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Abstract The main purpose of this paper is to develop a fast numerical method for
solving the first kind boundary integral equation, arising from the two-dimensional
interior Dirichlet boundary value problem for the Helmholtz equation with a smooth
boundary. This method leads to a fully discrete linear system with a sparse coefficient
matrix. We observe that it requires a nearly linear computational cost to produce and
then solve this system, and the corresponding approximate solution obtained by this
proposed method preserves the optimal convergence order. One numerical example
demonstrates the efficiency and accuracy of the proposed method.
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1 Introduction

In this paper, we establish a fast numerical solution for the first kind boundary inte-
gral equation, induced from a single layer approach for solving the interior Dirichlet
problem for the Helmholtz equation

�U(P ) + κ2U(P ) = 0, P ∈ D, (1.1)
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satisfying the boundary condition

U(P ) = h(P ), P ∈ S := ∂D, (1.2)

where D is a bounded, simply connected open region in R
2 with a smooth bound-

ary S. We seek a solution U ∈ C2(D) ∩ C(D̄) for the boundary value problem (1.1)–
(1.2). κ in (1.1) is a given positive constant, and the function h in (1.2) is assumed
to be given and continuous on the boundary S. As shown in [1, 2, 5, 20, 21], if the
transfinite diameter CS of the boundary S is not equal to 1, then −κ2 is not the eigen-
value of the Laplace operator, and then the boundary value problem (1.1)–(1.2) has
a unique solution, otherwise, this boundary value problem can be rescaled to another
Dirichlet problem for the Helmholtz equation, with the curve whose transfinite di-
ameter is not 1. Hence, in this paper, without loss of generality, we assume that the
boundary value problem (1.1)–(1.2) has a unique solution.

Among all methods for solving the two-dimensional Dirichlet boundary value
problem for the Helmholtz equation with a smooth boundary, the boundary integral
equation method is one of the most fundamental treatments. As shown in [17], the
single layer method to the solution of the Dirichlet problem for the Helmholtz equa-
tion leads to a first kind boundary integral equation. This integral equation can be
split into three parts. The first part in the kernel is a logarithmic term with a constant
coefficient, and the second smooth part are familiar with the integral equation arising
from the single layer approach to the Dirichlet problem for the Laplace equation, and
the third part in the kernel function is a product of a logarithmic singular function and
a smooth function, which requires our special attention.

For this arising boundary integral equation, various numerical methods have been
developed in the literature. In [17], a fully discrete Fourier-Galerkin method is pro-
posed. In [1, 5, 20, 21], the quadrature method and the modified quadrature method
are considered. In [22, 23], the qualocation method has been developed as a new ap-
proximation, which tries to combine the advantage of the Galerkin method and the
collocation method into a new scheme.

All these numerical methods enjoy nice convergence properties but at the same
time suffer from having large computational costs due to the density of the coef-
ficient matrix of the discrete linear system. To overcome this shortcoming, in [6],
a fast truncated Fourier-Galerkin method is presented for solving the singular bound-
ary integral equations, which are induced from the two-dimensional interior Dirichlet
and Neumann boundary value problem for Laplace equation with a smooth bound-
ary. This fast truncated Fourier-Galerkin method preserves the optimal order of the
approximate solution, and leads to a semi-discrete linear system with a sparse coef-
ficient matrix. In [14], they continue the theme of [6] and obtain a fast fully discrete
Fourier-Galerkin method. This method generates a fully discrete sparse linear system
with a nearly linear computational complexity, and preserves the optimal order of the
approximate solution. In [24], following the ideas coming from [6, 14], a fast fully
discrete Fourier-Galerkin method is used for solving first-kind logarithmic-kernel in-
tegral equation, induced from the two-dimensional Dirichlet problem for the Laplace
equation on open arcs. In this paper, we shall continue the work of [6, 14, 24] and
develop a fast numerical solution for the first kind boundary integral equation, arising
from the interior Dirichlet problem for Helmholtz equation.
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We organize this paper as follows. In Sect. 2, we introduce some notations and
review the boundary integral equation method for solving (1.1)–(1.2). For the linear
system produced by the Fourier-Galerkin method, we propose the matrix truncation
strategy in Sect. 3. This truncation strategy leads to a semi-discrete linear system
with a sparse coefficient matrix. Moreover, we give a few necessary technical results
so as to analyze this truncation algorithm. In Sect. 4, we construct an efficient nu-
merical integration scheme to compute all nonzero entries in the semi-discrete sparse
linear system produced in last section. This scheme combining the matrix truncation
strategy leads to a fully discrete sparse linear system. We prove that it requires a
nearly linear computational cost to generate this fully discrete sparse linear system.
In Sect. 5, the stability of this linear system and the convergence of this approxi-
mate solution are considered. We establish that this fully discrete linear system has
a unique solution, and the approximate solution produced by this proposed method
remains the optimal convergence order. Moreover, a precondition for the compressed
coefficient matrix is proposed to obtain a preconditioned matrix having a uniformly
bounded spectral condition number. In Sect. 6, the numerical example is presented to
show the efficiency and accuracy of this method. In Sect. 7, we give a conclusion.

2 The Fourier-Galerkin method for solving singular boundary integral
equations

In this section, as shown in [17], we first review the boundary integral equation refor-
mulation of the boundary value problem (1.1)–(1.2) by a single-layer approach, and
then describe the Fourier-Galerkin method for solving this arising boundary integral
equation.

Let Z := {. . . ,−1,0,1, . . .}, N := {1,2, . . . , },N0 := N ∪ {0}, Z
+
n := {1,2, . . . , n}

and Zn := Z
+
n ∪ {0} for each n ∈ N. We introduce the Bessel function J0(z), the

Neumann function N0(z) and the Hankel function H
(1)
0 (z) as follows

J0(z) :=
∑

n∈N0

(−1)n

(n!)2

(
z

2

)2n

,

and

N0(z) := 2

π

(
log

z

2
+ cEuler

)
J0(z) + 2

π

∑

n∈N

( ∑

l∈Z
+
n

1

l

)
(−1)n+1

(n!)2

(
z

2

)2n

,

and

H
(1)
0 (z) := J0(z) + iN0(z),

in which cEuler := 0.57721 . . . and i is the imaginary unit.
Let

Ψ (Q1,Q2) := i

4
H

(1)
0

(
κ|Q1 − Q2|

)
, Q1 �= Q2,
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be the fundamental solution to the Helmholtz equation (1.1). Using a single-layer po-
tential method, the solution U of the boundary value problem (1.1)–(1.2) is expressed
in the form

U(P ) :=
∫

S

Ψ (P,Q)φ(Q)dsQ, P ∈ D, (2.1)

where dsQ denotes the differential of the line element along S with respect to Q.
In (2.1), letting P tend to a point on the boundary S, and using the boundary

condition (1.2), we obtain a first kind boundary integral equation
∫

S

Ψ (P,Q)φ(Q)dsQ = h(P ), P ∈ S. (2.2)

If the function φ on the boundary S is the solution for the first kind boundary
integral equation (2.2), then the single-layer representation (2.1) gives the solution U

of the boundary value problem (1.1)–(1.2).
In order to give the operator form of (2.2), we let I := [0,2π] and introduce a

parameterization

x(t) := (
x1(t), x2(t)

)
, t ∈ I,

for the boundary S. We assume that each component of x is in C∞
2π (I ), the space

of 2π -periodic functions in C∞(I ). Choosing P := x(t) and Q := x(s), then (2.2)
becomes ∫

I

Ψ
(
x(t),x(s)

)
u(s)ds = f (t), t ∈ I, (2.3)

where u(s) := φ(x(s))|x′(s)| and f (t) := h(x(t)).
Let r(s, t) := |x(s) − x(t)|, and we have that

Ψ
(
x(t),x(s)

) := i

4
H

(1)
0

(
κr(s, t)

)
.

