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Abstract
In this paper, we consider a class of stochastic midpoint and trapezoidal Lawson
schemes for the numerical discretization of highly oscillatory stochastic differen-
tial equations. These Lawson schemes incorporate both the linear drift and diffusion
terms in the exponential operator. We prove that the midpoint Lawson schemes pre-
serve quadratic invariants and discuss this property as well for the trapezoidal Lawson
scheme. Numerical experiments demonstrate that the integration error for highly oscil-
latory problems is smaller than that of some standard methods.
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1 Introduction

In this paper, we consider Stratonovich stochastic differential equations (SDEs) in
which the drift and diffusion terms can be split into linear and non-linear parts,

dX(t) = (A0X(t) + g0(X(t))) dt

+
M∑

m=1

(AmX(t) + gm(X(t))) ◦ dWm(t), X(t0) = X0, (1.1)

where t ∈ I , Wm(t), m = 1, . . . , M , denote independent, one-dimensional Wiener
processes, and the SDE is solved on the interval I = [t0, T ].We assume that SDE (1.1)
has a unique solution for X0 ∈ R

d and that gm ∈ C1(Rd ,Rd), m = 0, . . . , M . To
simplify the notation, we define W0(t) = t , so that (1.1) can be written as

dX(t) =
M∑

m=0

(AmX(t) + gm(X(t))) ◦ dWm(t), t ∈ I , X(t0) = X0. (1.2)

We will also assume that the matrices Am ∈ R
d×d , m = 0, . . . , M , are constant, and

moreover chosen such that the following commutativity assumption is satisfied:

Assumption 1 (Commutativity)

[Al , Ak] = Al Ak − Ak Al = 0 for all l, k = 0, 1, . . . , M .

To satisfy this assumption, it is sometimes convenient to split the linear parts of the
problem, and let some of it be included in the gm functions.

Applications satisfyingAssumption 1 are, e. g., [9] the FitzHugh–Nagumo equation
with multiplicative noise, the Lotka-Volterra system and SDEs resulting from spectral
spatial discretization of stochastic partial differential equations (SPDEs) with diagonal
noise.

Exponential methods for solving such problems have in particular been applied
in the SPDE setting, mostly, but not exclusively for problems with additive noise.
Cohen [4] proposed an exponential method for stochastic oscillators, Yang et al. [21]
suggested one for damped Hamiltonian systems. Recently, Erdoǧan and Lord [9]
presented a quite general approach for constructing exponential integrators for (1.2)
with multiplicative noise. One of the strategies presented there is an adaptation of a
method introduced for ordinary differential equations (ODEs) byLawson [17] to SDEs
of the form (1.2). The idea is to transform the system by the fundamental solution of
the linear part, solve the transformed system by a scheme of preference, and then
transform back again. In the ODE literature, this is also referred to as an integrating
factor method (Cox and Matthews [18], Maday et al. [6]). This is the procedure which
will be applied in this paper, and which is described in detail in Sect. 2. We are
essentially interested in studying highly oscillatory problems, and to show that the
Lawson methods can attain good accuracy with larger step sizes than what can be
obtained by standard stochastic methods. We will also show that the Lawson methods
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can, under reasonable assumptions, maintain conservation properties of the underlying
scheme. Let us demonstrate the ideas of the paper by an introductory example.

Example 1.1 (The non-linear Kubo oscillator) As a starting point, consider the linear
Kubo oscillator

dX(t) =
(
0 −ω

ω 0

)
X(t)dt +

(
0 −σ

σ 0

)
X(t) ◦ dW (t) (1.3)

which models a simple oscillator perturbed by a stochastic term and appears in nuclear
magnetic resonance andmolecular spectroscopy (Goychuk [15],Kubo [10]). The exact
solution of this problem starting at (t̃, X(t̃)) for t̃ ∈ I is given by

X(t) = eL
t̃ (t)X(t̃),

where the fundamental solution eL
t̃ (t) is a rotation matrix,

eL
t̃ (t) =

(
cosα t̃ (t) − sin α t̃ (t)
sin α t̃ (t) cosα t̃ (t)

)
with α t̃ (t) = ω(t − t̃) + σ(W (t) − W (t̃)).

Clearly, the exact solution X(t) = (X1(t), X2(t))� of the linear problem is norm-
preserving, i. e. satisfies the invariant

I(X(t)) = X2
1(t) + X2

2(t) = constant for all t . (1.4)

Cohen [4] proposed an extension to the Kubo oscillator by including a non-linear,
skew-symmetric drift term, see also Laurent and Vilmart [16]. We extend this fur-
ther, with non-linear terms in both the drift and diffusion, in addition to including
multidimensional noise:

dX(t)=
M∑

m=0

[
ωm

(
0 − 1
1 0

)
X(t)+

(
0 −Um(X(t))

Um(X(t)) 0

)
X(t)

]
◦dWm(t) (1.5)

with Um : R2 → R and ωm ∈ R. The solutions of these problems all preserve the
invariant (1.4), see Sect. 3.1 for details. We are interested in studying to which extent a
numerical approximation will be able to follow the fast oscillations of the linear parts,
as well as how well the invariant (1.4) is preserved. In this example, the following
three methods (described in detail in Sect. 2) have been applied to the SDE (1.5):

– The standard implicit stochastic midpoint rule (“Midpoint”), which is known to
preserve quadratic invariants (Hong et al. [12], Milstein et al. [20]).

– The method proposed by Cohen [4] (“TDSL”) for highly oscillatory SDEs. This
is a drift Lawson scheme based on the trapezoidal rule, but it does not preserve
the invariant for the non-linear problem.
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1124 K. Debrabant et al.

