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Abstract
Computational physical systems may exhibit indeterminacy of computation (IC). 
Their identified physical dynamics may not suffice to select a unique computational 
profile. We consider this phenomenon from the point of view of cognitive science 
and examine how computational profiles of cognitive systems are identified and jus-
tified in practice, in the light of IC. To that end, we look at the literature on the 
underdetermination of theory by evidence and argue that the same devices that can 
be successfully employed to confirm physical hypotheses can also be used to ration-
ally single out computational profiles, notwithstanding IC.

Keywords Indeterminacy of computation · Underdetermination of theory by 
evidence · Computational explanations · Computational individuation

Introduction

Studying physical systems under the assumption that they compute functions or 
implement  specific automata has been a fruitful practice in various areas of scien-
tific research–from the physics of information to computational neuroscience. Nev-
ertheless, characterizing a system computationally is generally a challenging task, 
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even when the system’s physical behavior is sufficiently known. As a simple exam-
ple, consider a physical system whose input and output behavior can be  described as 
implementing an OR-gate; that is, certain physical states have been mapped to the 
logical values True/False (computational states 1/0, respectively) in accordance with 
Table 1. By swapping every logical (computational) state that is mapped to a given 
physical state for its inverse —that is, by assigning 0 to any physical state that was 
previously mapped to 1, and vice-versa— the same system can now be  described as 
implementing an AND-gate (Table 2).

What determines whether the specific system, in this example, implements  dis-
junction or  conjunction is how the inputs and outputs are interpreted (i.e., as a com-
putational state True or False). This kind of indeterminacy may even extend beyond 
Boolean functions to functions in discrete and continuous mathematics, such as 
addition and multiplication over the real numbers.1 And yet, this is not the only way 
in which the same physical behavior may support multiple computations simultane-
ously. As Shagrir (2001) and Shagrir (2012) show,   some physical systems can be 
seen as implementing multiple finite-state automata concurrently (below, we present 
such an example). The upshot is that there exist physical systems that can be seen as 
either simultaneously computing more than one mathematical function, or simulta-
neously implementing more than one formal structure (or even both). Let us refer to 
this phenomenon as ‘Indeterminacy of Computation’ (IC).2

This multiplicity of computational profiles notwithstanding, computational 
explanation in scientific practice picks out and relies on only one of these possibili-
ties. But the IC challenge concerns exactly that: it is not always possible to select a 
unique implemented automaton or computed function as the computational identity 
of the system based on its physical properties alone.

Hence, the question arises: given the IC challenges imposed on computational 
individuation, what justifies computational explanations that rely on singling out 
specific computational profiles over others? How do cognitive scientists decide 
between the simultaneously implemented structures —or the different computed 
functions— in explaining a system’s observed success in some cognitive task, and 
on what basis can the advanced explanations be considered well-determined and 
warranted?

We propose that valuable insight into these questions may be gained from extant 
responses to another case of non-determinacy: the underdetermination of theory by 
evidence (UTE). Conjecturing that a cognitive system computes a specific function 
can be seen as a special case of hypothesis testing. Thus, the challenge posed by 
UTE seems, prima facie, also pertinent to the way that a cognitive scientist chooses 
between rival hypotheses. A large body of literature has sought to tackle UTE by 
formulating accounts of confirmation that go beyond naïve hypothetico-deductiv-
ism (e.g., based on theoretical virtues of theories, statistical methods, Bayesian rea-
soning, etc.). In this article, we make the case that similar arguments can also be 

1 See Fresco et al. (2021) and Papayannopoulos et al. (2022) for examples.
2 The term is due to Jack Copeland.
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brought to bear on the IC challenge in relation to computational hypotheses in cog-
nitive science.

More specifically, the thesis we put forward is that in studying neuronal computa-
tions, we can be aided in selecting computational profiles (thereby overcoming IC 
concerns) on similar grounds that are used to choose between rival hypotheses in 
physical science (in overcoming UTE). In other words, the same tools that help us 
justifiably rule out specific hypotheses as less plausible for a given phenomenon also 
help us to rule out computational hypotheses as non pertinent to neuronal computa-
tions within given contexts.

Section “The IC in more detail” discusses IC in more detail and provides some 
additional examples. Section  “The current debate on computational individuation 
and the relation between IC and UTE” briefly reviews the current debate about com-
putational individuation. Section “The Underdetermination of Theory by Evidence” 
concerns UTE: although the thesis allegedly poses a special kind of challenge to 
confirmation of theories (Sect. The UTE thesis) there is a variety of conceptual and 
mathematical devices that provide us with grounds for deeming certain hypotheses 
preferred and better confirmed than others (Sect. Responses to UTE). Section “The 
confirmation methods at work: determining computational hypotheses” presents 
a detailed case study from computational neuroscience and argues that the same 
devices can also be used to confirm hypotheses within a computational context; that 
is, hypotheses concerning computational profiles, algorithms, and their implementa-
tions. Section “Determining the indeterminate? The confirmation methods against 
IC” shows how the same, aforementioned devices can be also appropriate for sys-
tems that admit simultaneously of several ways of grouping physical and computa-
tional states (IC). Finally, section “Conclusions” provides some conclusions and ties 
up loose ends.

The IC in more detail

Let us make some general observations about IC and see some more examples. In 
what follows, we will adopt a distinction proposed by Papayannopoulos et al. (2022) 
between two kinds of IC; an interpretative and a functional kind. Both species of 
indeterminacy pertain to computational individuation to a greater or lesser extent. 
Roughly, interpretative IC concerns an indeterminacy regarding the identification 
of the logical or mathematical function that the system computes; such indetermi-
nacy arises owing to the possibility of more than one way of assigning logical and/
or mathematical content to specific physical (abstract) states. The example from the 
previous section  is such a case, since it is indeterminate whether the system com-
putes an OR or an AND function. Functional IC concerns an indeterminacy regard-
ing the proper way of grouping together physical properties (or states) in order to 
determine the functional organization of the computing system. The next example 
falls under functional IC, because the indeterminacy between the two obtained com-
putational profiles in Tables  4 and 5 arises by virtue of variant partitions of the same 
set physical states (i.e., by virtue of more than one possible functional organization).
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Consider a physical system P with two voltage inputs and one voltage output, as 
in Fig. 1. The system can be thought of as a kind of a black box, whose computa-
tional behavior we are trying to identify. Suppose that after an appropriate number 
of carefully designed measurements, we end up with a taxonomy of the input/output 
dynamics depicted in Table 3; that is, we have come to specify three voltage ranges 
—Low (L), Medium (M), and High (H)— as computationally stable.

Given a dynamic behavior of the system as in Table 3, how should we character-
ize it computationally? Without loss of generality, let us assume that our working 
hypothesis is that the system computes some Boolean function. One possible way 
is to map the High range to some logical state (say, T) and the other two, Medium 
and Low grouped together, to its opposite (i.e., F). Under this mapping, the sys-
tem computes an XOR function (as in Table 4). But an equally plausible route is to 
group together the High and Medium ranges, assigned to T, and map Low alone to 
F. Under that second mapping, the system computes an OR function (as in Table 5). 
This is a case of indeterminacy of the functional profile of the system, consequently 
giving rise to functional IC.3

Before closing this section, let us consider a final example, which will be also 
useful in our later discussions about possible indeterminacies arising  in our case 
study. Assume a physical system Q that is again a tri-stable flip-detector, like the 
system P above, and suppose that by means of appropriate measurements we obtain 
the input/output profile in Table 6.

