscale (via vortex pairing;
Winant and Browand 1974; Klaassen and Peltier 1989). Any recognizable monochromatic
wave signal is quickly overwhelmed. Only when Ri increases to a moderate value can waves
survive long enough to be detectable. Thus, waves are always detected at night and are more
common toward sunrise when Ri is greatest.

The turbulent heat flux (Fig. 6a) was positive (upward) from approximately 07:00 to
18:00 LT and negative at other times.1 The vertical velocity variance (Fig. 6b) increased

1 The time of sunrise varied from approximately 07:30 to 05:45 during the observation period while sunset
varied from 19:15 to 20:30.
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steadily throughout the day, decreased rapidly around sunset, then decreased more gradually
through the night. The peak event frequency at 06:00 coincides with the minimum vertical
velocity variance, i.e., the least-turbulent ambient conditions. These observations suggest that
the vertical motions revealed in the velocity variance and the heat flux (Fig. 6) are dominated
not by the wavelike instabilities detected by REAL but rather by turbulence.

2.3 The Composite CanopyWave Event

The composite event is formed by shifting the time during each canopy wave observation
so that t = 0 when the waves are first visible in the REAL imagery. We then average over
all 53 episodes and show the results from one hour before to one hour after the time of first
visibility.

The upper level wind (Fig. 7a) does not change much in strength prior to wave emergence,
though it changes in direction. The maximum shear (Fig. 7b, black curve, 7c, blue) trends
downward, showing only a slight increase just before the event is observed.During the interval
from −30 to −5 min., S2 decreases by 31%. The buoyancy frequency changes very little
(red); the increase from−30 to−5min. is 9%. Decreasing shear and increasing stratification
combine to create a 37% increase in Ri . In summary, the variables that normally govern
inviscid KHI do not indicate any systematic change that would account for the emergence
of instability at the particular time when it is observed. The change in the median long-wave
radiative heat flux (Fig. 7e) is only ∼5%. Together with the relative steadiness of N 2 and
Ri , this indicates that destabilization by radiative heating (Cava et al. 2004) is not a critical
factor in these observations.

Of the variables examined here, the vertical velocity variance (Fig. 7f) shows the only
change that could explain the appearance of instability, decaying by 32% prior to wave
detection. We interpret this to suggest that, prior to wave emergence, instability is suppressed
by ambient turbulence, and appears only when the latter has decayed sufficiently to permit
sustained growth. The variance then increases rapidly as the wave signal grows.

2.4 Observational Estimates of EddyViscosity and Diffusivity Prior to CanopyWave
Events

The classical KHI theory is likely to be insufficient to explain these observations because
the flow is turbulent before the instability sets in. The effect of this pre-existing turbulence is
modeled most simply by choosing values for the corresponding eddy viscosity and turbulent
diffusivity just prior to the onset of KHI.

Vertical eddy viscosity Av(z) and diffusivity Kv(z) were calculated from the tower data
via the relations:

Av = − ūz u′w′ + v̄z v′w′
S2 ; Kv = − T ′w′

T̄z
, (5)

where primes indicate departures from the 5-min mean. During the 5-min period preced-
ing each of the 53 observed events, these values are typically between zero and 0.2m2 s−1

(Fig. 8a). Above the treetops (z ≈ 10m), median values of eddy viscosity and diffusiv-
ity are similar, i.e. the turbulent Prandtl number is near unity, as is commonly observed in
strong turbulence (the Reynolds hypothesis). Both coefficients decay smoothly upward from
z ≈10m. Below z ≈ 9m, Av and Kv are unequal and highly variable. It is likely that, in the
well-mixed air near the ground, Av and Kv are ratios of small quantities and are therefore
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Fig. 7 Composite wave event, showing variables averaged in each 5-min period for 30min before and after
event detection. a Mean wind velocity; average of sensors at z = 23m and 29m. b Mean shear components
and magnitude at the height of maximum S2. cMedian squared shear /4 and squared buoyancy frequency. (d)
Median Ri at shear maximum. e Long-wave radiative flux at the ground. f Vertical velocity variance w′w′ at
the shear maximum. Thick and thin curves show the median and its 95% bootstrap confidence limits. Dashed
lines show the least-squares fit to the median in the interval from 30 to 5min prior to wave detection
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Fig. 8 Eddy viscosity (blue) and diffusivity (red) during the hour prior to observed wave events. Solid curves
represent the median; dotted curves represent the quartiles. Horizontal solid line shows the nominal treetop
height, z = 10m