Likewise, in [17], we decompose the kernel function i
4H

(1)
0 (κr(s, t)) into three

parts. For this we let

a(s, t) := 1

2π
log

(
4

e
sin2 s − t

2

)
,

and

b(s, t) := i

4
H

(1)
0

(
κr(s, t)

) − a(s, t)J0
(
κr(s, t)

)
, (2.4)

and

c(s, t) : = i

4
H

(1)
0

(
κr(s, t)

) − a(s, t) − b(s, t)

= a(s, t)
(
J0

(
κr(s, t)

) − 1
)

= sin2 s − t

2
a(s, t)c∗(s, t),

with

c∗(s, t) :=
{

J0(κr(s,t))−1
sin2 s−t

2
, s − t �= 2mπ, m ∈ Z,

−κ2|x′(t)|2, others.
(2.5)
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If the curve S and its parameterization x(t), t ∈ I are smooth, so is the function c∗ in
(2.5). Now we define three integral operators A , B and C defined by the following
equations

(A ω)(t) :=
∫

I

a(s, t)ω(s)ds, (Bω)(t) :=
∫

I

b(s, t)ω(s)ds,

(C ω)(t) :=
∫

I

c(s, t)ω(s)ds.

Using these notations, we rewrite (2.3) in the operator form

(A + B + C )u = f. (2.6)

In order to study (2.6), we need an appropriate space of functions. For ψ ∈ L2(I ),
we denote its l-th Fourier coefficient by

Fl(ψ) :=
∫

I

ψ(t)ēl(t)dt,

where

el(t) := 1√
2π

eilt , t ∈ I.

Following [1, 16, 17], we denote by Hp(I)(p ≥ 0) the Sobolev space of functions
ψ ∈ L2(I ) with the property

∑

l∈Z

(
1 + l2)p∣∣Fl (ψ)

∣∣2
< +∞.

The inner product of space Hp(I)(p ≥ 0) is defined by

(ω,ψ)p :=
∑

l∈Z

(
1 + l2)p

Fl(ω)Fl (ψ), ω,ψ ∈ Hp(I),

and the corresponding norm is given by ‖ψ‖p := (ψ,ψ)
1
2
p .

For any ψ ∈ H 0(I ) having the following expression

ψ(t) :=
∑

l∈Z

Fl(ψ)el(t),

applying the result (7.2.24) in [1] we have

(A ψ)(t) = −
∑

l∈Z

Fl(ψ)

max{1, |l|}el(t), (2.7)

which implies that operator A is a bijective mapping from H 0(I ) onto H 1(I ).
By the smoothness of the boundary S, it follows from Theorem 3.1 in [17] that B

and C are two compact integral operators from H 0(I ) to H 1(I ) and A + B + C :
H 0(I ) → H 1(I ) is an isomorphism.

Next we describe the Fourier-Galerkin method for solving (2.6). For each n ∈ N

we define a finite-dimensional subspace sequence

Xn := span
{
el : |l| ∈ Zn

}
.



856 H. Cai

Let Pn be the orthogonal projection operator from space H 0(I ) to Xn. By Theo-
rem 8.2 in [16], for all ω ∈ Hμ+ν(I ) with μ,ν ≥ 0, we have

‖ω − Pnω‖μ ≤ ‖ω‖μ+νn
−ν. (2.8)

The Fourier-Galerkin method for solving (2.6) is to seek a solution

un(s) :=
∑

|l|∈Zn

alel(s) ∈ Xn, (2.9)

satisfying

Pn(A + B + C )un = Pnf. (2.10)

By (2.7), the operator A has the Fourier basis functions as its eigenfunctions, which
implies A Pn = PnA . Hence, (2.10) has the form

(A + PnB + PnC )un = Pnf. (2.11)

Letting Bn := PnB|Xn,Cn := PnC |Xn and fn := Pnf , (2.11) is rewritten as

(A + Bn + Cn)un = fn. (2.12)

The related stability and convergence results regarding the Fourier-Galerkin
method can be obtained by the result in Chap. 7.3.3 in [1].

Theorem 2.1 Suppose that (2.6) has a unique solution u, then there exist a positive
integer n0 and a positive constant ς such that for n ≥ n0 and for any w ∈ Xn,

∥∥(A + Bn + Cn)w
∥∥

1 ≥ ς‖w‖0, (2.13)

and

‖u − un‖0 ≤ 1

ς

∥∥(I − Pn)u
∥∥

0.

Moreover, if the solution u to (2.6) belongs to space Hq(I) with q > 0, then we have

‖u − un‖0 ≤ 1

ς
‖u‖qn−q .

At the end of this section, we present the matrix form of (2.12). For this pur-
pose we use the notation v := [vk, v−k, k ∈ Z

+
n ]T ∈ C

2n to denote the vector
[v1, v−1, . . . , vn, v−n]T and v := [vk, v−k, k ∈ Zn]T ∈ C

2n+1 by [v0, v1, v−1, . . . ,

vn, v−n]T . For m1,m2 ∈ Z, we let

Fm1,m2(a) :=
∫

I 2
a(s, t)ēm2(s)ēm1(t)dsdt,

and then set

A′ := [
F0,0(a)

]
, A′′ := [

F0,−l (a),F0,l(a), l ∈ Z
+
n

]
,

A′′′ := [
Fk,0(a),F−k,0(a), k ∈ Z

+
n

]T
.

For k, l ∈ N, set

Ak,l :=
(

Fk,−l(a) Fk,l(a)

F−k,−l (a) F−k,l(a)

)
,
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and we define matrix A∗ of order 2n

A∗ := [
Ak,l, k, l ∈ Z

+
n

]
.

Using these matrix notations, we denote matrix A by

A :=
(

A′ A′′
A′′′ A∗

)
.

Clearly, the formula (2.7) produces that

A := diag

(
−1,−1,−1,−1

2
,−1

2
, . . . ,−1

n
,−1

n

)
.

Likewise, for m1,m2 ∈ Z, setting

Fm1,m2(b) :=
∫

I 2
b(s, t)ēm2(s)ēm1(t)dsdt, (2.14)

and

Fm1,m2(c) :=
∫

I 2
c(s, t)ēm2(s)ēm1(t)dsdt, (2.15)

we can define matrix B and matrix C and their corresponding blocks. We let

f := [
Fk(f ),F−k(f ) : k ∈ Zn

]T
,

and then denote the coefficient vector in the approximate solution (2.9) by

u := [al, a−l : l ∈ Zn]T .

