Editorial

Axel Ruhe

Published online: 8 November 2012
© Springer Science+Business Media Dordrecht 2012

Introduction to the contents of issue 52:4

The issue you now have in your hand, or on your screen, shows that BIT is becoming successively more present in the Scientific Computation area. We have three papers that deal with computational solution of magnetohydrodynamical, MHD, problems, and two more contributions of a computational physics flavor.

In the first paper, Lyonell Boulton and Michael Strauss derive certified enclosures for eigenvalues of linear MHD operators, in the practically interesting plane slab and cylindrical pinch configurations. Schur complements are needed for the computation. The position of the essential spectrum makes this more complicated than finding eigenvalue bounds for matrix problems.

A related problem is treated in the paper by Paolo Corti and Siddhartha Mishra who study algorithms for the magnetic induction equations with Hall Effect. These equations are non-linear and include third-order spatial and spatio-temporal mixed derivatives. They develop stable finite difference schemes that preserve the energy bounds for the continuous problem.

In the third MHD related paper, Holger Heumann, Ralf Hiptmair, Kun Li, and Jinchao $X u$ study fully discrete semi-Lagrangian methods for advection dominated differential forms. These occur as building blocks for MHD models.

In another physics paper, Haotao Cai develops a fast solution algorithm for the Dirichlet problem of the Helmholtz equation in two dimensions, by solving a boundary integral equation of the first kind. It gives a sparse matrix and the cost of its solution grows with a linear bound when a Fourier Galerkin algorithm is used.

In the final physics paper, David Cohen and Ludwig Gauckler solve the cubic time dependent Schrödinger equation with spectral discretization in space and an

[^0]exponential integrator in time. They show how to keep energy, mass and momentum constant along the numerical solution over long times.

We have three contributions in this issue to Numerical Linear Algebra:
Zvonimir Bujanović and Zlatko Drmač study a block two sided Jacobi, or more properly Kogbetliantz, method for computing the singular value decomposition, SVD, of a matrix. Global convergence and asymptotic quadratic convergence is established, which makes a parallel implementation feasible.

Cedric Effenberger and Daniel Kressner develop an algorithm for an eigenvalue problem that is nonlinear in the eigenvalue parameter. They approximate the nonlinear function with a Chebyshev interpolation polynomial, whose eigenvalue problem can be solved by the usual Krylov subspace methods.

Miroslav Rozložník, Miroslav Tůma, Alicja Smoktunowicz, and Jiří Kopal study the numerical stability of orthogonalization methods where the inner product is induced by a nontrivial symmetric positive definite matrix. Errors caused by finite precision arithmetic in the orthogonalization and reorthogonalization are analyzed.

We have two contributions in Numerical Approximation related to computer aided geometric design, CAGD:

Xuli Han and Yuanpeng Zhu describe Bezier curves based on trigonometric functions. Such curves may be better than the standard polynomials, when adjusting shape and fitting to control points.

Marie-Laurence Mazure gives a new criterion to decide whether a spline space is useful for CAGD. She studies splines with pieces taken from different Extended Chebyshev spaces, that satisfy parametric continuity conditions at the knots.

Finally we have one paper that deals with the inner work of a computational algorithm:

Siegfried M. Rump studies a consistent set of rules for interval arithmetic with finitely many endpoints. The end points are taken from the finite set of representable numbers, in e.g. an IEEE 754 system, but intervals may have either open or closed ends, which allows handling of converging sequences with a limit.

Editorial board

We thank Per Christian Hansen who leaves the board after ten years service. He has given BIT presence in his image processing specialty and on the Danish scene, concluded with the nice BIT Circus last summer in Copenhagen.

We welcome three new board members, Rosemary Renaut from Arizona State University, Raul Tempone, King Abdullah University of Science and Technology, Saudi Arabia, previously at KTH in Stockholm, and Michael Vogelius, Rutgers University, New Jersey, USA. We already know you as members of the BIT family, now we look forward to your help to make BIT present in your specialties and in your circles!