highly uncertain. At all heights there is significant variation in Av and Kv among different
wave events. At the height of maximum shear, median values are < Av >= 0.05m2 s−1 and
< Kv >= 0.09m2 s−1.

Is this ambient turbulence sufficient to affect KHI? We will determine this explicitly later,
but for now we consider a simple estimate based on the assumption of uniform Av . Growth is
affected significantly when the Reynolds number Re = h�u/Av is smaller than ∼ O(102),
and is arrested entirely when Re < O(10) (Maslowe 1973; Smyth et al. 2013). If we take
a typical velocity scale �u to be 1ms−1 and the layer thickness to be 4m, then Re = 100
corresponds to Av = 0.04m2 s−1, similar in magnitude to the median measured value at
treetop height quoted above. The condition Re < 10, required to stabilized KH instability,
requires Av > 0.4m2 s−1. We therefore expect that eddy viscosity associated with ambient
turbulence (Fig. 8) will have a significant damping effect on the growth of KH instability,
but will not stabilize it entirely.

In the remainder of the paper, we demonstrate that ambient turbulence has a significant
effect on the growth of the observed instabilities. For simplicity in this initial investigation,
we assume that ambient turbulence is stationary, homogeneous and isotropic.

3 Comparison of Observed CanopyWaves with KHI Via Linear Stability
Analysis

We now ask whether the observed canopy waves could have been generated by KHI. To
answer this, we perform explicit linear stability analysis of the mean profiles measured just
before each wave event. We predict the phase speed, direction and wavelength for each event
and compare the results with the available observations from REAL. We also explore the
possibilities that KHI is modulated by pre-existing turbulence or by air-vegetation fluxes.
The following two subsections give details of our methods for deriving wave parameters via
the REAL imagery (subsect. 3.1) and via linear stability analysis (subsect. 3.2). Results of
the comparisons are in subsect. 3.3.
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3.1 EstimatingWave Parameters from REAL Imagery

In Fig. 1 we show 1km2 areas from horizontal scans of the REAL from four sample canopy
wave episodes. A full description of how the lidar data were collected and processed and the
wave characteristics were extracted is contained in M17. To summarize the final steps, wave
characteristics were obtained graphically by projecting the images on to a whiteboard and
hand tracing the wavecrests. Wavelength was determined by measuring the average distance
between two crests in the vicinity of the tower. Phase propagation speed was determined by
observing the displacement of a wave crest over sequential scans, while the direction was by
definition normal to the wave crests.

Figure 1 reveals the significant variability that exists among cases, as well as the spatial
variability that may occur in a single image. In some cases, if the waves were not clear at
the location of the tower, the measurement was made as close to the tower as possible. If the
wave characteristics changed over time, an average was chosen. The goal of the analysis was
to assign a single value of wavelength and phase velocity for each episode. A first attempt to
determine a single wavelength and orientation per image objectively by computer algorithm
was recently reported by Mifsud et al. (2021) and the results support the subjective values
used in M17 and herein.

3.2 Linear Stability Analysis

KHI is obtained as a solution of the Taylor–Goldstein (hereafter TG) equation, which
describes normal mode disturbances (defined in Sect. 1.2) evolving on an inviscid, strati-
fied, parallel shear flow. The theory has been extended to include viscosity and diffusivity
due to ambient small-scale turbulence (Liu et al. 2012; Lian et al. 2020), and to approximate
the momentum and heat fluxes between the flow perturbation and the vegetation (Lee 1997).
The Appendix describes the basic theory and methodology; here, we describe modifications
unique to the present project.