Using these matrix and vector notations, (2.10) has the matrix form

(A + B + C)u = f. (2.16)

The Fourier-Galerkin numerical method for solving (2.6) is equivalent to solve
the linear system (2.16). Due to the density of matrix B and matrix C, we observe
that storing this linear system requires O(n2) of computational complexity, and then
generating its fully discrete form needs O(n2 log2 n) number of multiplications by the
fast Fourier transform, and at last, solving the fully discrete linear system of (2.16)
requires O(n2 log2 n) number of multiplications. Moreover, the spectral condition
number of the coefficient matrix A + B + C is O(n). When the order n is large, the
computational cost for solving (2.16) is huge at the sane time the linear system (2.16)
is extremely ill-posed. Hence, it is of great importance to develop a fast and stable
algorithm for solving (2.16).

The issues about the fast and stable algorithm includes: (1) Can the dense coef-
ficient matrix A + B + C be replaced by a sparse one so as to yield a semi-discrete
sparse linear system? (2) Can the semi-discrete sparse linear system be fully dis-
cretized with a quasi-linear computational cost? (3) Can the fully discrete sparse lin-
ear system be solved efficiently and steadily while the approximate solution remains
the optimal convergence order? We are going to answer these three questions in the
next three sections, respectively.
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3 The matrix truncation strategy and its analysis

In this section, we first compress these two full matrices B and C into two sparse
ones by using two different matrix truncation strategies, and then analyze these two
truncation strategies.

For the dense matrix B, since the kernel function b is smooth, we use the hy-
perbolic cross approximate method in [6, 14, 15, 19] to compress matrix B into a
sparse matrix B̃ without loss of critical information encoded in the matrix. Specif-
ically, we introduce an index set L

B
n := [(m1,m2) ∈ Z

∗
n

2 : |m1m2| ≤ n], where
Z

∗
n

2 := [(k1, k2) : |k1|, |k2| ∈ Zn], and then define matrix B̃ by preserving the entry
Fm1,m2(b) in B for (m1,m2) ∈ L

B
n and replacing others by zeros.

If we use the symbol M (G) to denote the number of the nonzero entries for any
matrix G, then Theorem 3.1 in [6] shows that M (B̃) is O(n log2 n).

For the matrix C, since the kernel function c is not smooth, we are going to develop
another matrix truncation strategy different form that of matrix B. Similarly, we first
introduce an index collection L

C
n given by

L
C
n := [

(m1,m2) ∈ Z
∗
n

2 : ∣∣(m1 − m2)m2
∣∣ ≤ n log2 n

]
,

and then define matrix C̃ by preserving the entry Fm1,m2(c) in matrix C for
(m1,m2) ∈ L

C
n and replacing others by zeros.

In the next theorem we show that the matrix C̃ is a sparse matrix. To this end, we
denote by N (S) the cardinality for any set S.

Theorem 3.1 For each n ∈ N, we have that M (C̃) is O(n log2
2 n).

Proof Noting the fact that M (C̃) = N (LC
n ), as a result, we only need to estimate

the latter. Let

J
′
n := [(|m1|,0

) : |m1| ∈ Zn

]
,

J
′′
n := [

(m1,m2) ∈ Z
∗
n

2 : m2 �= 0,
∣∣(m1 − m2)m2

∣∣ ≤ n log2 n
]
.

Clearly,

L
C
n = J

′
n ∪ J

′′
n, J

′
n ∩ J

′′
n = ∅,

which implies that

N
(
L

C
n

) = N
(
J
′
n

) + N
(
J
′′
n

)
. (3.1)

A direct estimation produces that

N
(
J
′
n

) = 2n + 1. (3.2)

On the other hand, we have that

N
(
J
′′
n

) = 2
∑

j∈Z
+
n

(
4n log2 n

j
+ 1

)
= 2n + 8n log2 n

∑

j∈Z
+
n

1

j
,

which combining the fact that
∑

j∈Z
+
n

= O(log2 n) yields that

N
(
J
′′
n

) = O
(
n log2

2 n
)
. (3.3)

A direct combination of (3.1)–(3.3) leads to the desired result. �
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Fig. 1 (a) The sparse matrix B̃ of order 1025 and (b) The sparse matrix C̃ of order 1025

Figure 1 shows the sparsity of matrix B̃ and matrix C̃.
Let B̃n and C̃n be the linear operators such that their matrix representations under

the Fourier basis Xn are B̃ and C̃, respectively. Below we give the estimations of
Bn − B̃n and Cn − C̃n. To this end, we let Hμ,ν(I 2),μ, ν ≥ 0 denote the Sobolev
space of functions ψ ∈ L2(I 2) with the norm

‖ψ‖μ,ν :=
( ∑

(m1,m2)∈Z2

(
1 + m2

1

)μ(
1 + m2

2

)ν∣∣Fm1,m2(ψ)
∣∣2

) 1
2

< +∞.

The next result concerns the difference Bn − B̃n.

Lemma 3.1 Suppose that the kernel function b ∈ Hq+1,q+1(I 2), then there holds
∥∥(Bn − B̃n)Pnw

∥∥
1 ≤ 4‖b‖q+1,q+1‖w‖νn

−q, (3.4)

for w ∈ Hν(I) with ν := 0 or q .

Proof By Lemma 4.4 in [6], we obtain that
∥∥(Bn − B̃n)Pnw

∥∥
1 ≤ 4‖b‖q+1,q+1‖w‖0n

−q,

which and the fact that ‖w‖0 ≤ ‖w‖q lead to the desired conclusion. �

Next we consider the difference between Cn and C̃n. For this purpose, let

αj :=

⎧
⎪⎨

⎪⎩

0, j = 0,

− 1
8 , j = ±1,

1
2|j |(j2−1)

, others,
(3.5)

and we present a few technical results.
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Lemma 3.2 Assume that the function c∗ ∈ L2(I 2), then every entry Fm1,m2(c) in
(2.15) can be rewritten as

Fm1,m2(c) = 1

2π

∑

j∈Z

αm1+jF−j,m2−m1−j

(
c∗). (3.6)

Proof Since c∗ ∈ L2(I 2), then its Fourier expansion has the following form

c∗(s, t) =
∑

(j1,j2)∈Z2

Fj1,j2

(
c∗)ej1(t)ej2(s),

Substituting the right hand side of the equation above into (2.15) with ēm1ej1 =
1√
2π

ēm1−j1 and ēm2ej2 = 1√
2π

ēm2−j2 yields

Fm1,m2(c) = 1

2π

∑

(j1,j2)∈Z2

Fj1,j2

(
c∗)

×
∫

I 2
sin2 s − t

2
a(s, t)ēm2−j2(s)ēm1−j1(t)dsdt. (3.7)

Again substituting the result (3.12) in [17],
∫

I

sin2 s − t

2
a(s, t)ēm1−j1(t)dt = αm1−j1 ēm1−j1(s), s ∈ I,

into the right hand side of (3.7) confirms (3.6). �

Remark 3.1 By changing the variable of integration in (3.7), Fm1,m2(c) can also be
expressed as

Fm1,m2(c) = 1

2π

∑

j∈Z

αm2+jFm1−m2−j,−j

(
c∗). (3.8)

The next lemma gives three fundamental inequalities.