Midpoint TDSL MFSL

Fig. 1 Numerical trajectory of the non-linear Kubo oscillator. Blue: reference solution, blue circle: value
at t = 1. Red triangles: numerical approximation, red circle: value at t = 1 (color figure online)

– A Lawson scheme based on the implicit midpoint rule (“MFSL”). Details of this
scheme are given in Sect. 2, and in Sect. 3.1 it is proved that this scheme preserves
the quadratic invariant I.

In our example we will use M = 2 and

U0(X) = 1

5
(X1 + X2)

5, U1(X) = 0, U2(X) = 1

3
(X1 + X2)

3,

ω0 = 10, ω1 = 10, ω2 = 0,

and the SDE is integrated from 0 to 1, using step size h = 2−5.
The numerical results are presented in Fig. 1. According to this, the implicit mid-

point rule (“Midpoint”) preserves the invariant, it is however not able to resolve the
fast oscillations. The method proposed by Cohen [4] (“TDSL”) resolves the oscilla-
tions well, but the solution drifts away from the manifold. The Lawson midpoint rule
(“MFSL”) both stays on the manifold and resolves the high oscillations. This example
is further exploited in Sect. 4.

The outline of this paper is as follows: In Sect. 2we derive themidpoint and trapezoidal
stochastic Lawson schemes. In Sect. 3 it is proved that, under reasonable assumptions,
theLawson transformation preserves linear and quadratic invariants, and consequently,
if the underlying scheme preserves such invariants, so will the corresponding Lawson
scheme. Section 4 is devoted to numerical experiments.

2 Stochastic Lawson schemes

In this section we will shortly outline how to derive the stochastic Lawson (SL)
schemes,with particular emphasis on the implicitmidpoint and the trapezoidal Lawson
scheme.
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Consider the linear SDE

d X̂(t) =
M∑

m=0

Am X̂(t) ◦ dWm(t) (2.1)

and let

Wt̃ (t) = (Wm(t) − Wm(t̃))Mm=0 and L(Wt̃ (t)) =
M∑

m=0

AmW
t̃
m(t).

Under the commutativity condition (Assumption 1), eL(Wt̃ (t)) and Am commute for
m = 0, . . . , M , and the exact solution of the SDE (2.1) through the point (t̃, X̂(t̃)) is
given by (see Arnold [3, Chapter 8.5])

X̂(t) = eL(Wt̃ (t)) X̂(t̃). (2.2)

This can easily be verified by the chain rule for Stratonovich integrals (see e.g. Ikeda
and Watanabe [13, Chapter III, Theorem 2.1]),

d X̂(t) = eL(Wt̃ (t))
M∑

m=0

Am ◦ dWm(t)X̂(t̃)

=
M∑

m=0

Ame
L(Wt̃ (t)) X̂(t̃) ◦ dWm(t) =

M∑

m=0

Am X̂(t) ◦ dWm(t).

Wewill nowoutline the procedure for constructingLawson schemes. Let discretization
points t0 < t1 < · · · < tN = T be given and denote the approximations by the Lawson
scheme at time tn by Yn , n = 0, . . . , N . Start from a point (tn,Yn) and consider the
locally transformed variable

V n(t) = e−Ln(t)X(t) and thus X(t) = eL
n(t)V n(t), (2.3)

where Ln(t) = L(Wtn (t)). Applying again the chain rule for Stratonovich integrals
results under Assumption 1 in

dV n(t) = e−Ln(t)

(
−

M∑

m=0

Am ◦ dWm(t)X(t)+
M∑

m=0

(AmX(t)+gm(X(t))) ◦ dWm(t)

)

= e−Ln(t)
M∑

m=0

gm(X) ◦ dWm(t),
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1126 K. Debrabant et al.

which can bewritten as a non-autonomous, non-linear SDE in the transformed variable
V n(t),

dV n(t) =
M∑

m=0

e−Ln(t)gm(eL
n(t)V n(t)) ◦ dWm(t)

=
M∑

m=0

ĝm(Wn(t), V n(t)) ◦ dWm(t), V n(tn) = V n
n = Yn, (2.4)

whereWn = Wtn and ĝm(y, V n(t)) = e−L(y)gm(eL(y)V n(t)). One step from (tn,Yn)
to (tn+1,Yn+1) with a Lawson scheme is now just one step of some appropriate one-
step method applied to the autonomous version

dV̄ n(t) =
M∑

m=0

ḡm(V̄ n(t))◦dWm(t), ḡm = (δ0,m, . . . , δM,m, ĝ�
m )� (2.5)

of the transformed system (2.4), with V̄ n(t) = (Wn(t)�, V n(t)�)� and δi, j ={
1, i = j,

0, i �= j,
giving V n

n+1, followed by a back-transformation Yn+1 = eL
n(tn+1)V n

n+1

(see Debrabant et al. [8] for details). Due to the construction of the methods, the
convergence properties of the underlying methods are retained (Debrabant et al. [8]).
Specifically, we have the following theorem:

Theorem 2.1 (Convergence of stochastic Lawson methods [8]) Let Assumption (1)
hold, let X be the solution of SDE (1.2), Yn be the result of the stochastic Law-
son method (n = 0, . . . , N), V̄ 0 be the exact solution of (2.5) (with n = 0), and
V̄ 0
n = (W 0

n
�
, V 0

n
�
)� for n = 0, . . . , N be its approximation obtained by applying

the underlying SRK method with step sizes hi = ti − ti−1, i = 1, . . . , N. Further, let
hN ,max = maxNi=1 hi .

