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Abstract Using analyses of data from extant direct numerical simulations and large-eddy
simulations of boundary-layer and channel flows over and within urban-type canopies, sec-
tional drag forces, Reynolds and dispersive shear stresses are examined for a range of
roughness densities. Using the spatially-averaged mean velocity profiles these quantities
allow deduction of the canopy mixing length and sectional drag coefficient. It is shown that
the common assumptions about the behaviour of these quantities, needed to produce an ana-
lytical model for the canopy velocity profile, are usually invalid, in contrast to what is found
in typical vegetative (e.g. forest) canopies. The consequence is that an exponential shape of
the spatially-averaged mean velocity profile within the canopy cannot normally be expected,
as indeed the data demonstrate. Nonetheless, recent canopy models that allow prediction of
the roughness length appropriate for the inertial layer’s logarithmic profile above the canopy
do not seem to depend crucially on their (invalid) assumption of an exponential profile within
the canopy.

Keywords Canopy flows · Urban environment · Velocity profiles

1 Introduction

Probably the first suggestions that the spatially-averaged axial mean flow profile (U (z) versus
z) within roughness canopies is exponential were made by Inoue (1963) and Cionco (1965),
in the context of vegetation canopies. There have since been numerous demonstrations from
both field and model (laboratory) experiments confirming such behaviour (Finnigan 2000),
which arises largely because both the sectional drag coefficient and the mixing length do not
vary significantly with height within a canopy of plants (trees or tall crops). The momentum
equation then reduces to a particularly simple form that implies exponential behaviour ofU (z)
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within the canopy. This profile transforms smoothly to the usual above-canopy logarithmic
behaviour and there must always be an inflection point in the profile around the top of the
canopy. Vegetation canopies have been widely explored (see, for example, Poggi et al. 2004;
Böhm et al. 2013, who used model canopies in a laboratory flume and a wind tunnel, respec-
tively). It is well-known that the dynamics of the flow in such canopies are not too dissimilar to
those of the plane mixing layer (Raupach et al. 1996), largely because of the inflection point.

Nicholson (1975) and, much later, MacDonald (2000) undertook some (laboratory) exper-
iments on flows through arrays of cubes and suggested that exponential profiles pertain even
in that very different type of canopy. It must be noted, however, that theywere unable to obtain
vertical profiles genuinely averaged across the entire space between obstacles and had to rely
on averaging just a few, hopefully representative, profiles. This continues to be a significant
problem for experimentalists and even using particle image velocimetry combined with laser
Doppler anemometry it is very difficult, if not impossible, to achieve fully three-dimensional
spatial averaging wi thin the canopy (see Reynolds and Castro 2008, as an example of what
can be done).

In recent years numerous authors have reported the results of either direct numerical
simulation (DNS) or large-eddy simulation (LES) experiments for flows over and within
(mostly urban-type) canopies comprising arrays of sharp-edged obstacles. Such computations
naturally yield far more information than can be obtained from any conceivable field or
laboratory experiment but it should not be forgotten that there is just as much scope for
error in producing computational results as there is in the laboratory. Accuracy depends not
least on the quality of the mesh, the fidelity of the numerical methodology, the adequacy of
the imposed boundary conditions, and (for LES) the appropriateness of the subgrid model.
For all computations employed herein, these (and other relevant) issues have been carefully
addressed and, where possible, solutions compared with quality laboratory data, as fully
discussed in the original literature.

A major advantage of computational solutions is that the results can be used to extract full
spatially-averaged data, not just for the mean flow variables but also for turbulence quantities
including the dispersive stresses—stresses that arise because of the spatial variability of the
time-averaged quantities within the canopy. Kono et al. (2010) used such information from
their LES studies of cube canopies of various plan area densities, λp , to explore quantities
within the canopies such as the sectional drag coefficient and themixing length. (λp is defined
as the ratio of the top surface area of the cube and the repeating unit floor area upon which
it resides.) It was shown that neither was constant with height, but the consequent lack,
or otherwise, of good exponential fits to velocity profiles was not explored. On the other
hand, Yang et al. (2016) have recently argued f or the exponential behaviour of the mean
velocity on the basis of their LES studies of cube canopies, but they did not explore either
sectional drag or mixing length variations. Coceal and Belcher (2004) were perhaps the first
to suggest that mean velocity profiles were not generally exponential in such canopies, but
this was on the basis of simulations using the Reynolds-averaged Navier–Stokes equations
made with the UKMet Office BLASIUSmodel with a first-order turbulence closure scheme.
Nonetheless, their demonstration that a varying (rather than constant) mixing length led to a
non-exponential velocity profile is significant. Here, we present crucial canopy flow and drag
information from a number of extant computations. Although many of the results of these
computations have previously been published, the datasets were not analyzed at the time to
generate the information necessary to assess the adequacy of the assumptions used to develop
canopy models analytically. It turns out that, as Coceal and Belcher (2004) suggested, mean
velocity profiles within the canopy do not generally have an exponential shape, in contrast
to vegetation canopies, and the reasons for this are confirmed.
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A summary of the datasets mined for the present work is presented in the next section,
without detailed explanations of how theywere obtained; those can all be found in the original
papers, many (but not all) of which originated from the author’s collaborators. Sections 3 and
4 show mean flow profiles and the quantities normally used to develop canopy models, for
canopies ranging from what would usually be considered ‘sparse’ (i.e. widely spaced obsta-
cles) to denser ones leading almost to skimming-type flows. Some discussion and conclusions
are presented in Sect. 5.