One way to characterize Q computationally is to determine some functional 
organization by abstracting from the physical voltages. For example, by mapping 

Table 1  The logical input-
output relations of an OR-gate

Input A Input B Output

1 1 1
1 0 1
0 1 1
0 0 0

Table 2  The logical input-
output relations of an AND-gate

Input A Input B Output

0 0 0
0 1 0
1 0 0
1 1 1

3 Note that the same system exhibits also interpretative IC, in the sense that the truth-values in Tables  4 
and 5 can be swapped for their inverse, thus leading to an XNOR- and an AND-gate, respectively.
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the higher voltage ranges, 0.5–0.9V, to the logical state T and the lower and medium 
ranges, 0–0.5V, to F, we obtain an AND gate as the computational identity of the 
system; see Table 7.4 But now observe that the mapping relating the physical inputs 
and outputs in Table 6 is also consistent with a multiplication description:

Vout = V1 ⋅ V2

Fig. 1  The physical system P 
with three stable states

Table 3  A taxonomy of the 
input/output behavior of the 
system P . The system emits 
7–10 volts, if it receives a signal 
greater than 7 volts from exactly 
one input channel. It emits 0–3 
volts, if it receives less than 3 
volts from both input channels, 
and it emits 4–6 volts in any 
other case

Input A (V) Input B (V) Output C (V)

7–10 (H) 7–10 (H) 4–6 (M)
7–10 (H) 4–6 (M) 7–10 (H)
7–10 (H) 0–3 (L) 7–10 (H)
4–6 (M) 7–10 (H) 7–10 (H)
4–6 (M) 4–6 (M) 4–6 (M)
4–6 (M) 0–3 (L) 4–6 (M)
0–3 (L) 7–10 (H) 7–10 (H)
0–3 (L) 4–6 (M) 4–6 (M)
0–3 (L) 0–3 (L) 0–3 (L)

Table 4  The system implements 
an XOR-gate, when M and L are 
both assigned  the truth-value F 

Input A Input B Output C

T T F
T F T
F T T
F F F

Table 5  The system implements 
an OR-gate, when H and M are 
both assigned the truth-value T 

Input A Input B Output C

T T T
T F T
F T T
F F F

4 The reverse mapping (0–0.5V) → T and (0.5–0.9V) → F, gives an OR; thus the system is also interpre-
tative indeterminate.
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This, then, gives rise to an alternative abstract/functional structure, according to 
which Q computes a multiplication function:

This is again a case of functional indeterminacy, because it arises on account 
of different possible functional organizations. But it is interesting to note that the 
functional indeterminacy of this example stems from groupings of physical prop-
erties at different levels of granularity. The functional profile of a multiplication 
operation arises from a more fine-grained carving of the physical state space than 
that of the AND/OR operation. On the other hand, the two different functional pro-
files of Tables  4 and 5 stem from variant groupings that exist at the same level of 
granularity.

The current debate on computational individuation and the relation 
between IC and UTE

The debate

An ongoing debate concerns the nature of computational characterization itself; that 
is, what it means to computationally identify a system like the one above —what its 
computational profile should look like. Participants in the debate aim to formulate 

(1)OutputC = InputA ⋅ InputB

Table 6  A taxonomy of the 
input/output behavior of the 
system Q

Input A (V) Input B (V) Output C (V)

0.8–0.9 0.8–0.9 0.64–0.81
0.8–0.9 0.4–0.5 0.32–0.45
0.8–0.9 0–0.2 0–0.18
0.4–0.5 0.8–0.9 0.32–0.45
0.4–0.5 0.4–0.5 0.16–0.25
0.4–0.5 0–0.2 0–0.1
0–0.2 0.8–0.9 0–0.18
0–0.2 0.4–0.5 0–0.1
0–0.2 0–0.2 0–0.04

Table 7  The system Q 
implements an AND-gate, 
when values between 0.5–0.9V 
are grouped together under the 
truth-value T

Input A Input B Output C

T T T
T F F
F T F
F F F
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appropriate criteria, on the basis of which a unique computational profile can always 
be singled out. Nonetheless, there is no agreement on what such criteria should be 
like.

A main dividing line has to do with whether the critical parameter that singles out 
the computational identity from all the simultaneous implementations/computations 
is intrinsic or extrinsic to the system. Some proponents of the intrinsic view sug-
gest that the computational profile of the system (which also captures its computing 
mechanism) should be identified with a (unique) abstract structure that underpins 
a stable contribution to the goals of the system. Other possible abstract structures 
in the system do not have the same contribution.5 For example, Dewhurst (2018) 
proposes that the computational profile of a system like P above is to be provided 
by Table 3, instead of some table describing computational functions, such as XOR 
(Table 4) or OR (Table 5). Coelho Mollo (2018) propounds that the computational 
profile should be identified with the functional profile of the computing system, 
which for our toy example would be given by a Table like 8.

Proponents of the extrinsic view argue that computational individuation requires 
taking into account parameters that are external to the computing system. Piccinini 
(2015) suggests that the computational profile can vary across contexts; it depends 
on the kind of interaction between the system and its close environment. Fresco and 
Miłkowski (2021) and Fresco (2021) agree with Piccinini that computation is con-
text-dependent, but offer a different account of the nature of the system-environment 
interaction. Pragmatists suggest that the feature that singles out the relevant compu-
tation depends on the explanatory aims of the scientists (Egan 2012; Rescorla 2014; 
Matthews and Dresner 2017). Proponents of the semantic view of computation sug-
gest that the missing ingredient is the content of the physical states (e.g., Sprevak 
2010). Shagrir (2001, 2020), who also adopts a semantic approach, further distin-
guishes between the notions of ‘implementation’ and ‘computation’: implementa-
tion is non-semantic whereas computation is content-dependent.

The stance in this paper

The big interest of the above proposals notwithstanding, in this  article we look into 
the issue from a different perspective. Rather than focusing on an ontic understand-
ing of computational individuation in the light of IC, we want to draw attention to its 
epistemic status. That is, instead of tackling the question of what it is to computation-
ally characterize a system —what are the relevant causal, modal, functional, mecha-
nistic, semantic parameters and whatnot— we ask the question: how does the goal of 
computationally individuating a system get achieved within scientific practice? How 
are specific explanatory computational hypotheses discovered and identified in prac-
tice, and how are  they  justified in the light of the IC challenge?

5 The goal of the system is often seen in terms of what the system was designed to do or has been used 
for. The latter are further characterized in evolutionary (Millikan 1984), learnability (Dretske 1988), dis-
positional (Maley et al. 2047), or other terms.
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The literature proposals presented above do not suffice to illuminate this epis-
temic question, since no appeal to modal, structural, mechanistic, functional, seman-
tic or other philosophical constraints seem to explicitly play a role in the process of 
scientists’ computationally individuating a system in published research. On what 
other grounds, then, can cognitive scientists be justified when they pin down specific 
computations as the ones appropriate to explain the success of their studied systems 
instead of others?

We attempt to answer this question by drawing on lessons learned from philoso-
phy of science in its dealing with the UTE challenge. Extensive work has tried to 
identify methods and reasons based on which scientists are justified in deeming spe-
cific hypotheses preferable to others, given a body of observational data. We argue 
that similar considerations justify cognitive scientists’ computational hypotheses 
too.

Cognitive scientists do so in two ways. First, researchers try to identify math-
ematical descriptions that fit with the experimental data; concerned in our context 
with neuronal firing rates, recordings of membrane potentials, etc. Importantly, this 
is already one instance of hypothesis confirmation, based on the methods identified 
by the UTE and confirmation  literature. In comparison with the simple example 
from above, it can be seen as the equivalent of identifying the dynamical profile 
summarized in Table 3 (or Table 6). But this, considered in and of itself, does not 
suffice to uniquely determine a computational profile for the system; different inter-
pretations and/or groupings of physical (or functional) states can give rise to dif-
ferent computational profiles (viz., interpretative and/or functional IC). The second 
way in which the methods identified by the UTE literature help, then, is in determin-
ing interpretations and groupings that are better suited for explaining the studied 
system’s behavior. Here, the role of context (environment in which the system is 
embedded) becomes crucial.

