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Abstract In several recent large-eddy simulation studies, the lowest grid level was located
well within the roughness sublayer. Monin–Obukhov similarity-based boundary conditions
cannot be used under this scenario, and in this note we elaborate on this fundamental problem
and suggest potential solutions.
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In the era of petascale computing, very high-resolution (the grid size, Δ = O(1) m or
finer) large-eddy simulation (LES) of atmospheric boundary-layer (ABL) flows is gradually
becoming a norm. For example, in a recent study (Sullivan et al. 2016), Δ = 0.39m was
utilized in the idealized simulation of the stable boundary layer. It is a well-known fact that
all the contemporary LES codes utilize the conventional Monin–Obukhov similarity theory
(MOST) as lower boundary conditions (e.g., Heus et al. 2010; Maronga et al. 2015). It is also
common knowledge (e.g., Lumley and Panofsky 1964; Monin and Yaglom 1971; Wyngaard
2010) that MOST is only valid for heights z � z◦, where z◦ is the aerodynamic roughness
length. MOST is not applicable for z < αh, where h denotes the height of the roughness
elements. Typically, α is assumed to be between 2 and 5 based on laboratory studies (see
Raupach et al. 1991, and references therein). Unfortunately, a number of recent LES studies
(e.g., Beare et al. 2006; Basu et al. 2011; Maronga 2014; Sullivan et al. 2016; Udina et al.
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Fig. 1 The surface layer and its sublayers (taken from Raupach and Legg 1984)

2016) prescribed the lowest grid levels (z1) within the range 0 < z1 < αh and inappropriately
invoked MOST-based boundary conditions. The purpose here is to highlight this undesirable
oversight.

The schematic in Fig. 1 depicts the canonical structure of the atmospheric surface layer,
with the roughness elements located on the substrate surface z = 0.1 The so-called displace-
ment height is denoted by d (Jackson 1981; Raupach and Legg 1984). MOST (including the
logarithmic law of the wall) is valid within the inertial sublayer (ISL), where the lower limit
of the ISL is z∗ (= αh) and the upper limit is usually taken as the 10% of the boundary-layer
height. In the roughness sublayer (RSL; also known as the transition layer), surface-wake
generation and interactions dominate and the flow is quite heterogeneous in comparison with
that in the ISL. Furthermore, due to enhanced mixing, wind shear in the RSL is significantly
less than that in the ISL. In his classic book (pp. 142–143), Townsend (1976) wrote:

For fully rough flow at large values of Reynolds number, z◦ is commonly about one-
tenth of the average height of the roughness elements and the logarithmic distribution
can be valid only at heights considerably larger than that, say for z/z◦ greater than fifty.

In other words, according to Townsend (1976): h/z◦ ≈ 10 and z∗/z◦ ≈ 50. Other estimates
and formulations of h/z◦ from experimental studies have been summarized in, e.g., Raupach
et al. (1991) and Jiménez (2004). One of the first studies documenting values of z∗/z◦ in
the ABL was due to Tennekes (1973), who put an estimate of 100 along with a candid note
“of course, that is relatively arbitrary, because firm estimates of the accuracy cannot yet be
made.” In the following years, significant contributions were made by Garratt (1978, 1980,
1983, 1992) who, based on observations from the Koorin experiment, reported z∗/z◦ to vary
from 35 to 150 for the wind profile under unstable conditions. For temperature, he found
z∗/z◦ ≈ 100 (Garratt 1980). For stably stratified conditions, z∗/z◦ for the wind profile was
found to be significantly lower, approximately in the range of 11–55 (Garratt 1983). Based
on past field and laboratory studies (e.g., Garratt 1980, 1983; Raupach et al. 1991), it is
quite evident that, in addition to atmospheric stability, the geometric nature of roughness
elements also contributes significantly to the variability in this ratio. Recently, Huang et al.

1 Some studies (e.g., Garratt 1980, 1983) use a different convention and assume the origin of z at the zero-plane
displacement.
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(2016) analyzed an extensive database comprising several direct numerical simulations and
wind-tunnel experiments. They reported the parameter α (=z∗/h) to be within the range of
1.2–2.2 for neutrally stratified flows and, in agreement with earlier studies, also found α to be
strongly dependent on the geometric details (e.g., roughness element shape and interelement
spacing).