2 The Flows Considered

Much of the data presented here has been derived from the DNS studies of Leonardi and
Castro (2010). These were half-channel flow simulations in which the wall was covered with
staggered arrays of cubes with various area densities, as measured by the usual plan area
density. In these and the other cases described below (unless stated otherwise) the flow was
aligned normal to obstacle faces. For cubic obstacles λp (defined above) is identical to the
frontal area density, λ f—the ratio of the frontal area of the obstacles to the floor area of
the repeating unit. The study covered the range 0.04 ≤ λp ≤ 0.25, i.e. from quite sparse
to quite dense roughness. The cube height h was one eighth of the channel half-height (H )
and there were typically 12 cubes within the computational domain, independent of λp . The
mesh was particularly fine, especially over the cube height, having a grid size ofΔ = h/100.
This vertical grid dimension is the most crucial. Some computations introduced below used
uniform (square) grids but in others the horizontal grid dimension varied, but was always at its
most refined near the obstacle walls; values of Δ always refer to the vertical grid dimension
within the canopy. A typical roughness array is shown in Fig. 1. The data of Coceal et al.
(2006) and Branford et al. (2011) are also considered; they performedDNS on both staggered
and aligned (sometimes called ‘square’) arrays of cubes having λp = 0.25 in channels with
H = 8h using DNS but with a somewhat coarser resolution (Δ = h/32). A similar set of
flow data derives from the recent study of Cheng and Porte-Agel (2015) (see also Cheng and
Porte-Agel 2016), who used LES to compute a spatially-developing boundary-layer flow, in
a domain of height H = 12.6h. The uniform mesh had a grid size of Δ = h/16, and an areal
density range of 0.028 ≤ λp ≤ 0.25 was considered. Two wind-direction cases were studied
(θ = 0◦ and 27◦, Fig. 1). LES, for the staggered arraywith λp = 0.25 but over a range ofwind

Fig. 1 On left plan view of a typical cube array—a staggered array with λp = 0.11 (Leonardi and Castro
2010). Aligned arrays would, for λp = 0.25 for example, have cubes in boxes 1, 3, 5 . . . (or 2, 4, 6, . . . ) along
alternate rows in the figure. At right plan view of DIPLOS array of h × 2h × h cuboids (Castro et al. 2016)
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Table 1 Details of the various datasets used

Case Method Acronym: Authors H/h Δ/h

Staggered cubes DNS LC: Leonardi and Castro (2010) 8.0 1/100

Staggered and aligned cubes DNS CTCB: Coceal et al. (2006) 8.0 1/32

Staggered and aligned cubes DNS BCTB: Branford et al. (2011) 8.0 1/32

Staggered cubes, various angles LES CCTBBC: Claus et al. (2012) 4.0 1/25

Staggered, random height LES XCC: Xie et al. (2008) 10.0 1/16

Aligned cubes (b.layer) LES CP-A: Cheng and Porte-Agel (2015) ≈ 12 1/16

Staggered and aligned cubes (b.layer) LES YSMM: Yang et al. (2016) ≈ 24 1/8

Aligned h × 2h × h blocks DNS, LES CXFRCHHC: Castro et al. (2016) 12 1/12

Except for CP-A’s and YSMM’s LES, where H refers to the approximate boundary-layer depth, all cases were
channel-flow computations, with H the channel half-height. All cases except CCTBBC and CXFRCHHC
considered only arrays that were flow-aligned—i.e. wind direction normal to the faces of the obstacles. For
the LES cases, the subgrid models used were either the standard Smagorinsky model (CCTBBC, XCC,
CXFRCHHC), the modulated gradient model of Lu and Porte-Agel (2010) (CP-A), or the Vreman (2010)
model (YSSM)