For small perturbations from the background flow, the momentum exchange with the trees
(e.g.,Lee 1997) is approximated by an acceleration −Cd L f

√
ū2 + v̄2 u′. The constant Cd

is a drag coefficient, typically set to 0.15, while L f (z) is the leaf area density. Based on the
CHATS measurements (Patton et al. 2011), we assume a piecewise-linear form for L f :

L f (z) = 5

h

⎧⎨
⎩
0, z > h
(h − z)/(h − zmax), zmax < z < h
z/zmax, 0 < z < zmax

, (6)

with tree height h = 10m and zmax = 8m. The rate of heat transfer from the trees is modeled
similarly as −Ch L f

√
ū2 + v̄2 b′, where b′ = −gρ′/ρ̄ is the buoyancy perturbation and

Ch = 0.10.
We assume that the ambient turbulence is homogeneous, isotropic and has unit Prandtl

number so that the viscosities and diffusivities that work on vertical and horizontal gradients,
Av, Ah, Kv and Kh , are all uniform and equal to a constant A0. Modifications to the classical
TG problem are therefore quantified by the three parameters Cd , Ch and A0. Their values
are chosen using four models:

#1 First, fluxes of heat andmomentumdue tomolecularmotions, turbulence, and interactions
with vegetation are all neglected, i.e. Cd = Ch = A0 = 0. This results in the classic TG
equation for a stratified shear flow (Smyth and Carpenter 2019).
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#2 Next, we add fluxes of momentum and heat between the air and the vegetation with
coefficients Cd = 0.15 and Ch = 0.10 following Lee (1997).

#3 Third, we retain Cd = 0.15 and Ch = 0.10 but add eddy viscosity/diffusivity with a
fixed value A0 = 0.06m2s−1, a compromise between the observational estimates of Av

and Kv at treetop height (Fig. 8).
#4 Finally, we determine for each case the value of A0 that maximizes agreement between

the computed wave vector of the fastest-growing mode and the estimate based on the
REAL imagery (see subsect. 3.1). We repeat the calculation of the fastest-growing mode
for a range of values of A0 between zero and 0.4, then choose the A0 that minimizes the
difference in wave vectors. This model also retains Cd = 0.15 and Ch = 0.10.

We solve thesemodels using as input profiles of horizontal velocity and buoyancy obtained
from the CHATS tower measurements. For each of the 39 observed events for which wave
parameters have been measured, the corresponding mean state is identified as the velocity
and buoyancy profiles obtained by averaging in time over the 5-min period immediately
preceding the first appearance of the billows in the REAL imagery. The 5-min averaging
interval is intended to be long enough to average out the slowest observed wave periods
(60 s) yet short enough to preserve fluctuations in the mean flow that create instability. To
maintain the validity of the normal mode solution form, only modes with growth rate faster
than 1/(5min)=0.033s−1 are retained. Wind above the uppermost measurement at 29m is
assumed to vary linearly, thus ensuring that Uzz = Vzz = 0 and avoiding spurious shear
instabilities. The buoyancy frequency is assumed to be constant above 29m.

Generalizing the approach of Lee (1997), we make no assumption about the wavenumber
and propagation direction but instead scan over those parameters to identify the fastest-
growing instability. Wave properties, including speed and direction of phase propagation,
wavelength and period are compared with estimates based on the REAL observations
described in M17 (details in subsect. 3.1). By investigating not just a single case but instead
39 cases in which waves were observed, we are able to draw general conclusions about the
validity of the linear model.

3.3 Results

We first describe a representative case that illustrates the methods and the main results. We
then generalize the results via a statistical analysis of 39 events for which clear observations
of canopy wave parameters are available.

3.3.1 Case Study: Event #40

To illustrate the analysis, we first examine event #40 (in the numbering of M17), which
began at 03:33:34 LT (local time is URL - 7h) on 2 June 2007 and lasted for 6min, 10 s.
The background velocity profile (Fig. 9a) may be crudely described as a shear layer between
∼5m and ∼23m in which the wind increased from near zero to ∼2m/s from the WSW.