1. Assume that W 0
n = W 0(tn) and that the underlying SRK method is of mean square

order p, i. e. there exists a c ∈ R such that for all N ∈ N and all n ∈ {0, 1, . . . , N } it
holds that

√
E(‖V 0

n − V 0(tn)‖22) ≤ ch p
N ,max . Then the stochastic Lawson method

is strong convergent of order p, i. e., there exists a c̃ ∈ R such that for all N ∈ N

and all n ∈ {0, 1, . . . , N } it holds that

E‖Yn − X(tn)‖2 ≤ c̃h p
N ,max . (2.6)

2. Assume that

(a) Am for m > 0 are skew-symmetric (cmp. Assumption 2 below),
(b) V̄ 0

n is of weak order p̃, i.e. for all f̃ ∈ C2( p̃+1)
P (RM+1 × R

d ,R) there exists
a c ∈ R such that for all N ∈ N and all n ∈ {0, 1, . . . , N } it holds that

|E( f̃ (V̄ 0
n ) − f̃ (V̄ 0(tn))| ≤ ch p̃

N ,max ,
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(c) W 0
n,0 = W0(tn) = tn.

Then the stochastic Lawson method is of weak order p̃, i. e., for all f ∈
C2( p̃+1)

P (Rd ,R) there exists some constant c f > 0 such that for all N ∈ N and all
n ∈ {0, 1, . . . , N } it holds

|E f (Yn) − E f (X(tn))| ≤ c f h
p̃
N ,max . (2.7)

In this paper, only Lawson schemes based on the implicit trapezoidal and midpoint
rules will be discussed. These two methods, applied to (2.5), are given by

V n
n+1 = V n

n +
M∑

m=0

(
ĝm(0, V n

n ) + ĝm(�Wn, V n
n+1)

)
�Wn

m

2
, (2.8)

respectively

V n
n+1 = V n

n +
M∑

m=0

ĝm

(
�Wn

2
,
V n
n + V n

n+1

2

)
�Wn

m, (2.9)

where the stochastic increments are �Wn
m = Wm(tn+1) − Wm(tn), m = 0, . . . , M ,

and we used that Wn(tn) = 0 ∈ R
M+1 and Wn(tn+1) = �Wn . Under appropriate

conditions on the smoothness and boundedness of the ĝm (e. g. for mean square con-
vergence of order up to one that ĝ0 + 1

2

∑M
m=1 ĝ

′
mĝm and ĝ1, . . . , ĝM satisfy a global

Lipschitz condition and are, together with all the associated elementary differentials
up to order three, of linear growth), these approximations will be of mean square order
p = 0.5 (p = 1 for commutative noise) and weak order p̃ = 1, see e. g. Debrabant
and Kværnø [7], Hong et al. [12], Kloeden and Platen [14], Milstein and Tretyakov
[19]. Note that for methods that conserve a bounded manifold, smooth functions g
can be replaced by smooth bounded functions being zero outside a suitable ball, see
e.g. Cohen [5].

Applying the back-transformation results in the two Lawson methods of interest in
this paper:
Trapezoidal Lawson rule:

Yn+1 = e�Ln
Yn +

M∑

m=0

(
e�Ln

gm(Yn) + gm(Yn+1)

)
�Wn

m

2
, (2.10)

Midpoint Lawson rule:

Yn+1 = e�Ln
Yn +

M∑

m=0

e
�Ln
2 gm

(
e

�Ln
2 Yn + e− �Ln

2 Yn+1

2

)
�Wn

m, (2.11)

where �Ln = Ln(tn+1) = ∑M
m=0 Am�Wn

m .
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We would like to emphasize that there is some freedom in how to choose the
matrices Am in the SDE (1.2) and thus the Lawson methods (2.10) and (2.11), as for
any Am ∈ R

d×d an integrand Ãm X + g̃m(X) can be written as

Ãm X + g̃m(X) = AmX +
=:gm (X)︷ ︸︸ ︷

( Ãm − Am)X + g̃m(X),

see alsoDebrabant et al. [8]. Thematrices Am have to be chosen such thatAssumption 1
is satisfied. Different splittings lead to different schemes. The underlying numerical
scheme is restored by setting all the linear parts Am to 0 (m = 0, 1, . . . , M). In
a drift stochastic Lawson scheme (DSL), only the linear drift term is included in
the exponential, that is A0 �= 0 and Am = 0 for m = 1, . . . , M . The exponential
e�Ln = ehn+1A0 is computed only once, and the DSL schemes can be quite efficient.
The scheme suggested by Cohen [4] (denoted by TDSL in the present article) is an
example of a DSL scheme based on the trapezoidal rule (2.10). If Am �= 0 for at least
one m �= 0, the scheme is denoted as a full stochastic Lawson scheme (FSL). In this
case the exponentials depend on the stochastic increments and have to be calculated
for each step, so the performance of the FSL schemes depends on how efficient this
can be done.

For a continuous splitting between the linear and the non-linear part, see Erdoğan
and Lord [9].

3 Preservation of invariants

Hong et al. [12] studied preservation of linear and quadratic invariants for SDEs. In
particular, they showed that the stochastic midpoint rule (as a representative for the
Gauss methods), preserves quadratic invariants. The aim of this section is to extend
these results to the stochastic Lawson (SL) schemes. It is also well known that the
standard trapezoidal rule almost preserves quadratic invariants for deterministic dif-
ferential equations, see e.g. Hairer et al. [11, Example V.4.2]. This property does
unfortunately not extend to the stochastic trapezoidal rule in general; we will study
under which conditions it does hold. The commutativity condition Assumption 1 is
always assumed to be satisfied throughout this section.

In the following, we first investigate when stochastic Lawson schemes preserve
quadratic invariants before briefly commenting on the preservation of linear invariants.