directions and in a half-channelwith H = 4h, have also been reported (Claus et al. 2012); grid
sizes were typically Δ = h/25 over the canopy height. A ‘random height’ extension of the
case of the staggered cube array with λp = 0.25 was that initially studied experimentally by
Cheng and Castro (2002) and subsequently computationally by Xie et al. (2008), using LES
for a channel flow with domain height H = 10h. This canopy had block heights of 0.28hm ,
0.64hm , hm , 1.36hm and 1.72hm , with the numbers of blocks of each height adjusted to yield
a Gaussian height distribution (with mean height hm) within the entire domain. The mesh
had a resolution of aboutΔ = hm/16 in the canopy region. More recently, LES of boundary-
layer flow over staggered and aligned cube roughness arrays with λp = 0.03–0.25 has been
reported by Yang et al. (2016). They used a boundary-layer height ≈ 24h but a resolution of
only Δ = h/8. For the present work, data from the two sets of boundary-layer simulations
(Cheng and Porte-Agel 2015; Yang et al. 2016) were spatially averaged only within the fully
developed region downstream. A final set of data is that reported by Castro et al. (2016) who,
as part of a wider dispersion project (DIPLOS—http://www.diplos.org), used a channel-flow
LES for a square array of rectangular obstacles of size 2h × 1h × 1h spaced apart by 1h
(Fig. 1) and at three flow angles, θ = 0◦, 45◦, and 90◦, in domains with H = 12h. These
three cases all have the same λp (0.33) but varying λ f of 0.33, 0.35 and 0.17, respectively,
for the three flow angles. Table 1 summarises all of these various computations.

In discussing the canopy region results presented below, possible differences arising from
different domain sizes or outer flow conditions (e.g. whether of boundary-layer or channel
type) are generally assumed to be small, in line with Castro et al. (2016). We address the
influences of Reynolds number, resolution and (in LES cases) subgrid model where appro-
priate. In all cases Reynolds numbers based on canopy height and wall friction velocity (uτ ,
determined by the imposed axial pressure gradient in the channel cases) wasO(1000) so that
each flow was in the fully rough regime.

3 Mean Flow Profiles

All field variables shown are spatial and time averages. Within the canopy these are extrinsic
spatial averages—i.e. averages over the total volume, rather than the fluid volume only,
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(a) (b)

Fig. 2 Canopy spatially-averaged mean velocity profiles for cases of flow-aligned arrays. Values of λp are
given in the legends. a Staggered array; b aligned array. The legends indicate data sources: YSMM (black
circles), Yang et al. (2016); CCTBBC (green), Claus et al. (2012); CTCB (brown), Coceal et al. (2006); LC
(black, blue, red, purple), Leonardi and Castro (2010); CXFRCHHC (green), Castro et al. (2016); BCTB
(black), Branford et al. (2011); CP-A (green), Cheng and Porte-Agel (2016)

which would yield intrinsic averages. Böhm et al. (2013) outline the differences between
these two averaging methods and the topic has recently been explored more fully by Xie and
Fuka (2017, in press). Figure 2 shows an initial selection of spatially-averaged, axial mean
velocity profiles within the canopy derived from some of the datasets identified in Sect. 2.
The velocities have been normalized by Uh , the velocity at z′ = z/h = 1, the arrays are
either of staggered (Fig. 2a) or aligned (Fig. 2b) type, and the LES data from the recent
computations of Yang et al. (2016) are shown using symbols. Also plotted in Fig. 2a is the
exponential profile defined by U/Uh = exp[a(z′ − 1)], where a is a constant. Yang et al.
(2016) found that a value of a = 1.83 worked well for their LES data. Note, firstly, that these
latter data (in Fig. 2a) do not collapse onto the other three sets for exactly the same roughness
geometry (λp = 0.25), whereas these other three agree between themselves reasonably well,
at least above z/h = 0.5, with only small differences in the bottom half of the canopy in the
LES data (Claus et al. 2012). The Yang et al. (2016) computations used a coarse grid over
the cube height (Δ = h/8) and it is perhaps unsurprising that this is insufficient to capture
the relatively sharp shear layer seen at the canopy top in all the other computational profiles.

It is reasonable to assume that the DNS data (with a resolution in z of Δ = h/100) are
the most accurate. Note, secondly, that these data (and the somewhat less resolved but very
close DNS data of Coceal et al. 2006) for λp = 0.25 yield small negative velocities near
the surface. This is because the reversed flow regions behind each cube in this case are not
so small that spatially-averaged velocities at low heights become positive, although they
clearly do for less dense canopies (smaller λp). The finest resolution LES data for λ = 0.25
(Claus et al. 2012) differ marginally from the corresponding DNS data below z/h = 0.5,
perhaps either because of imperfections in the subgrid model or inadequate grid resolution
or a combination of both. However, it is more likely an effect of the factor of two difference
in domain height. The Claus et al. runs used a height of only 4h, which is probably small
enough to generate partial suppression of the full extent of the reversed flow regions behind
the cubes.