IC vs. UTE and the role of context

We have just said —and will argue in detail in Sect. Determining the indeterminate? 
Theconfrmation methods against IC— that context is crucial for identifying a sys-
tem’s computational profile, even when its dynamical behavior is already known. 
But how does this square with ontic intrinsic views on computational individua-
tion, which take a system’s computational profile to be some fixed, context-inde-
pendent structure? Answering this question will clarify our presupposition that the 
discovery of computational individuation is not necessarily entangled with its ontic 
description, so it would be instructive to do so. As an example, recall Coelho Mol-
lo’s (2018) view, according to which the fixed computational structure of system P 
(Fig. 1) is given by Table 8 —meaning that there is no IC problem for the scientists 
to overcome while individuating the system. Now, even if we adopt this view, it is 
still the case —and universally agreed— that the system also implements (or can be 
mapped to) the simpler formal structures XOR and OR from Tables  4 and 5. The 
difference is that, on this view, these simpler structures just are not part of the com-
putational structure (profile) itself. Our claim is that even if Coelho Mollo (2018) 
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is right about computational individuation —e.g., even if his hypothesis about P ’s 
computational profile being the structure in Table 8 is correct— it is still on account 
of the confirmation/UTE methods (plus some contextual clues) that scientists would 
discover and justify such a hypothesis and exclude any rival ones —e.g., about the 
simpler structures XOR and OR.

Although our aim here is to draw lessons from the philosophical responses to 
UTE and bring them to bear on the IC challenge, we do not mean to suggest that 
the two cases of non-determinacy are similar or analogous. On the contrary, the two 
challenges are very different in nature, as even implied by the terms ‘underdeter-
mination’ and ‘indeterminacy’. Presumably, the ‘underdetermination’ part in ‘UTE’ 
implies that although evidence never determines a unique theory, there does exist 
some relevant fact of the matter; albeit, unreachable by us. On the other hand, the 
‘indeterminacy’ part in ‘IC’ implies that no fact of the matter exists either; the sys-
tem P (Table 3), for example, is computationally indeterminate in the sense that no 
fact of the matter prescribes whether its computational profile is the XOR-gate or the 
OR-gate (or some other profile).6

These differences between UTE and IC notwithstanding, there is a clear sense 
in which both cases pose the challenge of justifiably giving preference to specific 
hypotheses over others, in spite of some possible inherent non-determinacy. This 
is what motivates our proposal that responses to UTE —that is, reasons for consid-
ering certain hypotheses more justified— can be brought to bear also on deeming 
hypotheses about computations more justified than others. But how can such a pro-
posal be sensibly propounded, given our foregoing remark that, contrary to UTE, IC 
indicates that no actual fact of the matter exists?

The key idea we rely on, for this answer, is ‘context’. Recall that we are here 
concerned with these questions from the point of view of a scientist who examines 

Table 8  The functional profile 
of system P (A, B, and C 
effectively correspond to H, M 
and L). This structure implies 
an XOR-gate, if A  is mapped 
to computational state T and 
B, C together to F, and implies 
an OR-gate, if A, B are  mapped 
together to T  and C to F 
(Tables  4 and 5)

Input A Input B Output C

A A B
A B A
A C A
B A A
B B B
B C B
C A A
C B B
C C C

6 Supporters of the (ontic) intrinsic view of individuation may deny this statement, if they read it meta-
physically. Nevertheless, note that all the talk about ‘fact of the matter’ here is meant to be read epistemi-
cally; i.e., as referring to solid epistemic —and not necessarily metaphysical— grounds.
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systems that already operate and fulfill specific functions within certain environ-
ments and as parts of greater wholes. That means that we can reasonably assume 
that investigating the system as part of its environment plays an essential (epistemic) 
role, enabling us to restrict the number of plausible groupings and interpretations.7

Therefore, although a physical system may be computationally indeterminate 
simpliciter, in the sense that no relevant fact of the matter exists, we suggest that 
it is not as such while considered operating within a particular context, and that a 
relevant fact of the matter does exist. Note, however, that the claims made here are 
to be read solely from an epistemic standpoint, and not as metaphysical assertions 
whatsoever.

The underdetermination of theory by evidence

In this section, we discuss UTE as a preamble for assessing whether methods 
applied in response to UTE may be brought to bear when competing —yet equally 
privileged— computational hypotheses are concerned in the context of IC. In slogan 
form, UTE asserts: “No body of data or evidence or observation can determine a 
scientific theory or hypothesis within a theory” (Norton 2008). That said, there are 
different varieties of the thesis in the philosophical market. We discuss first what 
sense of UTE concerns us here.

The UTE thesis

We should clarify from the outset that UTE is not just the (undeniable) claim 
that it so happens, sometimes, that the available body of data does not suffice to 
uniquely determine a suitable explanatory hypothesis. It is the much stronger thesis 
that in every case and for any amount and any kind of data —no matter how large 
the amount or how ingenious its collection methods may be— there is no hypoth-
esis that can be singled out as preferred and better confirmed than the rest. And, 
additionally, UTE is not just the claim that some parts of a theory may happen to 
be underdetermined by all experimental evidence, which is also undeniably true.8 
Rather than concerning certain parts of some theories, the underdetermination threat 
supposedly hangs over any theory or hypothesis.

What can be safely inferred about UTE, given its really bold scope? Suppose that 
we have some evidence E, and that we formulate an explanatory hypothesis H1 for 
it. By UTE, H1 cannot be singled out as preferred to other alternative hypotheses. 
Therefore, there must be at least some H2 , such that H2 is equally confirmed by E; 
for, otherwise, the one of the two hypotheses that is deemed better confirmed would 

8 For example, in Newtonian mechanics, we can have observationally equivalent pairs of theories by 
considering different absolute states of rest (Norton 2008).

7 See, e.g., Harbecke and Shagrir (2019) for a discussion on the role of the context in computational 
explanations.
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also be preferable. Thus, for any body of data, there must always exist at least two, 
equally confirmed explanatory hypotheses.

As Norton (2008) points out, however, empirically equivalent pairs of theories 
(or hypotheses) can legitimately be taken as equally confirmed “only if all that mat-
ters in the confirmation relation is that the two theories have identical observational 
consequences.” But, as he also points out, this, in turn, is no different from naïve 
hypothetico-deductive (HD) confirmation. That is, the idea that a hypothesis H, con-
joined with auxiliary assumptions, is confirmed by evidence E, insofar as H logi-
cally entails E.9 Nevertheless, HD is widely regarded as a poor account of confirma-
tion, since, on the one hand, it may be unacceptably permissive (e.g., the problem of 
vacuous conjunctions) and, on the other hand, it may not capture cases of evidence 
that we would consider confirmatory even though it may not be logically entailed 
by the hypotheses.10 Indeed, the literature in confirmation has been at pains to show 
how ampliative inference in scientific practice involves substantially more than just 
HD.11

Responses to UTE

Let us now assess the main scientific methods that are identified in the confirmation 
literature as strong responses to UTE, in order to later examine their applicability in 
the case of competing computational hypotheses arising from IC. What other stand-
ards of empirical warrant for certain hypotheses, besides logical entailment of the 
observed phenomena, do exist out there? Norton (2008) offers a helpful taxonomy 
of guiding principles, as they appear in the literature. Briefly reviewing it will be 
useful for the upcoming discussion of our case study.

A first family of approaches is grounded in the assumption that the relation 
between evidence and hypotheses can be represented and formalized on the basis 
of the calculus of probabilities. The dominant approach is ‘Bayesianism’, with the 
theorem under the same name at its heart. A second family includes accounts and 
strategies of confirmation that augment naïve HD with additional requirements in 
order to restrict its undesirable permissiveness. Prominent approaches emphasize 
various theoretical virtues, like simplicity, explanatory power and unifying power of 
certain hypotheses as grounds for additional confirmation of them.12

An important group of approaches includes what Norton (2008) calls ‘exclusion-
ary accounts’. According to them, evidence E confirms a hypothesis H to the extent 
that H entails E but also E would be very unlikely, were H false. This principle 
underlies statistical hypothesis testing as well as controlled group studies (e.g., for a 
new medical treatment), and it is also prevalent in our case study.