3.1 Preservation of quadratic invariants

In this section we study when the SDE (1.2) for a D ∈ R
d×d satisfies the quadratic

invariant

I(X(t)):=X(t)�DX(t) = I(X(t0)), (3.1)
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and the ability of the numerical schemes to preserve it. Without loss of generality we
will assume that D = D�. For the rest of this section we will use a combination of
the following assumptions:

Assumption 2 The matrices Am ∈ R
d×d , m = 0, . . . , M , are skew-symmetric and

commute with D.

Assumption 3 For all X ∈ R
d and m = 0, . . . , M we have X�Dgm(X) = 0.

The necessity of these two assumptions can be seen by applying the chain rule for
Stratonovich integrals and using the symmetry of D to obtain

dI(X(t)) = 2
M∑

m=0

(
X(t)�DAmX(t) + X(t)�Dgm(X(t))

)
◦ dWm .

To preserve I(X(t)) we need both terms to be zero, the first is zero if Assumption 2
holds and the second is zero if Assumption 3 holds. In summary, it holds (see e.g.
Hong et al. [12]):

Lemma 3.1 Under Assumptions 2 and 3, the SDE 1.2 has a quadratic invariant, i. e.
its solution X(t) fulfills (3.1).

We now prove that the invariant (3.1) is preserved under transformations (2.3):

Lemma 3.2 Let Assumption 2 be fulfilled. Then it holds for I defined in (3.1) that

I(v) = I(eL
n(t)v), for all v ∈ R

d . (3.2)

Proof By (3.1) and using that Am , m = 0, . . . , M , are skew-symmetric (by Assump-
tion 2) and eL

n(t) thus orthogonal, we obtain

I(eL
n(t)v) = v�e−Ln(t)DeL

n(t)v

which, using that all Am commute with D (by Assumption 2) simplifies to

I(eL
n(t)v) = v�Dv = I(v).


�
We can then prove that the transformed system preserves the same invariant as the

original one:

Lemma 3.3 Let Assumptions 1 to 3 hold. Then the transformed system (2.4) with
solution V n(t) preserves the same invariant as the original system (1.2) with solution
X(t), i.e.

I(V n(t)) = I(X(t)) = I(X(t0)). (3.3)
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Proof By (2.3) it holds for V n(t) that (under Assumption 1)

I(X(t)) = I(eL
n(t)V n(t)).

Lemma 3.2 implies then I(X(t)) = I(V n(t)). By Lemma 3.1 we can conclude that
(3.3) holds. 
�
We are now ready to state the main result of this section:

Theorem 3.1 Let Assumptions 1 to 3 hold and let Yn denote the discrete time approx-
imation of (1.2) at time point tn using an SL scheme with an underlying numerical
one-step method that preserves quadratic invariants. Then the SL scheme preserves
the same quadratic invariant as (1.2), i.e.

I(Yn) = I(X(t)) = I(X(t0)). (3.4)

Requirements for stochastic Runge–Kutta methods to preserve quadratic invariants
are given in Hong et al. [12]. Strictly speaking, those results only apply to autonomous
systems, it is however straightforward to extend them to the nonautonomous trans-
formed SDE (2.4). We can then conclude with the following Corollary :

Corollary 3.1 Under the assumptions of Theorem 3.1 the midpoint stochastic Lawson
scheme preserves the quadratic invariants (3.1).

Proof (of Theorem3.1) This follows directly by applying a numerical one-stepmethod
that preserves quadratic invariants to the transformed system: Let V n

n+1 be the numer-
ical approximation at time tn+1 of the SDE (2.4). By Lemma 3.3 and the scheme
preserving quadratic invariants, it holds that

I(V n
n+1) = I(V n(tn)) = I(X(t)) = I(X(t0)).

By Lemma 3.2 and the definition of Yn+1 = e�Ln
V n
n+1 it follows that

I(Yn+1) = I(V n
n+1) = I(X(t)) = I(X(t0)),

which finishes the proof. 
�
It is well known that the standard trapezoidal rule almost preserves quadratic invari-

ants for deterministic differential equations, see e.g. Hairer et al. [11, Example V.4.2].
This property does unfortunately not extend to the stochastic trapezoidal rule in gen-
eral. But if all the drift and diffusion terms are linear and included in the L operator, a
similar result can be obtained, which is also a good argument for using full stochastic
Lawson schemes instead of the drift ones.

Theorem 3.2 Let Assumptions 1 to 3 hold, let gm ≡ 0 for m = 1, . . . , M in the SDE
(1.2) (all diffusion terms are linear and commute) and let Yn denote its discrete time
approximation using the trapezoidal FSL scheme with equidistant step sizes h. Then

I(Yn) − I(Y0) = −1

4

(
g0(Yn)

�Dg0(Yn) − g0(Y0)
�Dg0(Y0)

)
h2. (3.5)
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Proof The trapezoidal Lawson rule (2.10) can be considered as composed by two
half steps, one with an exponential forward Euler step, and one with an exponential
backward Euler step, as follows:

Ŷn = e
1
2�Ln

Yn + e
1
2�Ln

M∑

m=0

gm(Yn)
�Wn

m

2
, (3.6)

Yn+1 = e
1
2�Ln

Ŷn +
M∑

m=0

gm(Yn+1)
�Wn

m

2
. (3.7)

Doing one more half step with the forward Euler method gives

Ŷn+1 = e
1
2�Ln+1

Yn+1 + e
1
2�Ln+1

M∑

m=0

gm(Yn+1)
�Wn+1

m

2

= e
1
2 (�Ln+�Ln+1)Ŷn + e

1
2�Ln+1

M∑

m=0

gm(Yn+1)
�Wn

m + �Wn+1
m

2
,

which together with (3.7) could be considered as one step of a modified version of
the midpoint rule starting from Ŷn , and we would like to see if it conserves quadratic
invariants: By Assumption 2, e�Ln

is orthogonal and commutes with D, so

Ŷ�
n+1DŶn+1 = Ŷ�

n DŶn +
M∑

m=0

Y�
n+1Dgm(Yn+1)(�Wn

m + �Wn+1
m )