Thirdly, it is clear that the sharp interface at the canopy top weakens with a reduction in
λp (Fig. 2a), not surprisingly, and is also present for the aligned arrays (Fig. 2b) in which
the blocks are directly behind one another in the successive rows. These results are similar
to those shown by Kono et al. (2010). No value of a yields a reasonable exponential fit,
simultaneously capturing this interface and the rather slower decay in U below it. Figure 2b
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(a) (b)

Fig. 3 Canopy spatially-averaged mean velocity profiles for λp = 0.25. a Staggered and aligned arrays,
various wind directions; CCTBBC (green), Claus et al. (2012); BCTB (black), Branford et al. (2011). The
dashed line is exponential with a = 1.5, fitting the profile for the case of staggered blocks of random height,
Xie et al. (2008) (XCC, brown), which is plotted using h = hm and U/Uh = U/Uhm . b The DIPLOS
array at various wind angles, from Castro et al. (2016), and the DAPPLE array, from Xie and Castro (2009)
(λp = 0.53), with a flow angle of about 51◦ to the major street direction. This case was not modelled as a
channel flow and thus required appropriate turbulent boundary-layer inlet conditions, as explained by Xie and
Castro (2009)

includes an exponential profile with a = 5 as a somewhat extreme example, which manages
the former rather better, but not the latter. As in the staggered case, the Yang et al. (2016) data
and corresponding exponential (with a = 1.1) differ significantly from the better-resolved
DNSdata. It would seem that if a sufficiently coarse grid is used the sharp shear layer interface
between the canopy flow and the flow aloft is not captured and exponential velocity profiles
may result.

Figure 3 shows similar profiles to those shown in Fig. 2 but emphasizing the effect of
flow orientation rather than λp . In the upper half of the canopy, staggered arrays of cubes
at wind angles of θ = 0◦ and θ = 45◦ yield similar profiles (Fig. 3a). On the other hand,
once θ = 90◦, canopy velocities are significantly higher, no doubt because for this direction
(unlike the other two) there are uninterrupted streets in the flow direction. Likewise, for the
array of h × 2h × h obstacles and θ = 90◦ (Fig. 3b) the long uninterrupted streets have only
short openings between their ends, whereas for θ = 0◦, (the orientation shown in Fig. 1) the
street intersections are of the same size as the regions between obstacles in the same row.
An aligned array of cubes, similarly, yields rather higher canopy velocities because of the
uninterrupted streets. Note, incidentally, that the drag of the staggered array is higher than
that of the aligned array and highest for θ = 45◦, because λ f is highest for that case and
there are no uninterrupted streets of any width in the flow direction (Castro et al. 2016).

Figure 3b also includes data from LES of a region in the centre of London, from Xie
and Castro (2009) who modelled the field and wind-tunnel case extensively explored in the
DAPPLE project (Dobre et al. 2005). This has numerous obstacles of various shapes and sizes
and, unlike all the other situations considered here, is thus a much more general type of urban
canopy. The value of h used for this case is the height of the largest building (about 1.45×
the mean building height). In only one of the cases shown in Fig. 3 is there any possibility
of an exponential fit over any substantial height range (i.e. exceeding, say, 0.1h) within the
canopy but this one exception is of some interest. It is the case of staggered blocks of random
heights studied using LES by Xie et al. (2008). The velocity profile in Fig. 3a clearly shows
a much less sharp shear layer around the top of the canopy or, rather, around its mean height
hm , than all the other (uniform height) canopies. This is a natural expectation and is fully
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discussed in Xie et al. (2008). Perhaps because of this thicker shear layer with its inevitably
smaller velocity gradient, an exponential profile (with a = 1.5) does provide a reasonable fit
in the range 0.25 < z/hm < 1, despite the slight ‘bumps’ that can be seen in the profile at the
different heights of the various blocks. But in the upper half of the canopy (1 < z/hm < 1.72)
the exponential fit fails and if, alternatively, the full canopy height (1.72hm) and the velocity
at that height are used to normalize z and U (z), respectively, no exponential fit is possible
(not shown). The same is true for the DAPPLE case included in Fig. 3b (Xie and Castro
2009), which has variable building heights and shapes in the array and is discussed later.

We consider the implications of these two random height cases in due course but turn now
to consider the behaviour of the sectional drag coefficients and mixing lengths within the
canopy.

4 Sectional Drag and Mixing Length Profiles

The time- and space-averaged axial momentum equation for (fully developed) flow at height
z within a canopy region can be expressed as

(
− 1

ρ

∂P

∂x

)
− ∂uw

∂z
− ∂ ũw̃

∂z
+ ν

∂2U

∂z2
= D(z) (1)

where −uw is the usual time- and space-averaged Reynolds shear stress, −ũw̃ is the dis-
persive stress associated with momentum transport by the spatial deviations of the ensemble
mean velocity field from the spatially-averaged mean axial velocities and ν is the kinematic
viscosity. The bracketed term usually only appears in cases of channel-flow computations
and is the axial pressure gradient that provides the total driving force used to generate the
flow and so equals u2τ /H . (The friction velocity is defined by uτ = √

τ/ρ with τ the surface
stress and, typically, the appropriate force is applied within each cell of the domain.) For
reasonable domain heights (H >> h) this additional term is small compared to the other
terms within the canopy, and it is henceforth ignored. Incidentally, in cases of open chan-
nel flow over rough beds, such as rivers for example, the bracketed term is replaced by the
gravitational driving force dependent on the bed slope. There is a considerable literature on
this general topic; e.g., see Nikora et al. (2004), for typical references and discussion about
possible velocity profiles.