Lemma 3.3 For k, l ∈ Z, there holds

(
1 + (k + l)2)(1 + l2) ≥ 1 + k2

4
, (3.9)

∑

l∈Z

1

1 + (k + l)2
≤ 4. (3.10)

A combination of (3.5) and (3.9) yields that

|αk+l |
(
1 + k2) ≤ 2

(
1 + l2). (3.11)

Proof The equalities (3.9), (3.10) hold and the equality (3.11) holds for the case
|k + l| ≤ 1, obviously. Hence, it only requires us to prove (3.11) for the case
|k + l| ≥ 2. In fact, by the definition (3.5), we have that
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2(1 + l2)

|αk+l | = 4
(
1 + l2)|k + l|((k + l)2 − 1

)
,

= 4
(
1 + l2)((k + l)2 + 1

) |k + l|((k + l)2 − 1)

(k + l)2 + 1
,

which combining (3.9) and the next inequality for |k + l| ≥ 2

|k + 1|((k + l)2 − 1)

(k + l)2 + 1
≥ 1,

produces that

2(1 + l2)

|αk+l | ≥ 4 + k2 ≥ 1 + k2.

This completes the proof of this Lemma. �

For a vector v := [vk, v−k : k ∈ Zn]T , we use the notation ‖v‖ to denote its spectral
norm and then use vμ := [(1+k2)

μ
2 vk, (1+k2)

μ
2 v−k : k ∈ Zn]T to denote a weighted

vector for a nonnegative constant μ.

Lemma 3.4 Suppose that there exist a sequence βm1,m2,j and a positive constant θ

independent of m1 ∈ Z such that for some nonnegative constant μ,
∑

j∈Z

∑

m2∈Z

(
1 + (m2 − m1 − j)2)μ+1(1 + j2)μ+1|βm1,m2,j |2 ≤ θ2, (3.12)

then there holds for any two vectors v,w ∈ C
2n+1 and for ν := 0 or μ,

∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

(
1 + m2

1

)|αm1+j βm1,m2,j vm1wm2 |

≤ 2μ81/2θ‖v1‖‖wν‖n−ν log−2μ
2 n. (3.13)

Proof Associated with the sequence βm1,m2,j , we let

gm1,m2,j := (
1 + (m2 − m1 − j)2)μ+1

2
(
1 + j2)μ+1

2 |βm1,m2,j ||αm1+j | 1
2 ,

and associated with the vectors v and w, we define

hm1,m2,j := |αm1+j | 1
2 (1 + m2

1)
1
2 |(1 + m2

1)
1
2 vm1 ||(1 + m2

2)
ν
2 wm2 |

(1 + m2
2)

ν
2 (1 + (m2 − m1 − j)2)

μ+1
2 (1 + j2)

μ+1
2

.

We denote by S the left hand side of (3.13), that is,

S :=
∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

gm1,m2,j hm1,m2,j .

Using the Cauchy-Schwarz inequality to the right hand side of the above equation
yields

S ≤
(∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

g2
m1,m2,j

) 1
2
(∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

h2
m1,m2,j

) 1
2

. (3.14)
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On one hand, employing the inequality
∑

m1∈Z

|αm1+j | ≤ 1, (3.15)

with the hypothesis (3.12) produces that
∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

g2
m1,m2,j

≤ θ2. (3.16)

On the other hand, using (3.9) with k := m2 − m1 and l := j yields

(
1 + (m2 − m1 − j)2)(1 + j2) ≥ 1 + (m2 − m1)

2

4
,

which combining (m1,m2) ∈ Z
∗
n

2\L
C
n obtains that

(
1 + m2

2

)−ν(1 + (m2 − m1 − j)2)−μ(
1 + j2)−μ ≤ 4μn−2ν log−2μ

2 n. (3.17)

Using (3.10) with k := m2 − m1 and l := j yields that

∑

j∈Z

1

1 + (m2 − m1 − j)2
≤ 4. (3.18)

Employing (3.11) with k := m1 and l := j produces that

|αm1+j |
(
1 + m2

1

) ≤ 2
(
1 + j2). (3.19)

A combination of (3.18) and (3.19) obtains that

∑

j∈Z

|αm1+j |(1 + m2
1)

(1 + j2)(1 + (m2 − m1 − j)2)
≤ 8. (3.20)

Hence, a direct consequence of (3.17) and (3.20) concludes that
∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

h2
m1,m2,j

≤ 4μ8‖v1‖2‖wν‖2n−2ν log−2μ
2 n,

which and (3.14), (3.16) yield the desired conclusion (3.13). �

The following result concerns the difference between two matrices C and C̃.

Lemma 3.5 Assume that there exist a positive constant σ and some nonnegative
constant μ,

∑

j∈Z

∑

k∈Z

(
1 + j2)μ+1(1 + k2)μ+1∣∣Fj,k

(
c∗)∣∣2 ≤ σ 2, (3.21)

then for any two arbitrary vectors v,w ∈ C
2n+1 and for ν := 0 or μ, there holds

∣∣v2
T (C − C̃)w

∣∣ ≤ 2μσ‖wν‖‖v1‖n−ν log−μ
2 n. (3.22)
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Proof We first observe that

v2
T (C − C̃)w =

∑

(m1,m2)∈Z∗
n

2\LC
n

(
1 + m2

1

)
Fm1,m2(c)vm1wm2,

which combining (3.6) yields that

v2
T (C − C̃)w = 1

2π

∑

j∈Z

∑

(m1,m2)∈Z∗
n

2\LC
n

(
1 + m2

1

)
αm1+jF−j,m2−m1−j

(
c∗)vm1wm2 .

Hence, using the condition (3.21) and the estimation (3.13) with βm1,m2,j :=
F−j,m2−m1−j (c

∗), θ := σ confirms that
∣∣v2

T (C − C̃)w
∣∣ ≤ (2π)−12μ81/2σ‖wν‖‖v1‖n−ν log−2μ

2 n.

This with
√

8
2π

< 1 yields the desired conclusion. �

Now we give the difference between Cn and C̃n.

Lemma 3.6 Suppose that the function c∗ ∈ Hq+1,q+1(I 2), then for each w ∈ Hν(I)

with ν := 0 or q , there holds
∥∥(Cn − C̃n)Pnw

∥∥
1 ≤ 2q‖c∗‖q+1,q+1‖w‖νn

−ν log−q

2 n. (3.23)

Proof By the definition of norm, we have that
∥∥(Cn − C̃n)Pnw

∥∥
1 = sup

v∈H 1(I ),‖v‖1=1

∣∣((Cn − C̃n)Pnw,v
)

1

∣∣

= sup
v∈H 1(I ),‖v‖1=1

∣∣((Cn − C̃n)Pnw,Pnv
)

1

∣∣.

For v ∈ H 1(I ) and w ∈ H 0(I ), we express their orthogonal projections onto Xn as

(Pnv)(t) =
∑

|k|∈Zn

vkek(t), (Pnw)(t) =
∑

|k|∈Zn

wkek(t), t ∈ I. (3.24)

Two coefficient vectors in (3.24) are denoted by v := [vk, v−k : k ∈ Zn]T and w :=
[wk,w−k : k ∈ Zn]T , respectively. Obviously,

‖v1‖ ≤ ‖v‖1, ‖wν‖ ≤ ‖w‖ν. (3.25)

From (3.24) and the definition of the operators Cn and C̃n, we obtain that
(
(Cn − C̃n)Pnw,Pnv

)
1 = v2

T (C − C̃)w.