9 See, e.g., (2.2 Salmon et al. 1992; Crupi 2016).
10 For some standard examples and detailed discussions on UTE and HD, see, e.g., (Laudan 1990; 
Laudan and Leplin 1991; Norton 2008).
11 An inference is ampliative if the conclusion has content that goes beyond the content in the premises 
(for example, induction). See, e.g., (sec. 1.4 Salmon et al. 1992).
12 See, e.g., (ch.8 Psillos 1999) for some arguments to the effect that theoretical virtues like these effec-
tively undermine UTE.
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In this paper, we focus on a very interesting, yet less known, method, called 
‘demonstrative induction’ (DI) (aka ‘Newtonian deduction from the phenomena’). 
It consists in deducing a target theory, or hypothesis, from the evidence, with the 
assistance of some general auxiliary hypotheses. Since the inference is deductive, 
there is no longer an inductive risk in the inferential steps. The risk is relocated into 
accepting the more general auxiliary hypotheses. Importantly, the stronger and more 
independent the reasons we have to accept the general auxiliary hypotheses, the 
more secure the inferred target hypothesis is. Furthermore, since the inference is 
from evidence to hypothesis, UTE is clearly undermined; for, in that case, evidence 
does point to a unique theory or hypothesis. The method, however, is not always 
easy to implement, as it has generally a narrow scope of applicability. Yet, it can be 
found underlying some crucial moments of theory development in the history of sci-
ence.13 We will say more about this method, and see how it fits with our case study, 
in Sect. How computational hypotheses are confirmed.

The confirmation methods at work: determining computational 
hypotheses

A neuroscientific case study

We examine a representative case of characterizing computationally the responses 
of a visual neuronal system in the locust’s brain to approaching objects on a colli-
sion course. This particular case offers a convenient system to be used as a model to 
study how a single neuron and its presynaptic network may implement mathematical 
operations.

Vision is crucial in notifying animals of imminent dangers, such as an impeding 
collision with a predator or a surface. Two motion-sensitive neurons have been thor-
oughly investigated in connection with that, owing to their believed involvement in 
the generation of escape behaviors in response to looming stimuli. First, the response 
of the descending contralateral motion detector neuron (DCMD) to approaching and 
translating objects was initially investigated in Hatsopoulos et al. (1995). The DCMD 
relays spikes in a 1:1 manner to thoracic motor centers (Gabbiani et al. 2002). Syn-
apsed onto DCMD is another large neuron, the lobula giant movement detector 
(LGMD). The LGMD receives various synaptic inputs —most notably a feedforward 
excitation and two distinct feedforward inhibitions (Fig. 2)— and it is where the stud-
ied computation is thought to be carried out. The connection between the LGMD and 

13 DI has been largely neglected in the philosophical literature of the early 20th century but has been 
recently rediscovered and discussed by a number of philosophers of science. It has been shown that it 
was employed by Newton to deduct his inverse square law of gravitation (Dorling 1990; Harper 1990, 
1997; Norton 2000), by Einstein in his discovery of general relativity (e.g., DiSalle et al. 1994; Dorling 
1995; Norton 1995), by Bohr to deduce the quantization of energy levels (Norton 2000), and by a num-
ber of other physicists as well. For a variety of examples of the use of DI in milestone events in the his-
tory of physics, as well as for a formalization of the method as an inferential logical schema, see Dorling 
(1973).
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DCMD is so strong that each action potential in the LGMD elicits an action potential 
in the DCMD, and, conversely, each action potential in the DCMD is caused by an 
action potential in the LGMD (Gabbiani et al. 1999, 1122).

The proposed hypothesis for the computation of the LGMD is that it computes the 
time in which an approaching object on a collision course with the animal reaches a 
constant angular size in the animal’s retina (e.g., Hatsopoulos et al. 1995; Gabbiani 
et al. 1999). To test the hypothesis, various locusts, in a series of controlled experi-
ments, were exposed to simulated approaching objects. The visual stimuli were gen-
erated on computer monitors, by means of simulated dark squares of various sizes 
approaching with constant velocity and on a collision course with the animals. The 
responses of the LGMD and DCMD to looming objects were found to be as follows. 
The firing rate starts early during the approach phase and then gradually increases as 
the object grows larger, as if these cells are “tracking” the object over its approach. 
Then it peaks and eventually decreases (Gabbiani et al. 1999, 1125). The peak fir-
ing rate occurs before collision but, for each animal, always a fixed delay, � , after 
the object has reached a certain angular size, �thr , on the retina; hence, the proposed 
hypothesis that the LGMD computes the time that �thr is reached.

How is this computation realized? To formulate an answer to this question, a 
mathematical characterization of the firing response of the LGMD is first sought; 
one that fits the experimentally obtained firing profile, depicted in Fig. 3. The math-
ematical description that fits the experimental points, determined by the researchers, 
has the general form (Gabbiani et al. 2002):

where 𝜓(t) =
�̇�(t)

2
 , a = (tan

�thr

2
)−1 , and g some time-independent non-linear param-

eter. We now explain the terms in Eq. (2), which captures a class of functions, in 
accordance with different circumstances of object approaching.

The variable that characterizes the object’s approach is the time course of the 
angular size � subtended by the object on the locust’s retina (Fig. 4). Let the object’s 
distance from the eye be x ( x = 0 means collision), the time before collision be t < 0 
( t = 0 at collision), and the object’s velocity be v. Then, for constant approaching 
velocity v < 0:

From trigonometry (Fig. 4):

and so:

(2)f (t) = g(�(t − �) ⋅ e−a�(t−�))

x(t) = vt

tan
�(t)

2
=

l

x(t)
=

lscr(t)

xscr

(3)�(t) = 2 tan−1
l

vt
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where l is the object’s half size, lscr the simulated object’s half size on the screen, 
and xscr the distance between the screen and the eye. From (3) by differentiation, one 
obtains for the angular edge velocity of the object:

Therefore, the related term �(t) in Eq. (2) is:

Equation (2) captures the experimental data points to a satisfactory extent, as can be 
seen by the smooth line in Fig. 3 (middle). The term a in (2) is a constant related to 
the threshold angle, �thr , subtended by the object in the retina (i.e., tan �thr

2
=

1

a
 ). The 

time-independent non-linear parameter, g, characterizes the transformation between 
the kinematic part, � ⋅ e−a� , and the firing rate during approach (dependent on the 
parameter l

v
).

What computational hypotheses are in play

Let us take stock of the computational hypotheses involved in this study. At the com-
putational level,14 the LGMD is said to compute the time at which the approaching 
object has reached a certain angle, �thr , at the locust’s retina. This angular threshold 

�̇�(t) =
d𝜃

dt
= −2

l

v

t2 + (
l

v
)2

𝜓(t − 𝛿) =
�̇�(t − 𝛿)

2
= −

l

v

(t − 𝛿)2 + (
l

v
)2

Fig. 2  Schematic of the 
LGMD neuron synaptic input. 
The green dots (fan A on 
LGMD) represent received feed-
forward excitation, while the red 
dots (fans B and C) represent 
received feedforward inhibition. 
The smaller red dots represent 
lateral inhibition, presynaptic 
on the excitatory pathway (A). 
(From Gabbiani et al. (2002), 
with permission. Synaptic 
inputs to the DCMD neuron 
are not depicted.)

14 We adopt a terminology in similar lines with Marr (1982), and distinguish between a computational, 
an algorithmic, and an implementation level. In doing so, we also remain faithful to the approach taken 
by Gabbiani et al. (1999). We note, though, that the latter approach is not always in perfect agreement 
with Marr’s distinctions between the levels. See also fn.15.
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is reached at a certain time before the peak of the firing rate of the neuron modeled 
by Eq. (2).

How is the computation carried out at the algorithmic level? As we have said, 
the LGMD receives distinct input projections (Fig.  2), motion-sensitive and size-
sensitive, which suggests a multiplication operation implemented by the LGMD, in 
accordance with Eq. (2). The excitatory retinotopic projection is sensitive to motion, 
whereas the inhibitory inputs are sensitive to size. Four algorithmic steps can be 
distinguished: (a) computation of the size subtended by the object at the retina, (b) 
computation of the angular velocity of the edges of the expanding object on the ret-
ina, (c) multiplication of the two, and (d) transformation of the results into a firing 
rate via the parameter g (Gabbiani et al. 1999).