D(z) in Eq. 1 is the canopy drag force, a drag per unit volume of air produced by the
combination of pressure differences across the canopy obstacles and viscous forces on their
side surfaces. In all the developments of canopy models in the literature the dispersive stress
and viscous contributions are ignored. At the Reynolds numbers used for the computations
explored herein the viscous stresses can be ignored but, as will be shown later, the dispersive
stresses are generally not negligible. The importance or otherwise of dispersive stresses
within canopies has been explored previously; an example is Poggi et al. (2004) who, in the
context of vegetative-like canopies, showed that they are only significant for sparse canopies.
(Incidentally, in summarizing the earlier literature, they also stated that Cheng and Castro
(2002) found negligible dispersive stresses in urban-type canopies. This is incorrect as these
authors did not measure dispersive stresses within the canopies.) Likewise, very recently and
again in contrast to all the present cases, Boudreault et al. (2017) have shown that for forest
canopies the dispersive stresses are only important near the edge of the forest and (in some
cases) very near the top of the canopy.
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A sectional drag coefficient cd can be defined by

D(z) = 1

2h
cd(z)λ f |U (z)|U (z). (2)

Making the four assumptions that, (i) cd(z) is constant with z, (ii) the (spatially-averaged)
Reynolds shear stress can be modelled by the classical mixing length relation −uw =
(lm(z)dU/dz)2, (iii) the mixing length lm is also constant with z, and (iv) the dispersive
shear stress and all viscous contributions can be ignored, Eq. 1 reduces to the second and
last terms only, a balance between the shear-stress gradient and the obstacle drag force. Then
(and only then) can it be easily solved explicitly to yield an exponential behaviour of the
canopy velocity U (z).

The viscous forces can be accurately computed from DNS data, but at the Reynolds
number of these computations they can be ignored (though they are not entirely negligible,
being typically a few percent of the total drag, as discussed byLeonardi andCastro 2010). The
drag coefficient is then simply cd(z) = Δp(z)/[ 12ρU 2(z)], whereΔp(z) is the axial pressure
difference across each array obstacle (averaged across its span). Themixing length lm can also
be deduced from the data and Fig. 4 shows both cd and lm for the cases computed by Leonardi
and Castro (2010). Including viscous drag contributions at each z does not materially change
the profiles shown in Fig. 4a. Note, firstly, that only for the less dense arrays (λp < 0.15, say)
can cd (Fig. 4a) be considered constant over any non-negligible region of the canopy height.
Even in these cases, there remain strong variations below z/h < 0.2, because the velocities
become very small there (see Fig. 3). Conversely, near the top of the canopy, cd tends to zero
at z/h = 1, since the axial pressure difference must be continuous through the canopy top
and it is essentially zero just above z = h. Incidentally, it is of interest that the laboratory
data for cd obtained by Cheng and Castro (2002) for λ f = 0.25 are fairly consistent with
the DNS data even at low z, despite the uncertainties arising from both limited resolution in
the pressure measurements andU (z) values obtained as an average of vertical profiles at just
three locations in the array. Coceal and Belcher (2004) viewed the value of cd at the lowest
height (in Fig. 4a) as spurious and took the data as implying a roughly constant cd below
about z/h = 0.75, but this is clearly an oversimplification. Note too that cd(z) in the array

(a) (b)

Fig. 4 a Sectional drag coefficient within the canopy. All data for a staggered array of cubes with the λp
values given in the legend, from Leonardi and Castro (2010), except for the aligned array data from Branford
et al. (2011) (BCTB, blue dashed) and the random height array of Xie et al. (2008) (XCC, brown dashed). The
solid circles are experimental values obtaining during the course of the laboratory study of Cheng and Castro
(2002). b Canopy mixing length, normalized (like z) by h. Legend as for a. Results from DAPPLE (Xie and
Castro 2009) are included (green dashed)
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of random height blocks computed by Xie et al. (2008) is also far from constant. It is worth
emphasizing that the fact that cd is always relatively small near the top of the canopy does
not imply that the actual drag force is small there. Indeed, it is known that the total drag of
the array is dominated by contributions near the top of the array (Xie et al. 2008).

In contrast to the staggered arrays, data for the aligned array with λp = 0.25 (Branford
et al. 2011) yield cd arguably more constant than the corresponding staggered array and, in
fact, Kono et al. (2010) have shown that for such an array cd is ‘almost constant with height
above z/h = 0.1 with λp ≤ 0.25’. However, the mixing length profiles for such (aligned)
arrays were far from constant and, in fact, very similar in form to those for staggered arrays.
Figure 4b shows the lm data and, again, includes those for an aligned array and the random
height array. In no case could the mixing length profile be considered as remotely constant.
In every case, even for quite sparse arrays (e.g. λp = 0.11), the mixing length at the canopy
top is very much smaller than it is around the mid-canopy height, because of the relatively
large mean velocity gradient there. In this respect the profiles differ significantly from the
model suggested by Coceal and Belcher (2004) as an improvement on the lm = constant
assumption, but they are similar to those determined subsequently (e.g. Coceal et al. 2006;
Kono et al. 2010; Cheng and Porte-Agel 2015). Note that the variations in block heights
within the random array cause the mixing length profile to be much less smooth than it is for
uniform height arrays.