The mean squared shear profile (Fig. 9b, blue curve) shows a sharp maximum at 10m.
The squared buoyancy frequency (Fig. 9b, red curve) is generally positive but is, importantly,
less than S2/4 (implying Ri < 1/4) between 8m and 23m. The shear maximum at 10m is
accompanied by a stratification minimum (suggesting previous mixing) and thus very low
Ri . The flow is therefore potentially unstable to shear-driven instabilities.

We now solve the stability problem for a range of wave vectors {k, �} and plot the growth
rate σ of the fastest growing mode at each point (Fig. 9c). For this illustrative calculation, we
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Fig. 9 LSA of event #40 (2 June 2007, 10:33:34-10:39:44 UTC). a Mean velocity profiles. Measurement
heights are marked on the vertical axis. b Squared shear and buoyancy frequency. Ri < 1/4 when S2/4 > N2.
c Growth rate versus zonal and meridional wave vector components. Blue arrows indicate the observed wave
vector; black arrows highlight the wave vector of the fastest-growing instability, κ = 0.2m−1, φ =50◦. d The
shear production rate (normalized by its maximum value)

use the TG model (#1 in Sect. 3.2). Instability is found over a broad range of wave vectors,
with maximum growth rate 0.033s−1 at κ = 0.2m−1 (i.e. wavelength 30m) and direction
50◦ north of east. At this growth rate, the disturbance grows by a factor e in about 30 s. The
period in which the waves are observed to grow includes several of these e-folding intervals,
showing that the growth rate is sufficient to explain the observations. Note also that the time
scale for instability growth is much faster than the 5-min averaging interval that defines the
background flow. We are therefore justified in using the normal mode solution form (2). If
this were not true we would reject the result.

The lower half of Fig. 9c is a reflection of the upper half due to the symmetry of the
equations. The black arrow indicates the fastest-growing mode over all {k, l}. The indeter-
minacy in the wave vector of the fastest-growing mode due to the aforementioned symmetry
is resolved by requiring that the phase propagation speed c be positive. The shear production
rate (Fig. 9d) for this mode is sharply peaked near z = 10m, confirming that the instability
draws its energy from the shear just above the treetops.

The blue arrow inFig. 9c indicates thewave vector asmeasured graphically from theREAL
imagery. Comparing the arrows, we see that the linear analysis predicts the direction of the
wave vector quite accurately, but overestimates its length. More specifically, the observed
wavelength of the billows is about twice that predicted by the stability analysis.

The calculation shown in Fig. 9 has been simplified by the omission of ambient turbulence
effects and drag and heat transfer due to the leaves (i.e., model #1). We now ask how the
result will change when those effects are accounted for. We first add the vegetation terms as
specified in model #2, with coefficients Cd = 0.15 and Ch = 0.10. The result is shown in
Fig. 10a. The main difference is an overall reduction in the growth rate; the maximum drops
from 0.033s−1 in the TG limit to 0.027s−1 with the transfer terms included. The wave vector
of the fastest-growing mode is virtually unchanged.

We next add eddy viscosity and diffusivity, with A0 = 0.03m2 s−1. The growth rate distri-
bution now changes markedly (Fig. 10b). (Note that the axes have been altered from Fig.9 to
make the central region of the plot more visible.) At large wavenumbers (around the outside
of the diagram), growth rates are greatly reduced. The two large regions of instability have
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Fig. 10 Growth rate versus zonal and meridional wave vector components for event #40 with eddy viscos-
ity/diffusivity amplitude A0 = 0 (a), 0.03m2 s−1 (b), 0.06m2 s−1 (c) and 0.17m2 s−1 (d). Arrows identify
the fastest-growing unstable mode (black) and the observed wave vector (blue). In all cases Cd = 0.15 and
Ch = 0.10

moved inward, indicating that smaller-wavenumber features are less vulnerable to viscous
damping. The fastest-growing instability (black arrow) now has a wave vector quite similar
to the observation (blue arrow).