+
M∑

m,r=0

gr (Yn+1)
�Dgm(Yn+1)

(�Wn+1
r − �Wn

r )(�Wn+1
m + �Wn

m)

4
, (3.8)

where we also used Assumption 1 and that by (3.7) it holds that e
1
2�Ln

Ŷn = Yn+1 −∑M
r=0 gr (Yn+1)

�Wn
r

2 . The second term of (3.8) vanishes since Y�Dg(Y ) = 0 for all
Y ∈ R

d by Assumption 3. Due to the last term, the quadratic invariant is not preserved
in general. Since �W0 = h, if gm = 0 for m = 1, . . . M the last sum is 0, and
Ŷ�
n+1DŶn+1 = Ŷ�

n DŶn , which by (3.1) can be written as I(Ŷn+1) = I(Ŷn). It follows
that

I(Yn+1) − I(Y0) = I(Yn+1) − I(Ŷn) + I(Ŷn) − I(Ŷ0) + I(Ŷ0) − I(Y0)

= I(Yn+1) − I(Ŷn) + I(Ŷ0) − I(Y0).

Direct computations show that

I(Ŷ0) − I(Y0) = 1

4
g0(Y0)

�Dg0(Y0)h
2,
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I(Yn+1) − I(Ŷn) = −1

4
g0(Yn+1)

�Dg0(Yn+1)h
2,

and in conclusion

I(Yn) − I(Y0) = −1

4

(
g0(Yn)

�Dg0(Yn) − g0(Y0)
�Dg0(Y0)

)
h2.


�
Notice that a similar argument can also be used as a direct proof of Corollary 3.1:

One step of the stochastic midpoint Lawson scheme is composed by one half step of
the exponential backward Euler scheme followed by one half step of the exponential
forward Euler scheme, both using the same stochastic increments �Wn

m/2, so the last
sum of (3.8) is 0.

Notice also that if the quadratic invariant is associated to a bounded manifold, i. e.,
the eigenvalues of D are all positive, then the proof of Theorem 3.2 implies that under
the conditions given there, there exists a constant c such that

|I(Yn) − I(Y0)| ≤ ch2

for all n = 0, 1, . . . , N and h sufficiently small.

3.2 Preservation of linear invariants

For completeness we also study when the SDE (1.2) preserves linear invariants

Ĩ(X(t)) = r�X(t) = Ĩ(X(t0)) (3.9)

for an r ∈ R
d and the ability of the numerical schemes to preserve it as well.

As we did for quadratic invariants, we calculate dĨ(X(t)),

dĨ(X(t)) =
M∑

m=0

(
r�AmX(t) + r�gm(X(t))

)
◦ dWm(t).

Thus for the SDE (1.2) to preserve linear invariants we need the following two assump-
tions to be fulfilled:

Assumption 4 The matrices Am , m = 0, . . . , M , satisfy r ∈ Null(A�
m).

Assumption 5 For all X ∈ R
d and m = 0, . . . , M we have r�gm(X) = 0.

We now note that by Assumption 4 we have that

r�eLn(t) = r�.

Using this property, Lemmas 3.2 and 3.3 and Theorem 3.1 extend directly to linear
invariants.
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4 Numerical examples

In this section four different stochastic Lawson schemes are tested numerically and
compared with the standard midpoint rule: The trapezoidal DSL (TDSL), the trape-
zoidal FSL (TFSL), the midpoint DSL (MDSL) and the midpoint FSL (MFSL). All
schemes are of weak order 1, and of strong order 1 for SDEs with commutative noise,
otherwise of strong order 0.5. The methods are tested on two oscillatory problems
preserving quadratic invariants. The error versus step size for different degrees of
oscillatory behaviour is measured, as well as the ability of the schemes to preserve the
invariants. Finally, the methods are tested on a stochastic Fermi–Pasta–Ulam–Tsingou
(FPUT) problem. This is highly oscillatory, but does not preserve quadratic invariants
exactly. The main findings of the experiments are:

– The SL schemes resolve the oscillatory behaviour better than the midpoint rule.
For small linear diffusion terms, there are no significant differences between the
DSL and the FSL schemes. For high noise problems, the FSL schemes are superior.

– The midpoint SL schemes preserve quadratic invariants.
– The trapezoidal FSL scheme almost preserves quadratic invariants for linear dif-
fusions, but not for non-linear diffusions.

– The overhead caused by calculating the exponentials is insignificant, even for the
FSL-schemes.

In all cases, the underlying non-linear algebraic equations of the implicit methods are
solved by Newton’s method with tolerance 10−12.

4.1 Stochastic rigid body problem

The first example is the classical rigid body problem perturbed with linear skew-
symmetric drift and diffusion terms, see e.g. Abdulle et al. [1], Anmarkrud andKværnø
[2] and Cohen [4]. The SDE is given by

dX = ω

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ Xdt +
⎛

⎝
0 X3/I3 −X2/I2

−X3/I3 0 X1/I1
X2/I2 −X1/I1 0

⎞

⎠ Xdt

+ σ

⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ X ◦ dW ,

(4.1)

with, following the above references,

I1 = 2, I2 = 1, I3 = 2/3, t0 = 0 and X(0) = (cos(1.1), 0, sin(1.1))�.

(4.2)

Different values of the parameters ω and σ are chosen to investigate the schemes’
response on problems with oscillatory drift and/or diffusion terms.