Accepting the second assumption listed above (i.e. a mixing length relation for the
Reynolds shear stress) it is of interest to explore the relationship between cd(z) and
lm(z) that is then implied by Eq. 2 if the velocity profile is in fact exponential. Using
U = Uhexp[a(z′ − 1)] it is straightforward to show that Eq. 1 reduces to

l ′2m = λ f

(1 − λp)4a3
cd . (3)

where l ′m = lm/h. Authors who have considered an exponential velocity profile have found
that typically a ∼ λ f (e.g. Coceal and Belcher 2004; Yang et al. 2016) so Eq. 3 reduces
to l ′2m ∼ cd/[(1 − λp)λ

2
f ]. Figure 5 shows convincingly that this relation does not in fact

hold over any height range within the canopy. Note particularly that the aligned-array data
(λp = 0.25) also do not follow Eq. 3, even though the velocity profile is more closely

Fig. 5 l2m versus cd/λ2f for the LC data, with λp values given in the right window. Data for the aligned array
(BCTB, dashed lines) are included. Note the direction of increasing z and that the peak mixing length often
occurs around mid-canopy height (as evident in Fig. 4b) (Recall that for cube arrays, λp = λ f .)
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(a) (b)

Fig. 6 a Reynolds shear stress (−uw) in the canopy. The legend gives values of λp , the horizontal dashed line
denotes the canopy top. The dotted lines are the expected normalised total stress—i.e. all stress components
including the pressure contribution across the obstacles—(running from (1,0) to (0,8) for the domain with
height 8h and (1,0) to (0,12) for the domain with height 12 h). Data are from Leonardi and Castro (2010) and
(for the λp = 0.33 cases, dashed lines) Castro et al. (2016). b The ratio of dispersive (−ũw̃) to Reynolds
(−uw) shear stresses

exponential. Similarly, the random-height-array data (not shown) do not follow l ′2m ∼ cd or
anything close to it.

In addition to the failure of the standard cd and lm assumptions, it turns out that the
dispersive stresses are far from negligible. Figure 6 shows the variation of the Reynolds
shear stress with height and the ratio of the dispersive shear stress to that Reynolds stress
for selected cases from Leonardi and Castro (2010) and Castro et al. (2016). In all cases the
Reynolds stresses fall from their peak values around the top of the canopy towards zero at
the bottom, as expected. It is of interest that the stress ratio (Fig. 6b) can be negative, i.e. the
dispersive stress can be of opposite sign to the Reynolds stress. This may largely be a result
of coherent vortices within the canopy (Rasheed and Robinson 2013) since the sign of the
dispersive stress depends on the signs of the axial and vertical mean ‘dispersive’ velocities;
i.e. differences between the local U and its spatial average and the same for W .

More importantly, the dispersive stress is rarely small compared with the Reynolds stress.
Only for the very sparse array (λp = 0.04) could the dispersive stress be considered negli-
gible. The immediate implication is that the dispersive stress term in Eq. 1 should not really
be ignored in any attempt to develop a model for the expected velocity profile, at least for
λp ≥ 0.1. It is therefore of interest to compute the mixing length using the total shear stress,
τ + τd = −uw − ũw̃. Figure 7a shows the results for the Leonardi and Castro (2010) cases;
the profiles can be compared with those in Fig. 4b and it is clear that adding in the dispersive
stress does not materially alter the shape of the latter profiles, although it typically increases
the maximum mixing length values by some 20%.

The mixing length results discussed above are representative of all the data we examined.
Figure 7b includes l ′m (computed using the Reynolds shear stress) for a range of other cases
for which there are sufficient data. This figure shows that, not surprisingly perhaps, changes in
array morphology and orientation lead to significant differences in the mixing length profiles.
Although in every case the general pattern is very similar (cf. Fig. 4b), maximum values and
the height at which they occur are quite dependent on morphology and wind direction. Note
that since including the dispersive stress in l ′m does not significantly change the mixing length
profiles the non-linear behaviour of l ′2m versus cd shown in Fig. 5 is not greatly affected by
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(a) (b)

Fig. 7 Mixing length profiles. Data from Leonardi and Castro (2010) cases (solid lines). In a, dashed blue
line is aligned array data from Branford et al. (2011) (BCTB) and dotted line is the Coceal et al. (2006)
model (CB); b includes data from Cheng and Porte-Agel (2015) (CP-A, staggered cubes in a boundary layer,
long-dashed yellow and red), Branford et al. (2011) (BCTB, aligned array, long-dashed blue), Castro et al.
(2016) (CXFRCHHC, aligned 1 h × 2 h × 1 h blocks, short-dashed green and red) and random height array,
Xie et al. (2008) (XCC, long-dashed brown). Figures in legends give λp values

inclusion of the dispersive stresses. Modelling the total stress using a mixing length is, in any
case, physically rather questionable, even if arguments for modelling uw that way might not
be too unreasonable (as suggested by Coceal and Belcher 2004).