At the implementation level, the hypothesized computation may be carried out 
in the following ways. One way could be for the two multiplied parameters to be 
represented directly by the excitatory and inhibitory inputs of the LGMD and then 
be multiplied. The multiplication could be implemented by means of shunting 

Fig. 3  Responses of the LGMD to approaching squares. Top: angular size of the stimulus as a function 
of time relative to collision ( tcoll ). Middle: mean instantaneous firing rate ± s.d. (magenta line and dots). 
Blue: fit with multiplicative model. Bottom: spike rasters (10 trials). The star represents the peak instan-
taneous firing rate, while the triangle represents a threshold firing rate of 50 spikes per second. (From 
Gabbiani et al. (2002), with permission)

Fig. 4  A diagram illustrating the 
stimulation of the locust’s eye 
by presenting squares of half-
size l approaching at a constant 
velocity v 
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inhibition of the velocity signal on the primary neurite (Hatsopoulos et  al. 1995). 
Another way could be as follows: since the excitatory and inhibitory inputs of a neu-
ron are added up, the motion-dependent part could be (presynaptically) represented 
by excitatory inputs that are logarithmic in angular velocity (i.e., log� ), and the 
size-dependent part to be (presynaptically) represented by inhibitory inputs that are 
proportional to the angular size (i.e., −a� ). Then a postsynaptic summation of both 
inputs, followed by an approximate exponential transformation of the output, would 
effectively result in a multiplication operation, by virtue of the equivalence:

A third alternative would be for part of the non-linear interaction between the 
motion-dependent excitation and size-dependent inhibition to partially occur pre-
synaptically, via a lateral inhibitory network that has been identified to protect excit-
atory synapses onto the LGMD from habituation to whole field motion (Gabbiani 
et al. 1999, 1139;  Gabbiani et al. (2002), 321).

Is a choice between these alternative implementation-level hypotheses underde-
termined?15 Arguably not. They seem amenable to experimental testing; for exam-
ple, by intervening with the relevant input streams. Based on a following series of 
experimental tests, then, the researchers put forward the logarithmic-exponential 
transformation hypothesis as the better confirmed one (i.e., the second of the three 
options). But the question arises: what grounds exactly are there for having epis-
temic confidence on such verdicts about the preferred hypotheses at each corre-
sponding level?

How computational hypotheses are confirmed

Let us illustrate how the methods and stratagems used by scientists to determine 
that specific empirical hypotheses are better confirmed than others (contra UTE) can 
also be pertinent to all three levels —computational, algorithmic, and implementa-
tion— of computational hypotheses.16 We do not yet consider, in this section, the 
possibility of either interpretative or functional IC in our system; at this stage of 
the argument, we only show how the confirmation methods are also employed to 
recognize and justify computational claims. In the next section, we will include IC 
in the picture and argue for our central thesis: that by the very process of forming 

(4)� ⋅ e−a� = e(log�−a�)

15 The above-discussed hypotheses are not about implementations per se, but rather describe lower-level 
algorithms. Such algorithms shape the implementation details to a maximum degree, yet technically still 
belong in the algorithmic level. Although the consideration of them in the context of implementation-
related hypotheses (as in Gabbiani et  al. 1999, 1139) is not in perfect agreement with Marr’s (1982) 
three-level scheme, we still retain the researchers’ taxonomy, since this minor dissonance does not affect 
our purposes here.
16 By ‘computational hypotheses’ we mean mathematical descriptions that can refer either to the input-
output function (‘computational level’), or to the mediating apparatus in one of two separate ways: a 
higher-level (i.e., the ‘algorithmic level’) and the neuronal implementation (i.e., the ‘implementation 
level’). Thus, the term ‘computational hypothesis’ here is broader than (and includes) the term ‘computa-
tional profile’ (or ‘identity’).
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and justifying computational hypotheses in just the way described in this section, we 
automatically and simultaneously pick out the correct computational profile for the 
given context, even if it were the case that multiple functional and/or computational 
structures existed simultaneously in the system.

Computational and algorithmic level

At the computational level, concerning what is computed, several hypotheses are 
considered in Hatsopoulos et al. (1995), based on the assumption that the relevant 
visual neuron monitors properties of the image of the object projected on the retina. 
Relevant candidate properties are the angular size, � , and the angular edge velocity, 
�̇� , which can both be determined monocularly at the retina. But this still can entail 
different computations, since one can identify more than one function whose output 
solely relies on quantities determined at the retina. For example, one such function 
could be the following:

and an alternative could be its reciprocal, 1

�(t)
 . These functions can well be approxi-

mated by mere knowledge of � and �̇� and could be encoded in the firing rate of the 
neuron, thereby bringing about an escape command when �(t) has decreased below 
a certain threshold, or, respectively, when 1

�(t)
 has exceeded a specific threshold. Nev-

ertheless, additional evidence via controlled experiments show that the time of the 
peak firing rate is strongly correlated with the collision time, and the delay between 
peak firing rate and collision depends on both l (object size) and v (object velocity). 
Since �(t) is independent of these parameters, this gives extra reasons for rejecting 
the hypothesis that the LGMD encodes either �(t) or 1

�(t)
 (Hatsopoulos et al. (1995), 

1000-1).
Hatsopoulos et  al. (1995), then, offer strong reasons to regard the computational 

hypothesis modeled by Eq. (2) as better confirmed by the relevant data than the others. 
Such strong reasons are grounded in the same rules of ampliative inference that render 
naïve HD and UTE unjustifiable; namely, carefully designed controlled experiments 
and tests. But, in a following paper (Gabbiani et  al. 1999), the researchers offer an 
even stronger argument for (2). In fact, we submit that their argument in that paper can 
be seen as a clear instance of demonstrative induction (DI). Let us explain what we 
mean by that. We will first digress a little to give an example of DI from the history of 
physics (taken from Norton 2000), and then will explain how the argument in Gabbi-
ani et al. (1999) can be seen as an instance of the same method.

The method, recall, (Sect.  Responses to UTE) consists in deducing a target 
hypothesis, from the evidence plus some general auxiliary hypotheses. Newton 
employed DI in his System of the World to deduce the inverse square law of gravi-
tational attraction. The more general auxiliary assumptions that he used were: (a) 
Kepler’s third law: T2 ∝ r3 , where T a planet’s orbital period, and r the radius of its 
orbit (assumed circular); (b) Newton’s laws of motion and, more specifically, their 

𝜏(t) =
x(t)

ẋ(t)
=

sin 𝜃(t) ⋅ cos 𝜃(t)

�̇�(t)
≈

𝜃(t)

�̇�(t)
(for small 𝜃)
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consequence that the centripetal acceleration, ac , of a planet moving at a circular 
orbit of radius r with tangential speed u is ac =

u2

r
 ; (c) the simple relation for circular 

motion u =
2�r

T
 . From these assumptions, one obtains:

that is:

There is a clear sense, then, in which (a special form of) the inverse square law of 
gravitation (i.e., the target hypothesis) can be deduced from the phenomena of plan-
etary orbits (Norton 2000). And it is quickly seen that the premises of the argument 
in this case are more general and secure than the derived statement.17

Let us now explain how DI can be seen as supporting equation (2) as the better 
confirmed computational hypothesis for the LGMD neuron.