Based on the above discussion,we strongly advocate that for future LES studies, the lowest
grid level (z1) should not be prescribed at heights z < z∗. In lieu of any universal criterion,
we recommend that the modelling community follows a tentative guideline of z1 > 50z◦.
Thus, for a value of z◦ = 0.1 m (e.g., in the GABLS-1 LES intercomparison study2), one
should use z1 > 5m.

Please note that similar guidelines are already followed in the dispersion modelling and
wind engineering communities. In the context of regulatory modelling applications, the US
Environmental ProtectionAgency (Bailey 2000) recommended that wind speed and direction
data should always be collected from z ≥ max (20z◦, 1 m). Blocken et al. (2007) noted the
following condition as one of the four criteria for computational fluid dynamics simulations:

A distance yP from the centre point P of the wall-adjacent cell to the wall (ground sur-
face) that is larger than the physical (or geometrical) roughness height KS (yP > KS).

For fully rough flows, the sand-grain roughness (KS) is related to the aerodynamic roughness
length (Blocken et al. 2007): z◦ ≈ KS/30. In other words, yP (i.e., z1 in our notation) should
be >30z◦.

Wepoint out that our proposedguidelinemaybe insufficient for transitional rough surfaces.
Recently, Marusic et al. (2013) analyzed surface-layer data from both laboratory experiments
and field measurements from the SLTEST site over Utah’s western desert. They proposed a
conservative limit of z∗ as a function of the friction Reynolds number (Reτ ),

z∗u∗
ν

= 3
√
Reτ . (1)

For the SLTEST data, Marusic et al. (2013) reported: u∗ = 0.188m s−1, ν = 1.8 ×10−5 m2

s−1, and Reτ = 6.3×105. Using Eq. 1, we obtain z∗ = 0.23m,while the sand-grain roughness
(KS) for this case is 2 mm. Since this dataset represents a mildly transitional rough surface
(Marusic et al. 2013), we utilize Eqs. 4.4 and 4.5 of Kunkel and Marusic (2006) to estimate
z◦ = 3.5 × 10−5 m. Clearly, the ratio z∗/z◦ is several order larger than the corresponding
fully rough values. If one were to perform a large-eddy simulation for this specific SLTEST
case, the lowest grid point would need to be >0.23m.

We speculate that for most idealized LES problems the guideline of z1 > 50z◦ suffices. As
a viable alternative, one could also usemodifiedMOST relationships (with anRSLcorrection)
as boundary conditions in conjunctionwith z1 < z∗. For example, Physick andGarratt (1995)
proposed such a formulation for mesoscale models that could be utilized in LES codes (with
minor modifications). Other empirical formulations also exist in the forest and urban canopy
turbulence literature (e.g., de Ridder 2010; Arnqvist and Bergström 2015). For neutrally
stratified flows, the generalized law-of-the-wall proposed by Huang et al. (2016) is another
potential candidate. Incorporation of such a formulation in contemporary LES codes should
not be a challenging task.

For idealized simulations over homogeneous surfaces, several LES codes utilize the
MOST-based boundary conditions locally (e.g., Stoll and Porté-Agel 2008) and others use a

2 The acronym GABLS stands for GEWEX (The Global Energy and Water Cycle Exchanges Project) Atmo-
spheric Boundary Layer Study.
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planar-averaged option (e.g., Basu and Porté-Agel 2006). Even though the concept of theRSL
is formally applicable for ensemble averages, we recommend employing the RSL corrections
for both types of boundary conditions.

For LES of the stable boundary layer, several studies have shown that with increasing
resolution the surface fluxes decrease monotonically, and in turn, the boundary-layer height
decreases. As an illustrative example, refer to Fig. 1 and Table 1 in Sullivan et al. (2016). We
hypothesize that, due to the lack of RSL corrections in the very high-resolution simulations
of Sullivan et al. (2016), mixing near the surface has been reduced spuriously, and (partially)
contributed to an artificial resolution sensitivity.
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