We now repeat the experiment with A0 increased to 0.06m2s−1 (model #3), and then to
0.17m2s−1. As shown in Fig. 10c and d, the region of fastest growth continues tomove toward
smaller wavenumbers (i.e. longer waves). The final eddy viscosity shown, 0.17m2 s−1, yields
a growth rate of 0.03 s−1, beyond which the time scale for instability growth is longer than
the 5-min time scale of the background flow and the normal mode solution is no longer valid.

In Fig. 11, the wave vector predicted for A0 = 0.03m2 s−1 is shown by an arrow super-
imposed on the REAL image for event #40. The reader may verify the correspondences in
both magnitude (or wavelength) and orientation.

Figure12 gives a more thorough depiction of the dependence of wave properties on the
assumed eddy viscosity A0. The growth rate (Fig. 12a) decreasesmonotonically with increas-
ing A0. The wavenumber κ (Fig. 12b) decreases sharply as A0 is increased from zero, then
becomes independent of A0 at higher values. The dependence ofφ on A0 (Fig. 12c) is less con-
sistent, but the prediction generally remains within a few degrees of the observed value. The
phase speed (Fig. 12d) increases rapidly then flattens out at a value close to the observations.
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Fig. 11 Example backscatter
image from REAL, event #40 (2
June 2007, 10:33:34-10:39:44
UTC). The arrow indicates the
wavelength and direction of
propagation predicted by the
linear stability analysis with
Cd = 0.15, Ch = 0.10 and
A0 = 0.03m2 s−1 (model #4).
Thin vertical streaks result from
the laser beam illuminating
occasional elements of foliage

Fig. 12 (a–d) Properties of the fastest-growing instability versus A0 for event #40: a growth rate σ , bwavevec-
tor magnitude κ , c propagation angle φ, d phase propagation speed c. The horizontal dashed line marks (a)
the minimum growth rate consistent with the frozen-flow assumption, (b,c,d) the observed value. e: Squared
magnitude of the difference between the wave vectors k of the computed fastest-growing instability and of
the observed canopy wave. f : As (e) but for the phase propagation speed c. Vertical lines mark cases shown
in Fig. 10: A0 = 0.03 m s−1, at which the discrepancy in the wave-vector is minimized (cf. e), A0 = 0.08m
s−1 and A0 = 0.17m s−1 (cf. a). In all cases Cd = 0.15 and Ch = 0.10

Thediscrepancy in thewavevector (Fig. 12e) shows a clearminimumat A0 = 0.03m2 s−1, the
value used for Fig. 10b. The discrepancy in the phase speed (Fig. 12f) also drops rapidly with
the introduction of eddy viscosity, decreasing by an order of magnitude at A0 = 0.03m2 s−1.

The stability boundary, at which the growth rate drops to zero due to strong eddy viscosity,
is of interest although it is not formally valid as it violates the frozen flow assumption. In
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Fig. 13 Growth rates from the linear stability analysis of 39 observed wave events. Models including fluxes
due to vegetation and ambient turbulence are compared with the original TG equation: a model #2, with
air-tree fluxes following (Lee 1997), bmodel #3: air-tree fluxes plus turbulence with eddy viscosity/diffusivity
A0=0.06m2 s−1, c model #4: air-tree fluxes plus turbulence with A0 fitted to maximize agreement with the
observed wave vector. d Growth rate from model #4 versus fitted eddy viscosity/diffusivity A0. For the point
marked �, the optimal value A0 = 0 does not fit on the logarithmic scale

this case, the eddy viscosity needed to bring the growth rate to zero is A0 = 0.26m2 s−1

(Fig. 12a).
The difference in effect between tree fluxes and turbulence is not unexpected. The tree

fluxes are modeled as Rayleigh damping terms, which have no scale dependence. In contrast,
the turbulence effects are modeled using Laplacian operators, which act more strongly on
small-scale structures.