A combination of (3.22) and (3.25) with σ := ‖c∗‖q+1,q+1, μ := q leads to the de-
sired estimation (3.23). �

Replacing B and C in (2.16) by B̃ and C̃, respectively leads to a truncated linear
system

(A + B̃ + C̃)ũ = f, (3.26)

with the unknown solution vector ũ := [ãl , ã−l : l ∈ Zn]T . Because the coefficient
matrix A + B̃ + C̃ has O(n log2

2 n) number of nonzero entries, solving (3.26) is a fast
semi-discrete algorithm.
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4 The numerical integration scheme and its analysis

The numerical implementation of the fast method (3.26) requires an efficient com-
putation of the nonzero elements in this linear system. We observe that Fm1,m2(b),
Fm1,m2(c) and Fm1(f ) are oscillatory integrals. To treat these oscillatory integrals,
we adopt the product integration method so the integrals of the oscillatory factors
are evaluated exactly. For recent development of numerical integration of oscillatory
integrals, see [10–13, 18, 20]. With the product integration method, we can obtain
sufficient precision to ensure that the approximate solution has the optimal conver-
gence order. Specifically, we are going to use three appropriate functions to replace
b, c∗ and f , respectively, so that it requires a quasi-linear computational cost to gen-
erate the fully discrete forms of B̃, C̃ and f and the approximate solution preserves
the optimal order.

In the next three subsections we are going to present and analyze the efficient
numerical integration algorithm for computing all nonzero entries in B̃, C̃ and f,
respectively. Accordingly, we use the notation �x� to denote the largest integer not
more than x.

4.1 The numerical integration scheme for matrix B̃

In this section, we first present the Boolean approximate function of the function b.
This idea comes from [3, 4, 8]. To this end, for any two-dimensional continuous
function g ∈ C(I 2) and for Mk ∈ N and |jk| ∈ ZMk

, k = 1,2, we set

FM1,j1,M2,j2(g) := π2

M1M2

∑

l1∈Z2M1−1

∑

l2∈Z2M2−1

g

(
πl1

M1
,
πl2

M2

)
ēj1

(
πl1

M1

)
ēj2

(
πl2

M2

)
,

and then let

(LM1,M2g)(s, t) :=
∑

|j1|∈ZM1

∑

|j2|∈ZM2

FM1,j1,M2,j2(g)ej1(s)ej2(t).

As shown in [4], let r := �log2 n� + 1, and we define the two-dimensional Boolean
approximate function of b by

(Srb)(s, t) :=
∑

j∈Z
+
r

(L2j ,2r+1−j b)(s, t) −
∑

j∈Z
+
r−1

(L2j ,2r−j b)(s, t), s, t ∈ I, (4.1)

A direct computation for Fm1,m2(Srb) yields that

Fm1,m2(Srb) =
∑

j∈Z
+
r

∑

|j1|∈Z2j

∑

|j2|∈Z2r+1−j

F2j ,j1,2r+1−j ,j2
(b)δj1,m2δj2,m1

−
∑

j∈Z
+
r−1

∑

|j1|∈Z2j

∑

|j2|∈Z2r−j

F2j ,j1,2r−j ,j2
(b)δj1,m2δj2,m1, (4.2)

where δl1,l2 is defined by

δl1,l2 :=
{

1, l1 = l2,

0, l1 �= l2.
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We let B̂ denote the matrix B̃ with Fm1,m2(b) being replaced by Fm1,m2(Srb) for
(m1,m2) ∈ L

B
n . Now we describe the algorithm for generating the fully discrete ma-

trix B̂.

Algorithm 4.1 Choosing r := �log2 n� + 1 for n ∈ N.

Step 1: Computing b(
2πj1
2j+1 ,

2πj2
2r+2−j ) for j1 ∈ Z2j+1−1, j2 ∈ Z2r+2−j −1, j ∈ Z

+
r .

Step 2: Computing b(
2πj1
2j+1 ,

2πj2
2r+1−j ) for j1 ∈ Z2j+1−1, j2 ∈ Z2r+1−j −1, j ∈ Z

+
r−1.

Step 3: For j ∈ Z
+
r , computing F2j ,j1,2r+1−j ,j2

(b) for j1 ∈ Z2j+1−1, j2 ∈ Z2r+2−j −1
by the two-dimensional fast Fourier transform.

Step 4: For j ∈ Z
+
r−1, computing F2j ,j1,2r−j ,j2

(b) for j1 ∈ Z2j+1−1, j2 ∈ Z2r+1−j −1
by the two-dimensional fast Fourier transform.

Step 5: Computing Fm1,m2(Srb) for all (m1,m2) ∈ L
B
n , according to the for-

mula (4.2).

The next theorem concerns on the computational cost used in generating B̂.

Theorem 4.1 For (s, t) ∈ I 2, if the number of multiplications used in computing
b(s, t) is O(1), then the number of multiplications for computing all nonzero entry in
B̃ is O(n log2

2 n).

Proof The number of multiplications used in Step 1 and Step 2 is O(log2 n). Step 3
and Step 4, by FFT method, require O(n log2

2 n) number of multiplications. In Step 5,
a direct observation infers that the number of multiplications is O(1). In view of the
total number of multiplications used in Algorithm 4.1 equaling to the sum of that
used in each step, we obtain the desired result. �

Let B̂n be the linear operator such that its matrix representation under the Fourier
basis Xn is B̂. The next step is to give a few technical results so as to show the
difference between B̃n and B̂n.

Lemma 4.1 Suppose that the kernel function b ∈ Hq1,q1(I 2) such that q1 > q + 3/2,
then there exists a positive integer n0 such that when n ≥ n0 and for any two arbitrary
vectors v,w ∈ C

2n+1,
∣∣vT

2 (B̃ − B̂)w
∣∣ ≤ ‖b‖q1,q1‖w‖‖v1‖n−q . (4.3)

Proof A direct expansion of vT
2 (B̃ − B̂)w yields that

vT
2 (B̃ − B̂)w =

∑

(m1,m2)∈LB
n

(
1 + m2

1

)(
Fm1,m2(b) − Fm1,m2(Srb)

)
vm1wm2 .

Employing Cauchy-Schwartz inequality to the right hand side of the above equation,
we have

∣∣vT
2 (B̃ − B̂)w

∣∣

≤ ‖v1‖‖w‖
( ∑

(m1,m2)∈LB
n

(
1 + m2

1

)∣∣Fm1,m2(b) − Fm1,m2(Srb)
∣∣2

) 1
2

. (4.4)
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Applying Theorem 8 in [4], there exists a positive constant ς1 such that for b ∈
Hq1,q1(I 2),

‖b − Srb‖0,0 ≤ ς1‖b‖q1,q1n
−q1 log2 n, (4.5)

which yields that
∣∣Fm1,m2(b) − Fm1,m2(Srb)

∣∣ ≤ ς1‖b‖q1,q1n
−q1 log2 n. (4.6)

Together with (4.6) and the inequality 1 + m2
1 ≤ 2n2 for |m1| ∈ Zn, the inequality

(4.4) infers that

∣∣vT
2 (B̃ − B̂)w

∣∣ ≤ √
2ς1‖b‖q1,q1‖v1‖‖w‖

( ∑

(k,l)∈LB
n

n−2q1+2 log2
2 n

) 1
2

.