Figure 7 includes the model of Coceal and Belcher (2004), which can be expressed as

1

lm
= 1

κz
+ 1

ακ(h − d)
− 1

κh
, (4)

where the last two terms together represent 1/ lc, a mixing length supposed (for dense
canopies) to be constant within the canopy and controlled by the thickness of the shear
layer (h−d) at the top of the canopy. The length lm was then modelled as the harmonic mean
of this mixing length (chosen to match that in the boundary layer above) and the mixing
length near the ground (κz), yielding Eq. 4. Coceal and Belcher (2004) chose α = 1 and
then used (4), along with an empirical expression relating d to λp as part of the turbulence
closure to the full momentum equation (with cd taken as constant with z). For homogeneous
canopies, the resulting velocity profiles were only ‘approximately exponential in the upper
part of the canopy, but sparse canopies take on a more logarithmic shape’. They could only
compare their data with those obtained in a laboratory experiment discussed by MacDon-
ald (2000); he suggested that the velocity profiles were exponential, but his experimentally
determinedU (z) profiles were far from being true spatially-averaged profiles, as Kono et al.
(2010) have demonstrated. Although Coceal and Belcher (2004) assumed cd to be constant
with height, as did other authors, they concluded that their more sophisticated mixing length
model (not constant with height) ‘had the effect that vertical profiles of spatially-averaged
mean velocity are not exponential in urban canopies’. This was an important conclusion,
which is substantiated by the present work. The fact that usually cd is also not constant with
height (as with lm) only strengthens this conclusion. But the data also indicate that the Coceal
and Belcher (2004) model is deficient in some important respects and cannot generally be
expected to be adequate for arbitrary canopy morphologies and wind directions.
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5 Further Discussion and Conclusions

The fact that coarsely gridded LES for uniform height canopies (e.g. theYang et al. 2016, data
shown in Fig. 2) or canopies that embody buildings of various heights can lead to exponential
mean velocity profiles within the canopy (at least, in the latter case, over part of the canopy
height) is of interest. Surface morphologies typical of real urban areas almost invariably do
not have buildings all of the same height and thus the shear layer around the canopy top
is inevitably thicker, with significantly lower velocity gradients (see Xie et al. 2008, for a
discussion of this point). One might deduce that this leads more naturally to exponential
profiles. However, it should be borne in mind that even in cases of non-uniform height
canopies, sectional drag and mixing length are no more constant with height than they are
for uniform height cases, as shown above. An example of a real-life situation is provided by
the wind-tunnel experiments and the (later) computations undertaken as part of the DAPPLE
project (http://www.DAPPLE.org.uk, Dobre et al. 2005), which studied an area of central
London surrounding the Marylebone Road. LES computations of flow and dispersion over
this area have been reported by Xie and Castro (2009). From the LES results it is possible to
compute the spatially-averaged velocity profile within a canopy whose dimensions are 400m
× 400 m in plan. Within this domain there are 35 (mostly sharp-edged) buildings of various
heights ranging from 13.5 to 32m, with an average height of h = 22 m and giving λp = 0.53.
The LES mesh had smallest grid sizes of around h/22 and the computational domain was
10h in height. Figure 3b includes the mean velocity profile and it is, indeed, characterized by
much smaller velocity gradients than all the others considered here. But it could not be fitted
by an exponential. The data needed to compute the canopy drag coefficient or the dispersive
stresses are not available, but the mixing length results are included in Fig. 4b and it is evident
that l ′m is not constant with height.

A clear feature of all the well-resolved simulations discussed herein is that neither the sec-
tional drag coefficient nor the mixing length is anything like constant in any of the canopies
comprising sharp-edged squat obstacles. Dispersive stresses are also not insignificant. These
facts all lead to mean velocity profiles that do not have exponential features over any signif-
icant height range. This is a rather negative conclusion, but it provides a useful warning that
analytical models of Eq. 1 using the common but, as it turns out, incorrect assumptions may
not necessarily be very helpful, at least in predicting even spatially-averaged flow profiles
within canopy regions. The complexities of the inhomogeneous, fully three-dimensional and
highly turbulent urban canopy flows are very dependent on the canopymorphology (andwind
direction) and make generalizations on spatially-averaged quantities rather problematic, at
least insofar as they might be used to develop useful canopy models.

Despite this general conclusion, it is emphasized that for computations of the flow above
the canopy, even quite simple urban canopy models can lead to useful results: for example,
yielding apparently quite reasonable values of roughness length for the above-canopy loga-
rithmic layer, as Coceal and Belcher (2004) have shown. This is fortunate for, as the present
work implies, it would not seem feasible to produce a more sophisticated (differential) ana-
lytical urban canopy model for use, for example, in current numerical weather prediction
models, which does not make invalid assumptions about the flow within the canopy.