3.3.2 Statistical Analysis of 39 Events

We now apply our four LSA models described in Sect. 3.2 to the full ensemble of 39 canopy
wave events for which subjective estimates of the phase propagation speed, direction. wave-
length and period are available (M17). The TG model gives growth rates between 0.018s−1

and 0.083s−1, with a median value 0.036s−1. The addition of trees (model #2) reduces the
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Fig. 14 Predicted versus observed wave parameters for four LSA models. Table 1 gives the corresponding
comparisons in quantitative form

median growth rate to 0.032, a reduction of 12% (Fig. 13a). The further addition of vis-
cosity with A0 = 0.06m2 s−1 (model #3; Fig. 13b) creates a general decrease in growth
rate, with median reduced by more than a factor of two. Replacement of the fixed value
A0 = 0.06m2 s−1 with the individually fitted values (model #4; Fig. 13c) reduces the median
growth rate by a further factor of two. The optimal eddy viscosity values delivered by model
#4 range from zero to 0.3m2 s−1, with larger values tending to produce smaller growth rates
(Fig. 13d).

The optimal values of A0 have median 0.06m2 s−1, and quartiles 0.03 and 0.14m2 s−1.
These ranges are strikingly similar to the range of measured values at the shear maximum
(Sect. 2.4). However, there is little correlation between measured and inferred values for
individual cases.

We next compare the wave vector, phase speed and period computed using the four linear
models with the subjective estimates of M17. The results shown previously for case #40
(Sect. 3.3.1) turn out to be generally true. We begin by discussing the TG, with reference to
the top row of Fig. 14, and the third column of Table 1. The direction of propagation of the
fastest-growing instability is reasonably consistent with that of the observed wave (Fig. 14a).
This is close to the direction of maximum shear, consistent with KHI theory (e.g., Smyth
and Carpenter 2019). The median of the observed directions (Table 1, row 4) is 65◦ north of
east, whereas the median of the LSA predictions (row 5, column 3) is 85◦, i.e. the prediction
is high by 20◦, or 31% relative to the observed value (row 6). By coincidence, the median
discrepancy in individual cases (computed as median absolute difference between predicted
and observed directions; row 7) is also 20◦.

The approximate agreement found for the propagation direction is not found in the case
of the wavenumber κ (Fig. 14b, Table 1, column 3, rows 8–11). Instead, both the difference
of medians and the spread are greater than a factor of two, as was illustrated previously
for case #40 (Fig. 9c). Points clustered at the top of Fig. 14b have κ = 0.4m−1, the largest
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value included in the analysis. The true value is even larger, i.e. further from the observed
wavenumber.

The median phase propagation speed c (Table 1, rows 12–15) is low by 18% while indi-
vidual cases typically differ by 40%. The period (rows 16–19) is systematically low by 48%
while individual values differ by 58%.

To summarize: the TG model reproduces the direction well and the speed to within a
few tens of percent, both in the median and in individual cases, but it overestimates the
wavenumber (and underestimates the period) by more than a factor of two. This suggests
that canopy waves are not well represented by KHI, at least not in its classical, inviscid form.
We now ask whether the agreement can be improved by accounting for air-tree fluxes and
ambient turbulence using the parameterizations described above.

Adding the tree fluxes alone (model #2) does not improve the correspondence with obser-
vations (Table 1, column 4). In particular, the extreme discrepancy in the wavenumber is
unchanged. In other cases, the discrepancies are actually slightly greater.

We turn next to the effect of eddy viscosity/diffusivity due to ambient turbulence. To begin,
we add turbulent viscosity and diffusivity at the level of A0=0.06m2 s−1, approximately the
median of the measured values at treetop height (Fig. 8), i.e. model #3. Results may be found
in Fig. 14, third row, and column 5 of table 1. All discrepancies are now significantly reduced.
In particular, the discrepancy in wavenumber is reduced from a factor of two to a few tens
of percent (table 1, rows 10,11).