The form of f(t) in (2) can be derived by the following, more general, auxiliary 
assumptions and experimental observations ( Gabbiani et al. 1999, 1133): 

(a) f(t) should depend only on information received at the retina; that is, � and �̇� (i.e., 
�).18

(b) The firing rate at any moment t depends on the value of � and �̇� at the previous 
time t − � . That is: f (t) = f (�(t − �), a�(t − �)) . A delay between stimulus and 
firing is theoretically expected owing to lags introduced by synaptic and cel-
lular elements along the neuronal pathways converging onto the LGMD. In this 
case, the delay is also experimentally observed as a time difference between the 
moments that �thr is reached and the firing rate peaks. The parameters a and � 
can be determined by means of linear regression of the experimentally obtained 
data points when measuring the dependence of the peak time, tpeak , on l

v
 ; that is: 

 Thus, the parameters a and � are identified as respectively the slope and inter-
cept of the observed linear relation (Gabbiani et al. 1999, 1126).

ac =
u2

r
(from (b))

= (2�)2(
r

T
)2 ⋅

1

r
(from (c))

= (2�)2 ⋅
r3

T2
⋅

1

r2

a
c
∝

1

r2
(since

r
3

T2
constant, from (a), and (2�)2 constant too)

(5)|tpeak| = a
l

|v|
− �

17 That was a brief example of DI, owing to limitations of space in this paper, but we refer the reader 
who wants to better understand the logical structure of the method to Dorling (1973).
18 Technically, this possibility also includes the image edge acceleration, �̈� . But this option was already 
excluded by the researchers based on precedent controlled experiments.
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(c) f(t) should be of such a form that the experimentally observed linear dependence 
(5), between tpeak and l

v
 , should be satisfied for a variety of different �thr and � 

values across different animals.

Based on these assumptions, Gabbiani et  al. (1999) are able to mathematically 
derive Eq. (2) and show that it is the only functional combination of � and � satisfy-
ing the desired properties. We will not present the mathematical steps here.19 What 
is important to emphasize for our purposes is that the above assumptions suffice to 
lead to a (computationally-relevant) hypothesis, which not only is not underdeter-
mined, in any of the strong senses authorized by UTE, but, on the contrary, is math-
ematically determined. Thus, the determined hypothesis is as secure as the reports 
of the phenomena in assumptions (a)–(c), which now bear the inductive risk of the 
argument.

Implementation level

At this level, several hypotheses were considered as well. As we have said, from 
the three implementation-related hypotheses we mentioned in Sect.  What compu-
tational hypotheses are in play, the researchers put forward the one according to 
which the multiplication of the two terms in the kinematic part, �(t − �) ⋅ e−a�(t−�) , 
is implemented postsynaptically by means of dendritic summation of the excita-
tory and inhibitory inputs (the former logarithmically compressed) and followed by 
exponentiation (see, Eq. (4)). Grounds for adopting this log-exp hypothesis are a 
series of experiments and statistical significance tests (Gabbiani et al. 2002) as well 
as employment of a compartmental simulation model of the LGMD (Jones and Gab-
biani 2010, 2012).

More specifically, Gabbiani et al. (2002) used a series of controlled experiments 
to disconfirm the presynaptic-inhibition hypothesis —the third of the three hypoth-
eses mentioned in Sect. What computational hypotheses are in play— and then to 
directly test the log-exp hypothesis, by examining whether the exponentiation of 
log � − a� could occur while the membrane potential is converted into spike output 
by active membrane conductances. That is, by recording, in different animals, the 
connection between firing frequency and the intracellular membrane potential close 
to the spike initiation zone (SIZ).

Having the detailed results and methodological approaches of our case study 
under our belt, let us now return to addressing the main questions of this paper.

19 See the Appendix 3 of Gabbiani et al. (1999).
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Determining the indeterminate? The confirmation methods 
against IC

Given that physical systems as “simple” —in terms of their input/output profile— 
as system P (Table 3) can be computationally indeterminate, on what grounds are 
cognitive scientists justified in determining the computational identities of far more 
complex systems (such as neurons), given that the latter would be expected to be 
at least equally prone to IC?20 To start articulating our proposed answer, we need 
to consider the question: could the LGMD neuron be seen as simultaneously real-
izing some other computation(s) as well, besides the one expressed by Eq. (2)? In 
the interests of brevity, we consider only the case of functional IC in this section. A 
brief discussion on the possibility of interpretative IC is provided in the Appendix.

Overcoming functional IC

Could the LGMD system be amenable to different groupings of its physical states, 
so that functional IC becomes a relevant concern? Answering this question is far 
from straightforward; it requires attending to the several physical interactions that 
take place concurrently in the system in order to see whether reasonable variant 
groupings of them can give rise to multiple formal/functional types of organization. 
We argue, however, that without using the confirmation methods identified by the 
UTE literature, there is no inherent reason to rule out such alternative types, while 
we show how the application of these methods to contextual clues guides the iden-
tification of the preferred formal/functional profile (resulting in the DI-derivation of 
Eq. 2).

To begin, the determined computational hypothesis about the LGMD posits a 
collective computation distributed over several thousand synapses. Furthermore, it 
comprises various particular mathematical transformations along the pathway from 
photoreceptors through the lamina and medullary neurons to the LGMD’s den-
drites and its SIZ. For example, retinotopic inputs from individual facets in the eye 
become synchronized excitatory synaptic inputs to the LGMD through a mechanism 
that effects temporal coherence of the signals across individual facets. However, the 
synchronized excitatory input to the LGMD is not linearly related to the stimulus 
angular speed but follows a power-law transformation, which is also carried out 
at some point presynaptically along the pathway from the retina (Jones and Gab-
biani 2012, 4930; see Fig. 7 top left). And yet, the effected change in the dendritic 
membrane potential, Vm , due to the excitatory inputs, rises much more gradually 
over time, owing to a further transformation that is well described by a logarithmic 

20 This is a claim about an intuition of course, thus open to objections. It is hard to provide a mathemati-
cal result that any system more complex than P has to be indeterminate as well. But a recent result for a 
restricted domain indicates something towards this direction. Considering interpretative IC for Boolean 
functions, Fresco et  al. (2021) show that IC becomes increasingly common as the system concerned 
computes functions with ever larger numbers of inputs. Specifically, the probability that a Boolean func-

tion with n inputs is not indeterminate is: p
n
=

2
2
n−1

22
n

.
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function (Fig.5). Since Vm is followed closely by the SIZ potential, this indicates 
that the logarithmic compression occurs locally within the dendrites (ibid.). At the 
same time, the inhibitory inputs to the LGMD follow the angular size in accordance 
with an approximate square-law transformation. As a result, the effect of the inhibi-
tory input on the membrane potential shows a sigmoidal dependence on angular size 
(ibid.). Finally, the sum of the two signals (membrane potentials) becomes again 
transformed by the spike generation mechanism near the axon, in accordance to a 
power law close to an exponential (as in Fig.6). Figure 7 gives a schematic picture of 
most of these particular transformations.

The upshot of the above is that a variety of mathematical operations are imple-
mented locally at different parts of this large visual system (including the pathway 
from the retina to the LGMD-DCMD neurons). Let us assume momentarily that we 
have found out the above biophysical interactions but we have not yet figured out what 
the LGMD’s functional organization and computed function are. By focusing on dif-
ferent local interactions, and by grouping them together under different functional 
descriptions, one can be led to multiple formal/functional organizations (even at dif-
ferent scales). For example, by looking at the synchronized excitatory synaptic input 
to the LGMD in isolation, one sees a change in the excitatory input that is not linearly 
correlated with increase of angular speed (top left in Fig.7; the relation approximates 
a square- or third-power law), thereby not directly supporting a computation involving 
information about the angular speed of the looming object, since the latter quantity 
is never directly represented within the neural populations presynaptic to the LGMD. 
Based on this group of interactions, a determined formal/functional structure might 
just posit some computation related to a power-law transformation. Nevertheless, the 
said non-linear correlation becomes immaterial when the point of view subsumes the 
logarithmic compression carried out postsynaptically (figs. 5 and 7 middle left), since 
the logarithm of speed raised to any power is simply equal to the logarithm of speed 
multiplied by that power’s exponent (i.e.: log�a = a log� ); thereby counteracting the 
non-linearity between angular speed and excitatory input (Jones and Gabbiani 2012). 
A variant grouping of the interactions then, which also takes into account the loga-
rithmic transformation, changes the possibilities of formal/functional structures, since 
the fact that the angular velocity is never directly represented presynaptically becomes 
inessential (the foregoing non-linearity becomes canceled out).