First,wewant to see howwell themethods respond to different degrees of oscillatory
behaviour. The following two experiments are carried out:
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(a) (b)

Fig. 2 The stochastic rigid body problem: Strong error versus step size for different values of σ and ω

(a) The oscillatory drift and diffusion terms contribute equally much to the solution,
thus there can be a significant amount of noise in the system. The values used in
the experiments are ω = σ ∈ {1, 5, 10}.

(b) The noise term is small (σ = 0.3), but the drift term causes no oscillations (ω = 0),
average (ω = 10) or very high oscillations (ω = 100). When ω = 0, the DSL
schemes coincide with their underlying schemes. The choice of σ corresponds to
the one used by Cohen [4].

The integration interval is [0, 1] and the problem is solved with step sizes log2(h) ∈
{−11, . . . ,−3}, and the strong error is calculated at the end of the interval. The refer-
ence solution is computed by the MFSL scheme, using href = 2−17. In each case, the
results are based on 1000 independent simulations of the underlying Wiener process.
The results are given in Fig. 2. The 95%-confidence intervals are in all cases found to
be less than 12% of the corresponding error value.

The results of experiment (a) are shown in Fig. 2a. In this experiment, there is a
significant contribution to the solution from the noise term.All schemes demonstrate an
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acceptable performance when ω = σ = 1, the case with slow oscillations. For higher
values of ω and σ the FSL schemes are superior. In the case of σ = ω = 10, only the
FSL-schemes are able to produce reliable solutions for h > 2−7. This behaviour is as
expected, since the FSL schemes solve the oscillatory parts of the problem exactly.

The results of experiment (b) are given in Fig. 2b. Here, the oscillatory noise is
quite small, and the oscillations are dominated by the contribution from the linear
drift in all cases but ω = 0. For ω = 0, we observe no significant differences between
the methods. The dominating part here is the nonlinear drift term, which is handled
similarly by the schemes. For higher values of ω, all the SL schemes yield similar
results, and all are superior to the midpoint rule. In particular the SL schemes are able
to resolve the high oscillations for larger step sizes, up to h = 2−6 evenwhenω = 100.
The midpoint rule fails to give reliable results for step sizes above approximately
h = 2−9 in this case. All schemes exhibit, as expected, strong order 1 for sufficiently
small step sizes.

In Fig. 3 we depict the computational efforts, measured as wall-clock time per batch
of 25 paths versus the strong error averaged over all batches. Somewhat surprisingly,
the FSL schemes are slightly cheaper in terms of computational work per step. All the
methods are implicit, thus the efforts of solving the nonlinear equations dominate. The
computational overhead required for calculating the exponentials for the FSLmethods
seems in this example to be outweighted by the fact that there is no diffusion term to
calculate in the right hand side of the equation, as it is absorbed in the exponential.

We will next see how well the methods preserve invariants, also over long time
integration. In the case of the stochastic rigid body problem (4.1), Assumptions 2 and
3 are satisfied, and by Lemma 3.1 the exact solution of (4.1) preserves the invariant

I(X(t)) = X(t)�X(t) (4.3)

and thus, when using the given initial values, stays on the unit sphere. The matrices
A0 and A1 commute, so the requirements of Corollary 3.1 are satisfied and the MDSL
and MFSL schemes should preserve the invariant. As g1(x) = 0 the requirements for
Corollary 3.2 are satisfied, and the TFSL scheme nearly preserves the invariant, and
the weak order with respect to I is 2. This is clearly demonstrated in Fig. 4, the weak
order is one for the TDSL scheme and two for the TFSL scheme. For the small noise
problem, the error from the drift term dominates, and the order, in particular for larger
values of h, is then close to 2. The midpoint schemes preserve the invariant exact and
are not included in the figure.

Lastly, as g0(x) �= 0, Theorem 3.1 in Cohen [4] does not apply, and we expect the
TDSL scheme to drift off. To confirm this, two extreme cases from the experiments
above have been chosen, that is ω = σ = 10, and ω = 100 and σ = 0.3. The SDE
is solved on the interval [0, 100], using the step size h = 25/210. Fig. 5 shows the
value of the invariant I(Yn). For visibility, only each 128th step is plotted. In Fig. 6,
we zoom in onto the interval [60, 70], for better visibility neglecting the TFSLmethod
and for the midpoint methods plotting only every 6th value. Notice that the drift of
the TDSL schemes is severe in the experiments with much noise, while in the case of
small noise, it is reasonably small.
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(a) (b)

Fig. 3 The stochastic rigid body problem:Wall-clock time per batch of 25 paths versus accuracy for different
values of σ and ω

To this aim, the stochastic rigid problem is solved by the TFSL scheme over the
interval [0, 100] for different step sizes, with 1000 independent simulations. Figure 7
shows the maximum average deviation over the interval, clearly demonstrating the
second order of the deviation predicted by Corollary 3.2. The parameters used in this
experiment are ω = 10 and σ = 0.3.