These promising results conceal a serious deficiency. In 6 of the 39 cases studied, the
stability analysis failed to yield a growing mode. The highest growth rate was either less
than the cutoff value 0.0033s−1 or negative, indicating that the value A0 =0.06m2 s−1

is beyond the stability boundary. This is a serious failure since the REAL images clearly
show an instability. There are multiple possible reasons for this. For example, the waves
may have grown slowly enough that their properties were determined by events more than
5min previous to their becoming visible. Alternatively, the variation of eddy viscosity and
diffusivity with height, neglected here, may be important. But the most likely explanation, is
that the single value A0 =0.06m2 s−1 is not applicable in all cases, and is even beyond the
stability limit for some. We now seek to remedy that problem.

In model #4, we employ for each case the value of A0 that optimizes the correspondence
in the wave vector. When the stability analysis is conducted using these optimal values (table
1, bottom row and Fig. 14, right-hand column), the discrepancies from the observations are
generally (though not always) smaller than in the case A0 = 0.06 m2s−1. The improved
agreement in the wave vector is to be expected, but not so the agreement in the phase speed,
since no effort has beenmade to optimize the latter.Most importantly, though, the comparison
is now valid (i.e. apples-to-apples) because growing modes were found in all cases where
canopy waves were observed.

4 Conclusions

Applying linear stability theory to boundary layer observations made over an orchard, we
have explored the relationship between canopy waves and KHI. Our results support twomain
conclusions:

– Canopy waves may be understood as KH billows only when the effects of ambient
turbulence are accounted for.
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– Canopy waves occur in relatively calm conditions where ambient turbulence is weak
enough to permit their growth. This state is often reached just before sunrise.

Besides the inevitablemeasurement errors, discrepancies between theory and observations
may result from three main shortcomings of the analysis.

– Questionable assumptions underlie the linear stability analyses, e.g. perturbations from
parallel flow are not truly infinitesimal and the background flow is neither steady nor hor-
izontally homogeneous. Unsteadiness may be addressed by looking for optimal transient
modes of instability (Kaminski et al. 2014), while inhomogeneity requires a nonmodal
approach such as large-eddy simulation (Moeng and Sullivan 2014; Patton et al. 2016).

– The present analyses ignore the vertical variation of turbulence, which generally peaks
at treetop height, an extension that will be implemented in the future.

– Our estimates of wavelength, period and phase velocity from REAL imagery are subjec-
tive. They were a first attempt to capture the case to case variability, ignoring in particular
the spatial and temporal variability that may occurwithin a given case. Objectivemethods
are now under study.

Canopy waves are a significant factor in the regulation of atmospheric properties in forest
canopies, especially at night or over cold surfaces, for example, at high latitudes in winter.
Those properties include temperature and trace gases such as water vapor, methane, and car-
bon dioxide (Fitzjarrald andMoore 1990). KHI represents amore general class of phenomena
which create and maintain turbulent fluxes in diverse geophysical fluid environments includ-
ing oceans (Smyth andMoum 2012; Smyth 2020), estuaries (Tedford et al. 2009; Geyer et al.
2010) and the magnetospheres of Earth and other planets (Michael et al. 2021) as well as
the atmosphere. The identification of canopy waves as a form of KHI suggests that, besides
their intrinsic importance, forest canopies can provide a natural laboratory where KHI occurs
predictably and is readily accessible for study. Topics for future study include comparison
of the breaking mechanisms suggested by the asymmetric structure of observed billows with
predictions from direct simulations of KHI (e.g.,Espinoza-Ruiz et al. 2023; Mashayek and
Peltier 2012a, b), and comparison of length scale ratios that characterize billow geometry
with values found in the ocean (Smyth and Moum 2000).
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Appendix 1: A Linear, Normal-Mode Stability Analysis of Stratified, Par-
allel Shear Flows Including Ambient Turbulence and Vegetation Effects

For a small-amplitude, normal mode disturbance with horizontal wave vector k evolving on
a steady, parallel, horizontal background flow uh , mode evolution is determined solely by
the component of the background flow parallel to the wave vector. Therefore, for a given
k, we consider the two-dimensional problem of a parallel shear flow U (z) = k · uh/κ

disturbed by the velocity perturbation {u′, w′} and the buoyancy perturbation b′. Applying
the Boussinesq approximation, density is decomposed as ρ = ρ0 + ρ̄(z) + ρ′(x, z, t), after
which the buoyancy, b = g(ρ0 − ρ)/ρ0, becomes b = B(z) + b′, where B = −gρ̄/ρ0 and
b′ = −gρ′/ρ0. In this context the primed quantities are treated as small perturbations.