Since

N
(
L

B
n

) = O(n log2 n),

there exists a positive constant ς2 such that
∣∣vT

2 (B̃ − B̂)w
∣∣ ≤ ς2‖b‖q1,q1‖v1‖‖w‖n−q1+3/2 log3/2

2 n

= ς2‖b‖q1,q1‖v1‖‖w‖n−qn−q1+q+3/2 log3/2
2 n. (4.7)

Because −q1 + q + 3/2 < 0, we obtain that n−q1+q+3/2 log3/2
2 n → 0 as n →

∞, and then there exists a positive constant n0 such that n ≥ n0, the value
ς2n

−q1+q+3/2 log3/2
2 n is bounded by 1. Substituting the above estimate into the right

hand side of (4.7) leads to (4.3). �

Similar to the proof of Lemma 3.6, using Lemma 4.1 leads to

Lemma 4.2 Suppose that the function b ∈ Hq1,q1(I 2), then there exists a positive
integer n0 such that when n ≥ n0 and for any w ∈ H 0(I ),

∥∥(B̃n − B̂n)Pnw
∥∥

1 ≤ ‖b‖q1,q1‖w‖0n
−q . (4.8)

4.2 The numerical integration scheme for matrix C̃

Similar as in Sect. 4.1, using Src
∗ to denote the Boolean approximate function of

c∗, we let

ĉ∗(s, t) :=
∑

(m1,m2)∈LB
n

Fm1,m2

(
Src

∗)em1(s)em2(t), (4.9)

and then set

ĉ(s, t) := sin2 s − t

2
a(s, t)ĉ∗(s, t). (4.10)

A simple computation for Fm1,m2(ĉ) by (3.5) yields that

Fm1,m2(ĉ) := 1

2π

∑

j∈M(m1,m2,n)

αm2+jFm1−m2−j,−j

(
Sr c

∗), (4.11)
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where

M(m1,m2,n) := {
j ∈ Z : (m1 − m2 − j,−j) ∈ L

B
n

}
.

We let Ĉ denote the matrix C̃ with Fm1,m2(c) being replaced by Fm1,m2(ĉ) for
(m1,m2) ∈ L

C
n . Now we describe the algorithm for computing all nonzero entries in

matrix C̃.

Algorithm 4.2 Choosing r := �log2 n� + 1 for n ∈ N.

Step 1: For (m1,m2) ∈ L
B
n , computing Fm1,m2(Src

∗) by Algorithm 4.1.
Step 2: Computing Fm1,m2(ĉ) for all (m1,m2) ∈ L

C
n , according to the formula (4.11).

The next result considers the computational cost for generating Ĉ.

Theorem 4.2 For (s, t) ∈ I 2, if the number of multiplications used in computing
c∗(s, t) is O(1), then the number of multiplications for computing all nonzero entries
in C̃ is O(n log2

2 n(log2(log2 n))).

Proof Noting that the computational cost of Step 1 is O(n log2
2 n) by Theorem 4.1,

it only requires to estimate the cost of Step 2 in Algorithm 4.2. Consequently, let
p := m1 − m2, and we define an index set Mp,n as

Mp,n :=
{

Zp2\Zp1 , p2 − 4n ≤ 0,

{Zp1\Zp3} ∪ {Zp2\Zp4}, p2 − 4n > 0,

where

p1 :=
⌊

p − √
p2 + 4n

2

⌋
− 1, p2 :=

⌊
p + √

p2 + 4n

2

⌋
+ 1,

and

p3 :=
⌊

p − √
p2 − 4n

2

⌋
− 1, p4 :=

⌊
p + √

p2 − 4n

2

⌋
+ 1.

Thus we write Fm1,m2(ĉ) of (4.11) as

Fp,m2(ĉ) = 1

2π

∑

j∈Mp,n

αm2+jFp−j,−j

(
Sr c

∗), |p| ∈ Z2n, |m2| ∈ Zλ(p),

where

λ(p) := min

{
n,

⌊
n log2 n

max{1, |p|}
⌋}

.

Clearly, N (Mp,n) = O(
√

p2 + 4n) for p2 − 4n ≤ 0, otherwise, N (Mp,n) = O( n
p
).

Let

ζ(p) := ⌊
log2

(
N (Mp,n) + λ(p)

)⌋ + 1,
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and we infer that the number of multiplications finishing Step 2 by the FFT method
is not more than ∑

|p|∈Z2n

2ζ(p)ζ(p) = O
(
n log2

2 n
(
log2(log2 n)

))
,

which yields the desired conclusion. �

Next we concern on the estimation Fm1,m2(c) − Fm1,m2(ĉ). For this we set

c̃∗(s, t) :=
∑

(m1,m2)∈LB
n

Fm1,m2

(
c∗)em1(s)em2(t). (4.12)

By Theorem 1 in [15], there exists a positive constant τ1 such that for c∗ ∈ Hq1,q1(I 2),
∥∥c∗ − c̃∗∥∥

0,0 ≤ τ1
∥∥c∗∥∥

q1,q1
n−q1 . (4.13)

Again using Theorem 8 in [4], combining (4.9) and (4.12) with (4.5) yields that there
exists a positive constant τ2 such that

∥∥c̃∗ − ĉ∗∥∥
0,0 ≤ ∥∥c∗ − Src

∗∥∥
0,0 ≤ τ2

∥∥c∗∥∥
q1,q1

n−q1 . (4.14)

A combination of (4.13) and (4.14) yields that
∥∥c∗ − ĉ∗∥∥

0,0 ≤ (τ1 + τ2)
∥∥c∗∥∥

q1,q1
n−q1 . (4.15)

Lemma 4.3 Suppose that the function c∗ ∈ Hq1,q1(I 2), then there exists a positive
constant τ such that

∣∣Fm1,m2(c) − Fm1,m2(ĉ)
∣∣ ≤ τ

∥∥c∗∥∥
q1,q1

n−q1 log2 n. (4.16)

Proof By the definition, the difference between Fm1,m2(c) and Fm1,m2(ĉ) is written
as

Fm1,m2(c) − Fm1,m2(ĉ)

=
∫

I 2

(
c(s, t) − ĉ(s, t)

)
ēm1(t)ēm2(s)dsdt

=
∫

I 2
sin2 s − t

2
a(s, t)

(
c∗(s, t) − ĉ∗(s, t)

)
ēm1(t)ēm2(s)dsdt.

Using Cauchy-Schwartz inequality to the right hand side of the equation above with
letting

τ3 :=
(∫

I 2
sin4 s − t

2
a2(s, t)dsdt

)1/2

,

produces that
∣∣Fm1,m2(c) − Fm1,m2(ĉ)

∣∣ ≤ τ3
∥∥c∗ − ĉ∗∥∥

0,0.

Clearly, τ3 < +∞. Substituting the estimate (4.15) into the right hand side of the
equation above with τ := (τ1 + τ2)τ3 leads to the desired conclusion. �

We denote by Ĉn the linear operator such that its matrix representation under the
Fourier basis Xn is Ĉ and then estimate the difference between C̃n and Ĉn.
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Lemma 4.4 Suppose that the function c∗ ∈ Hq1,q1(I 2), then there exists a positive
integer n0 such that when n ≥ n0, for any two arbitrary vectors v,w ∈ C

2n+1,
∣∣vT

2 (C̃ − Ĉ)w
∣∣ ≤ ∥∥c∗∥∥

q1,q1
‖w‖‖v1‖n−q .