Furthermore, an alternative, extended, grouping that incorporates the spike gen-
eration mechanism near the axon changes again the picture, since the (exponential) 
transformation of the net membrane potential into firing rate that occurs in the SIZ 
can now give rise to the computational hypothesis captured by Eq. (2). This is, of 
course, by virtue of the equivalence (4), which now allows of abstracting away from 
the logarithmic and exponential transformations (figs.5 and 6) at the computational 
and algorithmic levels of description. Thus, the dynamical behavior observed, e.g., 
in Fig.5 can be given, under this variant grouping, yet again a different computa-
tional interpretation, since the computational description (2) can only arise insofar 
as the lower-lever dynamical characteristics —depicted in figures  6 and 5— are 
typed together under this different computational taxonomy.

Despite the existence of several possibilities about how to carve up the range 
of transformations occurring in our system, the researchers ultimately single out a 
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unique one as better characterizing the system computationally. The identified com-
putation relates the time course of a compound conductance —distributed over the 
entire dendritic tree of the neuron— with the membrane potential at the SIZ. But 
what really makes this particular partitioning justified? Why not conclude (say) that 
the LGMD dendrites compute a logarithm, and its SIZ implements an exponen-
tial function, but rather that the whole neuron computes a plain multiplication of 
two terms? Or, why assume, in the first place, that the LGMD computes a continu-
ous function and not some Boolean operation, in direct analogy with system Q (in 

Fig. 5  The relationship between gexc(t) and the resulting membrane potential near the spike initiation 
zone (SIZ). Colors show responses to looming stimuli with different l

|v|
 values (green: 10ms; red: 40ms; 

blue: 80ms). Solid lines show the observed relationship, while dashed, lighter lines show fitted functions 
of the form Vm = a log(bgexc) . The inset shows the data on a logarithmic x-axis, so that the relationship 
becomes approximately linear. (From Jones and Gabbiani (2012), with permission.)

Fig. 6  Fit of mean instantaneous 
firing rate, < f > , as a func-
tion of mean, median filtered 
membrane potential (mean 
± s.d.; solid and dotted black 
lines) with linear, third-power 
and exponential models. (From 
Gabbiani et al. (2002), with 
permission.)
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Sect. The IC in more detail) which can be seen as implementing either a multiplica-
tion or an AND/OR logical function under different circumstances?21

A possible reply to the first of these questions might be that since a neuron is an 
autonomous unit, it is natural to be computationally treated as an autonomous unit 
too (the ‘point-neuron’ as is sometimes called in the relevant literature). However, 
such a response would not be satisfactory. There are cases of multi-neuron systems 
that can be seen as collectively implementing some specific formal/logical struc-
ture. It also seems likely that there are cases of computations performed by only 
specific parts of neurons.22 Thus, an exclusively bottom-up (i.e., context-independ-
ent) investigation does not suffice to decide between these options. It is the addi-
tional, non-trivial clues provided by the context, as well as the application of the 
confirmational techniques from Sect. Responses to UTE to these clues, that support 
the hypothesis that the logarithmic dendritic compression and the exponential SIZ 
transformation should be grouped together in our case. Furthermore, as the example 
of system Q indicates, there are systems that can be seen as simultaneously imple-
menting continuous (e.g., a multiplication) as well as Boolean functions. How do we 
exclude that the LGMD is not such a system or, if it is, that a Boolean gate is not the 

Fig. 7  Schematic of the compu-
tation performed by the LGMD. 
(From Jones and Gabbiani 
(2012), with permission.)

21 Strictly speaking, the two questions reflect different forms of functional IC, since one has to do with 
changing the boundaries of the considered computing system, while the other concerns different group-
ings of interactions within the same system. But, although this distinction is meaningful from an ontic 
point of view, it practically vanishes in an epistemic context, since the exact boundaries of the computing 
unit are typically not known in advance, and identifying them is also part of the process of determining 
the computational profile of the studied neuronal structure. The proposal of this paper (confirmational 
devices plus contextual clues) addresses both issues as well.
22 See, e.g., Poirazi et al. 2003; London and Häusser 2005; Gidon et al. 2020.
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appropriate computational profile to single out but it is Eq. (2) instead? Another pos-
sible reply might be that such a complicated neuronal system as the LGMD would 
not be reasonably seen as just implementing a single Boolean gate; such a hypoth-
esis might seem too simplistic to even get off the ground. But Boolean functions had 
been hypothesized as the main computed operations by neurons in the past, and they 
have reappeared as likely computations of complex systems, in recent research.23 
These considerations show that there is no principled reason to exclude alternative 
groupings of the many concurrent physical transformations of signals that may give 
rise either to partial computational hypotheses at different parts of the LGMD (e.g., 
a logarithmic computation at the dendrites) or to additionally implemented (but not 
actually exploited) Boolean operations by virtue of coarser-grained groupings of the 
input-output relations.24

To make the connection with the earlier examples of IC  clearer, recall the exam-
ple of system Q , which can be seen as either implementing AND/OR or multiplica-
tion of its two inputs. The identified complex dynamical behavior of the LGMD, 
consisting of the several transformations occurring at its different parts and depicted 
in Fig.7, can be seen as analogous to the dynamical behavior of Q , depicted in 
Table  6. Accordingly, the determined computation of a product, captured by Eq. 
(2), is analogous to the determined computation of a product, captured by Eq. (1). 
In both cases, the determined computation results from a specific way of group-
ing together the several input/output relations (which were themselves identified by 
means of measurements, controlled experiments, and confirmation methods), as a 
certain formal/functional profile. And in both cases, the (additional) application of 
the confirmation stratagems to the contextual clues guides the determination of the 
relevant hypotheses in such a robust way that any alternative groupings might seem 
from the beginning highly implausible or irrelevant (so that the system might appear 
from the outset as not suffering from indeterminacy). But this should not mislead 
us in believing that the system has indeed a unique computational profile. What it 
rather shows is that the confirmational methods achieve two goals in one fell swoop: 
deterrmine dynamic behaviors and exclude the non-preferable functional/formal 
profiles in the given context.

Let us see how this works specifically for our case study. Putting the computa-
tional investigation of the LGMD-DCMD system in the context of vision provided 
the following crucial contextual clues: (a) The LGMD-DCMD system is linked as a 
whole with escape behaviors based on visual stimuli (based on previous research). 
(b) The identified computation should be such that its form depends only on infor-
mation received at the retina. (c) Since the inputs stem from stimuli at the retina, 
which is a far distance from the SIZ, the firing rate at any moment t should depend 

23 See, for example,  (Gidon et  al. (2020, 86), where the research team recently identified concurrent 
Boolean operations at different parts of layer 2 and 3 pyramidal neurons of the human cerebral cortex. 
Specifically, the team put forward the hypothesis that the dendrites of these cells compute XOR opera-
tions while the soma and the tuft and basal dendrites compute AND/OR operations.
24 Getting bogged down with the actual measurements of the values involved in the LGMD study in 
order to construct alternative coarser-grained groupings for a Boolean profile would unnecessarily com-
plicate this paper. It suffices for our purposes that such a carving up is in principle possible, as the system 
Q shows.
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on the value of � and �̇� at an earlier time t − � . These clues were crucial in identify-
ing the functional taxonomy of the system, and all the more so given that the last 
two assumptions —(b) and (c)— were also the first and second assumptions in the 
DI-derivation of Eq. 2 (Sect. How computational hypotheses are confirmed).

Before closing this section, we emphasize that it is not only against functional 
IC that the context makes a crucial difference. Contextual clues play an implicit yet 
decisive role in overcoming interpretative IC too. For this case, we refer the inter-
ested reader to the brief discussion in the Appendix, where it can be seen that the 
clues obtained by the assumption of a computation within a visual context underpin 
the arguments against interpretative IC as well.

Conclusions

We examined a case study from computational neuroscience where computational 
hypotheses concerning a large neuronal system that involves several mathematical 
transformations were singled out. We can distill the process into a scheme along the 
following lines.