4.2 Non-linear Kubo oscillator

We next study the methods applied to a problem with multiple noise terms. To this
aim, the non-linear Kubo oscillator, already introduced in Sect. 1, is chosen. The SDE
is

dX(t) =
M∑

m=0

[
ωm

(
0 −1
1 0

)
X(t) +

(
0 −Um(X(t))

Um(X(t)) 0

)
X(t)

]
◦ dWm(t) (4.4)
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(a) (b)

Fig. 4 The stochastic rigid body problem: Weak error of I versus step size for different values of σ and ω

Fig. 5 The stochastic rigid body problem: The invariant I(Yn)
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Fig. 6 The stochastic rigid body problem: The invariant I(Yn)

Fig. 7 The stochastic rigid body problem with ω = 10 and σ = 0.3: Maximum average deviation on the
interval [0, 100] versus step size when solved by the TFSL method. p denotes the numerically determined
order of convergence

with Um : R2 → R. In the current experiments, M = 2 and the nonlinear terms are

U0(X) = 1

5
(X1 + X2)

5, U1(X) = 0,

U2(X) = 1

3
(X1 + X2)

3, ω0 = ω, ω1 = σ, ω2 = 0,

thus there are two independent diffusion terms, one linear and one non-linear. These
are scaled to ensure that the highly oscillatory parts come from the linear terms. As
in the rigid body case, ω and σ vary to investigate how the schemes respond to highly
oscillatory parts in the drift and / or diffusion terms. The experiment setup is as for
the stochastic rigid problem:

(a) Equal contribution from drift and diffusion: The parameters used in the experi-
ments are ω = σ ∈ {1, 5, 10},

(b) Small linear diffusion: The parameters are σ = 0.3 and ω ∈ {1, 10, 50}.
The integration interval is [0,1], X(0) = (1, 0)�, and the SDE is solved with step

sizes log2(h) ∈ {−15, . . . ,−8} andwith 1000 independent simulations. The reference
solutions are computed by the MFSL scheme using href = 2−21. The strong error at
the end point is shown in Fig. 8. The 95%-confidence intervals have been calculated
and span in all cases less than 15% of the corresponding error values.
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(a) (b)

Fig. 8 The Kubo oscillator: Strong error versus step size for different values of σ and ω

The case in which σ = ω is presented in Fig. 8a. Again, there are no significant
differences between themethods forσ = ω = 1 and the strong order is 0.5 as expected.
For higher values of σ and ω, the advantage of the FSL methods for larger step sizes
is evident. In the cases of the midpoint and the DSL schemes, the error is dominated
by the linear stochastic diffusion term, thus causing the first order behaviour. This
term is incorporated in the exponentials of the FSL schemes and will there thus not
contribute to the errors. For problems with small linear noise contributions in Fig. 8,
all the SL schemes outperform the midpoint scheme for the oscillatory cases, when
ω ∈ {10, 50}.

For step sizes larger than h = 2−8, the Newton solver frequently failed to solve
the underlying nonlinear algebraic equations, in particular for the TDSL scheme. The
computational efforts depicted in Fig. 9 again demonstrate that there are only small
differences in execution time between the methods, thus the more accurate methods
are also the most efficient ones in terms of wall-clock terms versus accuracy.
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(a) (b)

Fig. 9 The Kubo oscillator: Wall-clock time per batch of 25 paths versus accuracy for different values of σ

and ω.

We next investigate howwell the numerical solution preserves quadratic invariants.
Assumptions 2 and 3 are satisfied, and by Lemma 3.1 the exact solution of (4.4) is
norm-preserving, thus

I(X(t)) = X(t)�X(t) (4.5)

is constant, and the solution will stay on a circle. The matrices A0, A1 and A2 trivially
commute; thus Corollary 3.1 applies and all the midpoint based methods are expected
to preserve the invariant. As g2(x) �= 0, Corollary 3.2 no longer applies. We thus
expect to see a weak order one for the two trapezoidal SL schemes, which is exactly
what is observed in Fig. 10.

Finally, we want to study howwell the quadratic invariants are preserved over time.
Using each of the schemes, one solution path is calculated on the interval [0, 50], using
step size h = 2−5. The following two sets of parameters are chosen: ω = σ = 10 and
ω = 100 and σ = 0.3. The values of I(Yn) are shown in Fig. 11. Again, for visibility,
only every 40th step is plotted.

In both cases, the mid-point based schemes preserve the invariant, while there is a
significant drift-off for the two trapezoidal based schemes. The case ω = σ = 10 is
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(a) (b)

Fig. 10 The Kubo oscillator: Weak error of I versus step size for different values of σ and ω

Fig. 11 The non-linear Kubo oscillator: Evaluation of the invariant I(Yn)
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the example depicted in Fig. 1, although there, the integration interval is only [0, 1]. In
Fig. 11, where the integration is done over longer time, the drift-off leaves the TDSL
scheme basically useless. The midpoint based methods preserve the invariant. In the
low noise case, the drift-off is almost the same for the two trapezoidal schemes, and
again, there is none or little drift-off in the midpoint schemes.

4.3 Stochastic Fermi–Pasta–Ulam–Tsingou problem

Finally, we would like to test the SL schemes by applying them to a more complex
highly oscillatory problem. To this aim, a stochastic modification of the famous deter-
ministic Fermi–Pasta–Ulam–Tsingou (FPUT) problem as described in Hairer et al.
[11, Chapter I.5] is considered. The deterministic problem is defined by the Hamilto-
nian

I0(x, y) =
M∑

m=1

Jm + 1

4

(
(x0,1 − x1,1)

4 + (x0,M + x1,M )4
)

+ 1

4

M−1∑

m=1

(
x0,m+1 − x1,m+1 − x0,m − x1,m

)4
,

(4.6)

where

Jm = 1

2

(
y20,m + y21,m

)
+ ω2

2
x21,m .

In our example, stochastic noise of strength σm Jm is added to each of the springs. The
resulting system is a 4M dimensional SDE:

dx0,m = y0,mdt + σm y0,m ◦ dWm,

dx1,m = y1,mdt + σm y1,m ◦ dWm,

dy0,m = (−gm + gm+1)dt,

dy1,m = (−ω2x1,m + gm + gm+1)dt − σmω2x1,m ◦ dWm

for m = 1, . . . , M , where

g1 = (x0,1 − x1,1)
3,

gm = (x0,m − x1,m − x0,m−1 − x1,m−1)
3, m = 2, . . . , M,

gM+1 = −(x0,M + x1,M )3.