Hence, we also have that for w ∈ H 0(I ),
∥∥(C̃n − Ĉn)Pnw

∥∥
1 ≤ ∥∥c∗∥∥

q1,q1
‖w‖0n

−q . (4.17)

Proof Combining Lemma 4.3, a similar proof of Lemmas 4.1 and 4.2 yields the
desired conclusion. �

4.3 The numerical integration scheme for vector f

We first consider the right hand side vector f in (3.26). For |m1| ∈ Zn, we define f̃m1

by,

f̃m1 := π

n

∑

j∈Z2n−1

f

(
πj

n

)
ēm1

(
πj

n

)
,

and then let

f̂n(t) :=
∑

|m1|∈Zn

f̃m1em1(t).

Clearly, we have that for |m1| ∈ Zn, Fm1(fn) = f̃m1 . Now we use f̂m1 to approximate
fm1 and let

f̂ := [f̃k, f̃−k, k ∈ Zn]T .

A standard argument in [1, 9] shows that obtaining f̂ requires O(n log2 n) number of
computational cost by the fast Fourier transform method and there exists a positive
constant ε such that for f ∈ Hq+1(I ) with q > 0,

‖fn − f̂n‖1 ≤ ε‖f ‖q+1n
−q . (4.18)

By replacing the matrices B̃, C̃ and f in (3.26) by the fully discrete matrices B̂, Ĉ
and f̂, a fully discrete truncated linear system is obtained

(A + B̂ + Ĉ)û = f̂, (4.19)

with the unknown solution vector û := [âl , â−l : l ∈ Zn]T .
From the analysis above we observe that generating the linear system (4.19) re-

quires the number of O(n log2
2 n log2(log2 n)) of multiplications. Moreover, solving

this linear system requires O(n log3
2 n) number of multiplications by the multilevel

augmentation method proposed in [7]. Hence, it is a fast fully discrete algorithm.

5 The analysis of the proposed fast method

In this section, we first present the stability of the approximate operator A +B̂n+Ĉn.
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Lemma 5.1 Suppose that the kernel function b ∈ Hq1,q1(I 2), then there exists a pos-
itive integer n0 such that for n ≥ n0 and for any w ∈ H 0(I ),

∥∥(Bn − B̂n)Pnw
∥∥

1 ≤ 5‖b‖q1,q1‖w‖0n
−q . (5.1)

Proof Using the triangle inequality we have that
∥∥(Bn − B̂n)Pnw

∥∥
1 ≤ ∥∥(Bn − B̃n)Pnw

∥∥
1 + ∥∥(B̃n − B̂n)Pnw

∥∥
1,

which combining (2.3) and (4.8) with Hq1,q1(I 2) ⊆ Hq+1,q+1(I 2) yields the desired
conclusion. �

Lemma 5.2 Suppose that the function c∗ ∈ Hq1,q1(I 2), then there exist a positive
integer n0 and a positive constant γ such that when n ≥ n0 and for w ∈ Hν(I) with
ν := 0 or q ,

∥∥(Cn − Ĉn)Pnw
∥∥

1 ≤ γ
∥∥c∗∥∥

q1,q1
‖w‖ν

(
n−q + n−ν log−q

2 n
)
. (5.2)

Proof This result is a consequence of Lemma 3.6 and Lemma 4.4. �

Theorem 5.1 Suppose that the functions b, c∗ ∈ Hq1,q1(I 2), then there exists a pos-
itive integer n0 such that n ≥ n0 and for any w ∈ Xn

∥∥(A + B̂n + Ĉn)w
∥∥

1 ≥ ς

2
‖w‖0, (5.3)

where ς is given in (2.13).

Proof By the hypothesis on the function b, using (5.1) and the fact that
limn→∞ n−q = 0, we conclude that there exists a positive integer n1 such that for
all n ≥ n1 and for all w ∈ Xn,

∥∥(Bn − B̂n)w
∥∥

1 ≤ ς

4
‖w‖0. (5.4)

As mentioned in the above, a consequence of (5.2) leads to the fact that there exists
a positive integer n2 such that when n ≥ n2 and for w ∈ Xn,

∥∥(Cn − Ĉn)w
∥∥

1 ≤ ς

4
‖w‖0. (5.5)

When n ≥ n0 := max{n1, n2}, these two estimates (5.4) and (5.5) combining with
(2.13) yield that

∥∥(A + B̂n + Ĉn)w
∥∥

1

≥ ∥∥(A + Bn + Cn)w
∥∥

1 − ∥∥(Bn − B̂n)w
∥∥

1 − ∥∥(Cn − Ĉn)w
∥∥

1

≥ ς

2
‖w‖0,

proving the desired conclusion. �

This theorem shows that when n ≥ n0, (4.19) has a unique solution. Clearly, the
linear system (4.19) is equivalent to the operator form:

(A + B̂n + Ĉn)ûn = f̂n, (5.6)
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where

ûn(s) =
∑

|l|∈Zn

âlel(s), s ∈ I.

Next we establish the convergence order of the approximate solution ûn.

Theorem 5.2 Suppose the conditions in Theorem 5.1 hold, f ∈ Hq+1(I ), then there
exist a positive constant η and a positive integer n0 such that for n ≥ n0,

‖u − ûn‖0 ≤ η‖u‖qn−q .

Proof By the triangle inequality we have that

‖u − ûn‖0 ≤ ‖u − Pnu‖0 + ‖Pnu − ûn‖0. (5.7)

Using (2.8) with ω := u,μ := q, ν := 0 obtains that the first term on the right hand
side of (5.7) is bounded by ‖u‖qn−q . Therefore, it requires us to give an estimate
of the second term on the right hand side of (5.7). Using Theorem 5.1 there exists a
positive integer n0 such that n ≥ n0,

‖Pnu − ûn‖0 ≤ 2

ς

∥∥(A + B̂n + Ĉn)(Pnu − ûn)
∥∥

1. (5.8)

On the other hand, employing operator Pn to both sides of (2.6) and using fn :=
f̂n + fn − f̂n yield that

Pn(A + B + C )u = f̂n + fn − f̂n. (5.9)

Combining (5.9) and (4.19) shows that

Pn(A + B + C )u = (A + B̂n + Ĉn)ûn + fn − f̂n. (5.10)

A direct computation using (5.10) confirms the equation

(A + B̂n + Ĉn)(Pnu − ûn) = Pn(A + B + C )(Pnu − u)

+ (Bn − B̂n)Pnu + (Cn − Ĉn)Pnu + (fn − f̂n).

Together with (2.8), (4.18), (4.8), (4.17) and (5.3) using the triangle inequality for the
equation above shows that there exist a positive constant η1 and a positive integer n0
such that when n ≥ n0,

‖Pnu − ûn‖0 ≤ η1‖u‖qn−q + ε‖f ‖q+1n
−q . (5.11)

Hence, there exists a positive constant η such that

η1‖u‖qn−q + ε‖f ‖q+1n
−q ≤ η‖u‖qn−q,

which and (5.11) lead to the desired conclusion. �

Theorem 5.2 illustrates that the proposed method preserves the optimal order of
convergence.