Rather than starting with the (differential form of the) momentum equation to deduce
the velocity profile within the canopy, an alternative approach to the general problem of
estimating friction velocity and roughness length is to propose, ab initio, a specific shape
function for the velocity profile and use it to develop an algebraic model. Yang et al. (2016)
have recently used this approach, with (i) a two-part shape function for the velocity profile
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(exponential within the canopy and the classical logarithmic law plus wake for the boundary
layer above), (ii) the Jackson (1981) definition of the displacement height, and (iii) a geometric
wake-sheltering model to provide the unknown parameter (a) in the exponential part of the
velocity shape function. With appropriate matching conditions at the top of the canopy and
with the assumption that the sectional drag coefficient is constant and equal to unity, this led
to predictions of uτ and zo as functions of λ f , the frontal area density. The model can be
employed for arbitrary wind directions (Yang and Meneveau 2016) and Fig. 8 presents the
results for a staggered cube array, comparedwith the corresponding LES results of Claus et al.
(2012). This is a rather more complete set of comparisons that those in Yang and Meneveau
(2016). (Separate comparisons of uτ and Uh normalized by, say, a ‘freestream’ value would
not be sensible, since the computations were for a channel flow whereas the model used a
boundary-layer profile above the canopy.) Despite the facts that the velocity profile shape
within the canopy is not exponential (as the LES results demonstrate, see, e.g., Fig. 3a) and
the sectional drag coefficient is not constant, the qualitative features of the model results
are not unreasonable, as Yang and Meneveau (2016) concluded. However, quantitatively, the
variations with wind direction of all three parameters are significantly smaller than suggested
by the LES. Although an alternative velocity profile shape within the canopy could be used
in the model, it is less easy to see how the constant sectional drag coefficient assumption
could be relaxed and, furthermore, how non-uniform height arrays could be accommodated.

We conclude that, although it is possible to construct both differential and algebraic canopy
models that yield fair estimates of (say) the roughness length of the surface for specified,
uniform height, rectangular-sectioned obstacle arrays, they each contain some rather limiting
assumptions and could not easily be applied to the more varied surface morphologies typical
of urban or city centres. There are, nonetheless, recent morphometric models that appear to
perform reasonably well, in terms of predicting d and zo, even for arrays of variable height
buildings. An example is that of Millward-Hopkins et al. (2011), who used an exponential
velocity profile in the canopy and a constant sectional drag coefficient, along with a geo-
metric sheltering model not too dissimilar to that of Yang et al. (2016), to estimate d and
zo, obtaining reasonable agreement with available (but very limited) laboratory data. Most
recently, Millward-Hopkins et al. (2013) showed that in cases of variable height buildings,
the variability is in fact the most important morphological parameter characterizing the sur-
face. Since height variability is the most common situation in the field, this would seem to be
an important conclusion. Whether appropriate relaxations of the (incorrect) velocity profile
and sectional drag coefficient assumptions would, even if possible, improve the predictions

(a) (b)

Fig. 8 Variations of uτ /Uh and d/h (a) and zo/h (b) with wind direction. The lines are from the model of
Yang et al. (2016) and the symbols are from the LES of Claus et al. (2012), both for a staggered cube array
roughness with λ f = 0.25
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sufficiently to warrant the extra complexity remains an open question. In any case, there
needs to be a wider range of quality datasets (whether from the laboratory or the field or,
better still, from LES) against which to validate such models.

It should be emphasized, finally, that the data we have explored all apply to urban-like
canopies, i.e. relatively squat, sharp-edged obstacles with various areal densities. The lack
of uniformity in sectional drag and mixing length and the consequent lack of an exponential
spatially-averaged velocity profile within the canopy is in distinct contrast to the situation for
vegetative canopies such as forests or crops that usually embody much more slender, closely
packed elements. One might therefore anticipate that slenderness ratio, defined for example
as obstacle height divided by cross-windwidth (h/w), would be a significant parameter deter-
mining whether a canopy is a more urban or a vegetative type. There has been some effort to
address this (see, for example, Huq et al. 2007, who showed that mean flow profiles can be
quite different for canopies of buildings with h/w = 3, compared with canopies of cubes).
Very recently, Sadique et al. (2016) have used LES specifically to explore the effect of h/w

by varying it from unity to seven for various λp . They showed that the phenomenological
(wake-sheltering) model of Yang et al. (2016), mentioned above and suitably extended to
cope with tall obstacles, succeeds quite well in predicting zo for the above-canopy flow, but
they did not explore the canopy region in detail. There is also evidence (Böhm et al. 2013) that
largely vegetative-like canopies having more urban-like features appear to be characterized
by flows that are only a small perturbation of the classical vegetative canopy flows, in that the
turbulence dynamics remain dominated by the mixing-layer type instabilities arising because
of the inflection point in the canopy-top velocity profile. These issues remain to be more fully
explored.
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