Referees

Let me end this, my tenth year as your Editor in Chief, by saying thank you to all referees that have helped BIT and the authors to keep our quality. You are anonymous to the authors but we acknowledge your fundamental help to BIT.

These are present in the BIT files this year. Forgive me, if I have lost somebody deserving to be on this list:

Lidia Aceto
Rachid Ait-Haddou
Ishtiaq Ali
Martin Alnæs
Bradley Alpert
Gil Ariel
Martin Arnold
Vladislav Babenco
Zheng-Jian Bai
Zhong-Zhi Bai
Domingo Barrera
Dan Bates
Henning Behnke
Alex Bespalov
Sergio Blanes
Shreemayee Bora
Oscar Borries
Hermann Brunner
Erik Burman
Christine Böckmann
Martin Campos Pinto
Xiao-Wen Chang
Paolo Costantini
Hua Dai
Oleg Davydov
Thomas K. DeLillo
Huaian Diao
Victor Dominguez
Froilan Dopico
Philipp Dorsek
Zlatko Drmač
Jérôme Droniou
Ricardo Duran
Lars Eldén
Wayne Enright

Walter Gautschi
Mike Giles
Stef Graillat
Martin Gutknecht
Johnny Guzman
Thomas Hagstrom
Eskil Hansen
Vjeran Hari
Ken Hayami
Adrian T. Hill
Johan Hoffman
Zhongyi Huang
Martin Hutzenthaler
Daan Huybrechs
Elias Jarlebring
Ming Jiang
Pavel Jiranek
Patrick Joly
Mika Juntunen
Michael Karow
David I. Ketcheson
David Kincaid
Martin Kleinsteuber
Othmar Koch
Natasa Krejiç
Bishnu Lamichhane
Mats Larson
Stig Larsson
Hui-Yuan Li
Ren-Cang Li
Cecilia Magherini
Stephen Mann
Carla Manni
José Mario Martínez
Günter Mayer

Robert McLachlan
William McLean
Karl Meerbergen
Jean-Louis Merrien
Gerard Meurant
Carl Christian Kjelgaard Mikkelsen
Juan Monterde
Axel Målqvist
David Nicholls
Datian Niu
Jan Nordström
Sotirios E. Notaris
Mario Ohlberger
Gabriel Oksa
Luke Olson
Christoph Ortner
J.M. Pena

Roger Pettersson
Helmut Podhaisky
John D. Pryce
Lyle Ramshaw
Christoph Reisinger
Sara Remogna
Arnold Reusken
Robert N. Rieben
Hans Riesel
Giuseppe Rodriguez
Mladen Rogina
Lucia Romani
Milvia Rossini
James Rossmanith
Miroslav Rozložník
Siegfried M. Rump
Andreas Rössler
Giancarlo Sangalli

Tomas Sauer
J.M. Sanz-Serna

Driss Sbibih
Othmar Scherzer
Rene Schilling
Dominik Schoetzau
Meiyue Shao
Simon Shaw
Qin Sheng
Eric Sonnendrücker
Tanya Sorokina
Hendrik Speleers
Benjamin Stamm
Zdenek Strakos
Martin Stynes
Caren Tischendorf
Angel Tocino
Miroslav Tůma
Karsten Urban
Raf Vandebril
Olivier Verdier
Rossana Vermiglio
Stefan Volkwein
Heinrich Voss
Li-Lian Wang
Yoshitaka Watanabe
Rüdiger Weiner
Peter Wild
Joerg Willems
Bin Wu
Bernardo de la Calle Ysern
Jens-Peter M. Zemke
Shun Zhang
Ludmil Zikatanov

Thank you all for this year and see you later for BIT!

Axel Ruhe

[^0]: A. Ruhe (\triangle)

 School of Science (SCI), Royal Institute of Technology (KTH), 10044 Stockholm, Sweden e-mail: ruhe@kth.se