Viscosity and diffusivity may be molecular in origin, or they may represent the effects
of turbulence on spatial scales much smaller than the wave scale κ−1. Following (Liu et al.
2012), the viscosity and diffusivity are allowed to have separate horizontal {Ah, Kh} and
vertical {Av, Kv} parts, and to vary in the vertical.

We also parameterize the transfer of momentum and buoyancy between the vegetation
and the flow perturbation following (Lee 1997). The Boussinesq equations, linearized about
the background flow, are then:

∂u′

∂t
+ U

∂u′

∂x
+ w′ dU

dz
= −∂π ′

∂x
+ Ah∇2

h u′ + ∂

∂z

(
Av

∂u′

∂z

)
− Cd L f |U |u′, (7)

∂w′

∂t
+ U

∂w′

∂x
= −∂π ′

∂z
+ b′ + Ah∇2

hw′ + ∂

∂z

(
Av

∂w′

∂z

)
− Cd L f |U |w′, (8)

∂b′

∂t
+ U

∂b′

∂x
+ w′ d B

dz
= Kh∇2

h b′ + ∂

∂z

(
Kv

∂b′

∂z

)
− Ch L f |U |b′, (9)

where x is the horizontal coordinate parallel to k. The final term in each equation is the
parameterized flow-vegetation flux (Lee 1997). The coefficients Cd and Ch are constants
while plant area density L f varies with height.

For the present application, the turbulence is assumed to be isotropic and to have Prandtl
number unity, so that Av = Kv = Ah = Kh . The coefficients Cd and Ch are either
{0.15, 0.10} or zero. The vertical structure of L f is given by (6).

Perturbations u′, w′ and b′ are assumed to have the normal mode form (2). The linearized
normal-mode equations are then written as a generalized differential eigenvalue problem:

σ

[∇2 0
0 1

] [
ŵ

b̂

]
=

⎡
⎢⎣−ιkU∇2 + ιk d2U

dz2
+ Tw + Vw −k2

− dB
dz −ιkU + Tb + Vb

⎤
⎥⎦ [

ŵ

b̂

]
, (10)

where

∇2 = d2

dz2
− k2, (11)
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is the Laplacian in normal-mode form. The operators expressing viscous and diffusive effects
of turbulence are:

Tw = d2

dz2

(
Av

d2

dz2

)
− k2

d

dz

[
(Ah + Av)

d

dz

]
+ k4Ah (12)

Tb = d

dz

(
Kv

d

dz

)
− k2Kh, (13)

while vegetation effects are represented by:

Vw = −Cd
d

dz

[
L f |U | d

dz

]
+ k2Cd L f |U |, (14)

Vb = −Ch L f |U |. (15)

In the inviscid, nondiffusive, zero-vegetation limit Ah = Kh = Av = Kv = Cd = Ch = 0,
(10) reduces to the TG equation. Specification of the problem is completed by the imposition
of a rigid, impermeable boundary ŵ = 0, dŵ/dz = 0 at the surface z = 0 and a frictionless
boundary ŵ = d2ŵ/dz2 = 0 at z = 50m. Buoyancy is fixed (b̂ = 0) at both boundaries.

The problem is solved on a stretched grid with minimum spacing 0.35m between 10 and
30m height and maximum 2m in an upper sponge layer between 30m and 50m. Approxi-
mating z-derivatives as sixth-order finite differences, we convert the differential eigenvalue
problem (10), together with the boundary conditions, to an algebraic eigenvalue problem as
described by Lian et al. (2020). The eigenvalue problem is solved using standard numerical
methods.
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