Suppose that we aim to model, in computational terms, a physical system of 
unspecified complexity; be it either a simple voltage-in/voltage-out system (as the 
system P in Fig.  1) or even a large (set of) neuron(s). The physical interactions 
that constitute the dynamical profile of the system are determined by means of 
the various methods discussed in Sect. Responses to UTE. So far this is an effec-
tive approach against UTE concerns, but not yet against IC (i.e., it is  effective to 
characterize the system physically, but not yet computationally). Functional and 
interpretative IC are grounded, respectively, in the existence of   different possi-
bilities of grouping the  (well-determined) physical interactions and of interpreting 
any (well-determined) formal/physical states. But not all hope is lost. Our good old 
friends, the conceptual devices for confirming empirical hypotheses can provide rea-
sonable constraints on what the appropriate physical groupings and/or interpreta-
tions within a particular context are. As the LGMD study suggests, such constraints 
can be rigorously determined by (a) obtaining evidential clues from the context in 
which the computational system operates, and, subsequently, (b) employing the var-
ious stratagems of the kind that make scientific theorizing and hypothesis testing 
generally possible, subsuming also the external, contextually-obtained evidence.

Finally, it is useful to clarify where this proposal stands with respect to the ongoing 
debate about computational individuation (Sect. The current debate on computation-
alindividuation and the relation between ICand UTE). It might seem that our thesis is 
a reiteration of what we called the ‘extrinsic’ view, which subsumes contextual clues 
—functional, semantic, or whatnot— under the computational identity itself. But, as 
we emphasized in Sect.  The current debate on computationalindividuation and the 
relation between ICand UTE, our actual concerns are with the epistemic, rather than 
the ontic, aspect of computational individuation. That is, we are concerned with  its 
heuristic methodology (how we find out the computational profile in practice) and its 
justification (why it is warranted to select the specific profile from all the simultaneous 
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alternatives). In other words, we are merely interested in the scientific discovery of 
computational hypotheses (profiles) in the actual practice. And scientists do rely in 
practice on contextual clues when coming up with computational hypotheses about 
cognitive systems. So although we do not take an explicit stance here on the type of 
the crucial contextual clues —functional, semantic, or others— for computational 
individuation, one can still argue that our proposal weighs in on the ontic debate and 
tips the scales against the intrinsic view of individuation.

Nevertheless, we do not take the extra step of making such a claim here. For it 
is possible that the supporter of the intrinsic view could, perhaps, make a case that 
the question of how scientists discover and justify computational profiles is a sepa-
rate one from the question of what the (metaphysical) nature of computational indi-
viduation is. Thus, we remain neutral about the ontic debate and propound only an 
epistemic claim. Regardless of whether the computational profile itself is ultimately 
context-dependent or not, the conceptual and mathematical toolbox for hypothesis 
confirmation provides also a sufficient underlying framework for determining com-
putational profiles in the presence of functional and/or interpretative computational 
indeterminacy —insofar as it is sufficient for determining explanatory hypotheses 
against any UTE concerns.

Appendix: the confirmation methods against interpretative IC

Since the determined formal/functional profile of the LGMD system does not even-
tually involve Boolean functions, the relevant scenario of potential interpretative IC 
would concern an indeterminacy about the interpretation of certain physical quanti-
ties and states. Recall from Sect. What computational hypotheses are in play that 
via a series of controlled experiments, aimed at the implementation level, Gabbiani 
et al. (2002) determined that the inhibitory input (Fig.2) encodes information about 
size (angle subtended in the retina by the moving object), while the excitatory input 
encodes information about motion (angular edge velocity). But how are these inter-
pretative hypotheses justified, given that there is nothing in the physics of the system 
itself that concerns angles, velocities, and whatnot, besides voltages, excitations, 
inhibitions, spikes, etc.? It is, after all, certainly conceivable that the same physi-
cal quantities —considered without the (empirically acquired) contextual knowledge 
that the LGMD neuron participates in a visual task— could have been interpreted as 
encoding different parameters of the external world, such as (say) the instantaneous 
phase and frequency of some sinusoidal signal. Since the underlying formal/func-
tional structure (i.e., Eq.  (2)) would remain the same,25 such a possibility of multi-
ple interpretations would automatically signify the possibility of interpretative IC.26

25 The instantaneous phase of a sinusoidal signal is the time derivative of its frequency; thus the formal 
relations are the same between phase–frequency and angle–angular edge velocity.
26 There is disagreement about whether such a change of computational content (e.g., from visual to 
auditory tasks) would actually affect the system’s computational identity. The issue has been discussed 
by Burge (1986), Egan (1995), and Shagrir (2001), and it ultimately turns on one’s precise views of 
‘computational implementation’ and ‘individuation’. This, however, does not affect our basic point here.
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So let us see how the confirmation devices help to justify that the interpretative 
hypothesis about encoded size and motion is the preferable one. We need to consider 
the formal properties of Eq.  (2). Since g is time-independent, the time course of the 
LGMD firing rate depends entirely on the argument of g; that is, the kinematic part 
z(t) = �(t − �) ⋅ e−a�(t−�) . An increase in � (recall that 𝜓 =

�̇�

2
 ) causes z(t) to increase 

too, whereas an increase in � causes it to decrease (owing to the minus sign in the 
exponent). At the onset of the approach, the � term —angular edge velocity— has 
a dominant effect in the increase of the firing rate; as the object is still far away, it 
subtends a small angle to the retina, making the contribution of the e−a�(t−�) term 
small. As time goes by, the contribution of the latter part gains dramatic significance 
(due to its exponential dependence on � ), thereby leading to a rapid decrease of the 
firing rate eventually (Fig.3). As a result, the mechanics of Eq. (2) indicates that it 
would be natural to assume that the behavior of � and � gets encoded in the neuron 
by some physical quantities that have competing contributions to the net firing rate 
of the neuron. Such quantities are excitation and inhibition; thus, the plausible inter-
pretative hypothesis adopted by  Gabbiani et  al. (1999, 1133) is that � acts as an 
excitatory term, whereas � acts as an inhibitory term. Additionally, this hypothesis 
seems suitable to explain a long-known apparent excitatory and inhibitory effect of 
motion and size on the LGMD response (e.g., Palka 1967).

To conclude,  here is the argument about the confirmation methods to over-
come interpretative IC. The determined formal/functional organization of the sys-
tem (i.e., Eq.  (2)) admits of more than one interpretation of its abstract/functional 
states (values of � and � ). The confirmation devices make it possible to single out 
and justify the interpretative hypothesis that the inhibitory and excitatory inputs 
encode, respectively, size- and motion-dependent information. The warrant for this 
hypothesis is provided by converging evidence from diverse domains; that is, exist-
ence of evidential agreement that would seem unlikely, were this hypothesis false 
(cf., Sect. Responses to UTE). This is indeed the case in our study, because none 
of the three assumptions (a–c) that are used in deriving Eq. (2) states or presup-
poses anything about the excitatory and inhibitory effects of motion and size on the 
LGMD response. In other words, the adoption of our interpretative hypothesis is 
based on evidential support that stands on two independent lines of reasoning: First, 
Eq. (2) is a very successful hypothesis —it fits well with the experimental profile of 
the LGMD response (Fig. 3)— which lends itself very naturally to interpreting its 
terms as encoding excitatory and inhibitory effects, and, concurrently, it is formally 
derived from assumptions that say nothing about such excitatory and inhibitory 
effects (no mapping between the mathematical terms and any excitatory or inhibi-
tory inputs is assumed). Second, motion and size have long been observed to have 
an excitatory and inhibitory effect on the LGMD response.

Both of these, independently warranted, hypotheses, then, indirectly support the 
further hypothesis that the excitatory and inhibitory inputs encode, respectively, 
information about motion and size. And since both of the two independent hypoth-
eses are warranted on grounds offered by the kind of methods we have discussed in 
the context of UTE, it is the same methods that lend confirmational support to this 
interpretative hypothesis as well.
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