In the remainder of this section, we consider a precondition of the coefficient ma-
trix of the linear system (4.19) so that the resulting matrix has a uniformly bounded
spectral condition number. For this purpose, we introduce a lemma.
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Lemma 5.3 Suppose that the conditions in Theorem 5.1 hold, then there exist two
positive constants θ1 and θ2 and a positive integer n0 such that when n ≥ n0 and for
w ∈ Xn,

θ1‖w‖0 ≤ ∥∥(A + B̂n + Ĉn)w
∥∥

1 ≤ θ2‖w‖0. (5.12)

Proof By Theorem 5.1 we observe that the left hand side of the inequality (5.12)
holds with θ1 := ς/2. The left issue is to prove the right hand side of this inequality.
By using the triangle inequality, there holds

∥∥(A + B̂n + Ĉn)w
∥∥

1

≤ ∥∥(A + Bn + Cn)w
∥∥

1 + ∥∥(Bn − B̂n)w
∥∥

1 + ∥∥(Cn − Ĉn)w
∥∥

1. (5.13)

Noting that A + B + C : H 0(I ) → H 1(I ) is bounded. With the definition of oper-
ators Bn and Cn, there exist a positive constant ξ and a positive integer n1 such that
for n ≥ n1 and w ∈ Xn,

∥∥(A + Bn + Cn)w
∥∥

1 ≤ ξ‖w‖0. (5.14)

Again by (5.1) and (5.2) there exists a positive integer n2 such that n ≥ n2,
∥∥(Bn − B̂n)w

∥∥
1 + ∥∥(Cn − Ĉn)w

∥∥
1 ≤ ‖w‖0. (5.15)

Substituting these two estimates (5.14) and (5.15) into the right hand side of (5.13)
leads to the desired result (5.12) with θ2 := ξ + 1 and n ≥ n0 := max{n1, n2}. �

Now we define a diagonal matrix D by

D := diag
(
1,2

1
2 ,2

1
2 , . . . ,

(
1 + n2) 1

2 ,
(
1 + n2) 1

2
)
,

which will be used as a preconditioner for the coefficient matrix (A + B̂ + Ĉ). To this
end, we let

E := D(A + B̂ + Ĉ).

Clearly, (4.19) is rewritten as

Eû = Df̂.

Below we prove that matrix E enjoys a uniformly bounded spectral condition number.
For this purpose, we use the symbol cond(G) to denote the spectral condition number
for any inverse square matrix G.

Theorem 5.3 Suppose that the conditions in Theorem 5.2 hold, then there exists a
positive integer n0 such that when n ≥ n0, the spectral condition number of matrix E
is uniformly bounded, that is

cond(E) ≤ θ2/θ1. (5.16)

Proof This proof is similar to that of Theorem 4.2 in [13]. For any w := [wl,w−l :
l ∈ Zn]T , we let

w :=
∑

|l|∈Zn

wlel, v := (A + B̂ + Ĉ )w.
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Clearly, v ∈ Xn. Let v := [Fk(v),F−k(v) : k ∈ Zn], and we have that

v = (A + B̂ + C)w,

that is,

Dv = Ew,

which yields

‖Ew‖ = ‖Dv‖ = ‖v‖1 = ∥∥(A + B̂n + Ĉn)w
∥∥

1. (5.17)

A combination of (5.12) and (5.17) with the fact ‖w‖0 = ‖w‖ leads to the estimate
(5.16). �

6 Numerical examples

In this section, we shall adopt the conventional method and the proposed method
respectively to compute one numerical example and then show that our proposed
method is better than the conventional method.

In the conventional method, the fully discrete form of B is obtained by using the
two-dimensional fast Fourier transform algorithm. For the matrix C, we first use
the two-dimensional fast Fourier transform algorithm to compute Fm1,m2(c

∗) for
(m1,m2) ∈ Z

∗
n

2, and then obtain the fully discrete form of matrix C by using (3.8)
and the fast Fourier transform method. In our proposed method, we obtain the matrix
B̂ and matrix Ĉ by Algorithm 4.1 and Algorithm 4.2 respectively.

All computer programs are compiled by Matlab language and run on a personal
computer with a 2.01 GHz celeron CPU and 1 G memory. We solve the fully discrete
linear system by the multilevel augmentation method. We use the notations CT1 and
CT2 to denote the computing time (measured in seconds), spent in generating the
fully discrete form of matrix B and C in the conventional method and that of B̃ and
C̃ in the proposed method, respectively. We use CT3 to denote the time (measured in
seconds) spent in solving the linear system (2.16) and (4.19), respectively.

Example Consider solving the boundary value problem (1.1)–(1.2). Assume the
boundary S has a parametrization x(t) := (2 cos t, sin t), t ∈ I . We choose the bound-
ary function h in (1.2) so that the exact solution for the boundary value problem
(1.1)–(1.2) is U(P ) := N0(2|P − P0|), P ∈ D, where P0 := (4,0). Let ûn be the so-
lution by solving (5.6), and we define the corresponding approximate solution Ûn for
the boundary value problem (1.1)–(1.2) by

Ûn(x, y) := i

4

∫

I

H
(1)
0

(
2
(
(x − 2 cos t)2 + (y − 2 sin t)2)1/2)

ûn(t)dt, (x, y) ∈ D.

We define the error function δ(x, y) as follows

δ(x, y) := ∣∣U(x,y) − Ûn(x, y)
∣∣, P := (x, y) ∈ D.

The numerical results for this example obtained by using the conventional method
and the proposed method are given in Tables 1 and 2, respectively, where δk := δ(Pk)
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Table 1 Results of the conventional method for Example 2 for κ := 2

n δ1 δ2 δ3 cond(A + B + C) CT1 CT2 CT3

64 4.67e−6 6.45e−6 4.27e−5 216 1.95 1.22 0.013

128 8.92e−8 3.24e−7 4.56e−7 431 7.26 4.83 0.060

256 1.29e−9 3.08e−9 5.86e−9 861 29.13 20.08 0.228

512 4.57e−11 6.49e−11 8.23e−11 1732 119.51 81.51 0.925

1024 3.86e−13 5.23e−13 7.37e−13 3465 482.74 330.08 3.691

Table 2 Results of the proposed method for Example 2 for κ := 2

n δ1 δ2 δ3 cond(E) CT1 CT2 CT3

64 3.42e−5 3.11e−4 8.43e−4 17.3 0.91 0.20 0.016

128 8.56e−7 1.54e−6 2.33e−6 17.3 2.01 0.42 0.034

256 1.36e−8 4.64e−8 9.45e−8 17.3 4.72 1.09 0.067

512 3.74−10 8.23e−10 1.57e−9 17.3 9.67 2.13 0.145

1024 1.76e−12 4.81e−12 8.27e−12 17.3 22.03 4.67 0.315

Fig. 2 Computation times CT
of conventional and proposed
methods

at the points Pk := pk(cos π
4 , sin π

4 ), k = 1,2,3, where p1 := 0,p2 := 0.25 and

p3 := 0.5 and the values of Ûk at points Pk are computed by the trapezoid quadra-
ture formula. Figure 2 illustrates that our proposed method is more efficient than the
conventional method.

7 Conclusion

The proposed method is superior to the conventional numerical method for solving
the first kind boundary integral equation, reformulations of boundary value problems
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of the two-dimensional Helmholtz equation with a smooth boundary. Moreover, this
method may be used to solve other boundary value problems.
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