Let X = (
(x0,m)Mm=1, (x1,m)Mm=0, (y0,m)Mm=1, (y1,m)Mm=0

)�. The complete system can
be written as a semi-linear SDE

dX = (A0X + g0(X))dt +
M∑

m=1

AmX ◦ dWm, (4.7)
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(a) (b)

Fig. 12 Convergence of the TDSL, TFSL, MDSL, MFSL and implicit midpoint rule for the stochastic
Fermi–Pasta–Ulam–Tsingou problem

where Am are 4M × 4M block matrices given by

Am =

⎛

⎜⎜⎝

0 0 Dm 0
0 0 0 Dm

0 0 0 0
0 − ω2Dm 0 0

⎞

⎟⎟⎠ , (4.8)

where Dm = σmdiag{0, . . . , 1, . . . , 0}, with the nonzero element in position m, for
m = 1, . . . , M , and D0 = IM , the identity matrix of dimension M ×M . The matrices
Am satisfy Assumption 1, so the SL schemes are applicable. For the same reason, the
expected strong order is 1 for all methods considered. Assumptions 2 and 3 are not
satisfied, so there is no quadratic invariant to preserve.

For the simulations we have used M = 3, ω = 50, σm = σ for all m, with
σ ∈ {0.02, 0.2}, and initial values

x0,1(0) = y0,1(0) = 1, x1,1(0) = ω−1, y1,1(0) = 1.

The remaining initial values are all zero. Once again, we measure the strong error
based on 1000 simulations. The SDE is solved over the interval [0, 1], and the refer-
ence solutions are computed by the MFSL scheme with href = 2−17. The results are
presented in Fig. 12. The 95%-confidence intervals have been calculated and in all
cases they span less than 14% of the shown mean values.

In all cases the Lawson schemes perform significantly better than the implicit mid-
point rule. For small values of σ the two FSL schemes are only slightly better than
the two DSL schemes. For larger values of σ , the FSL schemes outperform the DSL
schemes. This is in line with what was observed for the Kubo oscillator in Fig. 8. But
even in the small noise case, the feasible step sizes of the Lawson schemes are larger
than the feasible step sizes for the implicit midpoint rule - the convergence deteriorates
for the implicit midpoint rule approximately when h = 2−6, whereas the convergence
of the Lawson schemes only deteriorates around h = 2−3, the SL schemes thus allow-
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(a) (b)

Fig. 13 Wall-clock time per batch of 25 paths versus accuracy of the TDSL, TFSL, MDSL, MFSL and
implicit midpoint rule for the stochastic Fermi–Pasta–Ulam–Tsingou problem

ing to use much larger step sizes than the implicit midpoint rule. For larger values of
σ , the midpoint rule is in practice useless for the step sizes applied here.

The work-precision diagram Fig. 13 again demonstrates that even for this slightly
larger problem the higher accuracy of the SL schemes, in particular the FSL schemes,
compensates for the disadvantage of the additional computational work required for
the calculation of the matrix exponentials. In the current example, the TFSL method
is slightly the most efficient.

Finally, we consider theweak convergence of themethodswhen applied to calculate
the total oscillatory energy Ĩ = ∑M

j=1 I j ,where the oscillatory energyof the j-th string

is given by I j = 1
2 (y

2
1, j + ω2x21, j ) for the FPUT problem, and the result is presented

in Fig. 14. In the small noise case, when σ = 0.02, the error is clearly dominated by
the diffusion term, and the order of the method is close to the deterministic order two.
Still, the FSL schemes are significantly more accurate than the midpoint rule, although
the difference between those again is minuscule. When the noise level increases to
σ = 0.2, the midpoint and the DSL schemes perform almost the same, while the errors
of the FSL schemes are significantly smaller. We also observe the order two behaviour
of the trapezoidal FSL scheme, although, as alreadymentioned, no quadratic invariants
are conserved in this case. However, in the case where gm = 0 for m = 1, . . . , M , the
transformed system (2.5) is in fact an SDE with additive noise, for which the weak
order of the trapezoidal rule is two, see e. g. Milstein and Tretyakov [19]. In Fig. 15 we
observe how this makes the trapezoidal FSL scheme the most efficient what concerns
the weak error.
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(a) (b)

Fig. 14 Weak convergence of I1, I2, I3 and Ĩ = I1 + I2 + I3 for the TDSL, TFSL, MDSL, MFSL and
implicit midpoint rule for the stochastic Fermi–Pasta–Ulam–Tsingou problem
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(a) (b)

Fig. 15 Wall-clock time per batch of 1250 paths versus weak error of Ĩ = I1 + I2 + I3 for the TDSL,
TFSL, MDSL, MFSL and implicit midpoint rule for the stochastic Fermi–Pasta–Ulam–Tsingou problem

5 Conclusion

In this paper, we proved that stochastic Lawson schemes under suitable conditions
preserve linear and quadratic invariants. We proved that the trapezoidal stochastic
Lawson scheme nearly preserves quadratic invariants if the diffusion terms are linear
and fully included in the exponential. These results have been verified by numerical
experiments.

For stochastic differential equations with highly oscillatory drift and diffusion we
numerically demonstrated that full stochastic Lawson schemes allow for larger step-
sizes than standard schemes, in the sense of being able to resolve high frequency
oscillations. All methods are implicit, and in our implementations, the cpu-time used
for solving the nonlinear systems was dominant compared to the time used to evaluate
the matrix exponentials, and in terms of accuracy versus computational work, the
more accurate methods were the most efficient. This, of course, depends heavily on
the problem at hand, for larger problems with more demanding matrix exponential
evaluations, the drift Lawson methods might turn out to be preferable.
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