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Abstract
We are all guided by thousands of norms, but how did our capacity for normative 
cognition evolve? I propose there is a deep but neglected link between normative 
cognition and practical skill. In modern humans, complex motor skills and craft 
skills, such as toolmaking, are guided by internally represented norms of correct 
performance. Moreover, it is plausible that core components of human normative 
cognition evolved as a solution to the distinctive problems of transmitting complex 
motor skills and craft skills, especially skills related to toolmaking, through social 
learning. If this is correct, the expansion of the normative domain beyond tech-
nique to encompass more abstract norms of fairness, reciprocity, ritual and kinship 
involved the elaboration of a basic platform for the guidance of skilled action by 
technical norms. This article motivates and defends this “skill hypothesis” for the 
origin of normative cognition and sets out various ways in which it could be empiri-
cally tested.

Keywords Normative cognition · Skill · Cognitive control · Norms · Evolution

The skill hypothesis

We are all guided by thousands of norms, often without being able to articulate the 
norms in question. A “norm”, as I will use the term here, is just any standard of cor-
rect or appropriate behaviour. For example, when I take a seat in a lecture theatre, 
I tacitly choose from a range of appropriate options. I know, without needing to be 
told, that it would be inappropriate for everyone to sit in the back row, or for eve-
ryone to sit directly behind or in front of someone else when there are empty seats 
with unobstructed views. Yet I could never verbally express the full set of norms that 
guides my behaviour.
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In such cases, three key psychological ingredients are in place (Railton 2006; 
Sripada and Stich 2006). First, the agent reliably notices or anticipates failures to 
comply with the norm, in themselves or in others. Second, the agent feels affec-
tive pressure (for example, in the form of discomfort, shame or anger) to prevent 
or correct the departure from the norm. Third, the agent knows what to do to 
restore conformity in a way appropriate to the situation. This may involve correct-
ing their own behaviour, correcting another’s behaviour, asking for forgiveness, 
or administering punishment. These ingredients are the core elements of norma-
tive cognition. In short, normative cognition is the micro-regulation of one’s own 
behaviour and the behaviour of others to maintain conformity with norms.

Normative cognition presents a big evolutionary question: Why did we come 
to be like this? Why do norms guide everything we do? How did norms come to 
structure all human interaction? There is at least a large difference of degree here 
between humans and all other species, and perhaps a qualitative psychological 
difference (Sripada and Stich 2006; Machery and Mallon 2010; Kitcher 2011).

I aim here to make progress on this big question by presenting a package of 
ideas I call the skill hypothesis. The first part of the skill hypothesis proposes a 
psychological connection between normative cognition and certain types of prac-
tical skill:

In modern humans, complex motor skills and craft skills, such as toolmak-
ing, are guided by internally represented norms of correct performance.

The second part of the skill hypothesis proposes that this psychological connec-
tion indicates a deep evolutionary connection between normative cognition and 
practical skill:

The capacity to internally represent action-guiding norms of correct perfor-
mance evolved as a solution to the distinctive problems of standardizing, 
learning and teaching complex motor skills and craft skills, especially skills 
related to toolmaking.

In the next three sections, I motivate the skill hypothesis by showing how well it 
meshes with recent trends in the psychology of skill (Sections 2, 3), by articulat-
ing its distinctive empirical predictions (Section 4), and by showing how it yields 
an empirically credible account of the origin of normative cognition (Section 5). 
I then discuss how this account relates to others that connect the origin of norma-
tive cognition to mutualistic cooperation, altruism and punishment (Section  6). 
In the last section, I suggest some ways of testing the evolutionary part of the 
hypothesis against the archaeological record (Section 7).

The underlying motivation for the skill hypothesis is the idea that the central, 
unifying theme in human cognitive evolution is the cultural transmission of skill 
within and across generations (Sterelny 2012a). Yet most work on normative cog-
nition has not explicitly connected it to the evolution of skill. My guiding thought 
is that we will not understand the basic cognitive capacities involved in normative 
cognition, or their evolution, until we understand the role they play in regulating 
skilled action. The skill hypothesis emphasizes the role of normative cognition in 



1 3

Toolmaking and the evolution of normative cognition  Page 3 of 26 4

craft skill and complex motor skill and postulates a close link between the origin 
of normative cognition and skilful toolmaking. Precursors to the skill hypothesis 
(foreshadowing some but not all its elements) include Churchland (1996, 2000); 
Clark (2000) and Sterelny (2012a).

The cognitive dimension of complex skills

Skill has often been portrayed, in philosophy, psychology and popular culture, as a 
“mindless” phenomenon in which performance, especially at the expert level, pro-
ceeds automatically without any role for cognitive control (Fitts and Posner 1967; 
Dreyfus and Dreyfus 1986; Dreyfus 2005; Schmidt and Wrisberg 2008; Di Nucci 
2013). The commitments of such a view are not easy to spell out, since there is no 
agreement on what is meant by “automatic” or “cognitive control” (Fridland 2017). 
A mild version of the “mindless” view simply posits that, when executing an expert-
level skill, there is no time for every split-second decision to be preceded by explicit 
conscious reflection and deliberation. I will call this the “weak mindless” view, and 
I endorse it. A more radical version of the view posits that there is no room for cog-
nition of any kind in the successful execution of expert-level practical skills: skill 
execution is cognitively impenetrable. I will call this the “strong mindless” view, 
and I reject it.

Recent trends in the psychology and philosophy of skill strongly suggest that 
the strong mindless view of skill is false (Christensen et al. 2014, 2015a, b, 2016; 
Pacherie 2008; Papineau 2013; Pavese 2015, 2016a, b; Rietveld 2008; Sutton 2007, 
2013; Stanley and Krakauer 2013; Toner et  al. 2015;  Montero 2016; Stanley and 
Williamson 2017). Moreover, it is strikingly at odds with the way experts at com-
plex craft skills describe their own expertise. Consider, for example, the following 
report by the archaeologist Peter Hiscock, a skilled flint knapper:

Knapping long and/or regular sequences is intrinsically a complex process that 
requires competency at a number of levels simultaneously: bio-mechanical 
capacity to strike accurately and forcefully; the capacity to anticipate and iden-
tify emerging problems in the specimen morphology and to apply an effec-
tive action from a repertoire of potential responses; the capacity to plan ahead, 
which involves mental projections of both future actions and predicted out-
comes (Hiscock 2014, p. 34).

More recent theories of skill allow that expert-level practical skill is not wholly 
automatic. Although there are still many points of disagreement, there is a picture 
beginning to emerge from this body of work. It is a picture of at least some skills—
in particular, complex motor skills and craft skills such as toolmaking—as possess-
ing a substantial role for cognitive control. I propose that along with this role for 
cognitive control comes a role for normative cognition.

What, then, is the role of cognitive control in expert-level skill execution? Recent 
literature has tended to focus on sport and dance rather than on craft skill, and the 
differences are potentially important. In particular, craft skills can typically be 
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stopped and started at will, left for a while and picked up again later. The time pres-
sure on the skilled agent is less extreme. It is perhaps more plausible, on the face of 
it, that cognitive control would play a significant role in craft skill than in sport or 
dance. But I want to start with an example from sport and then draw connections to 
the case of toolmaking.

Christensen et al. (2015a) focus on elite mountain biking. Their focal example is 
Kath Bicknell, an expert mountain biker. In advanced mountain biking competitions, 
competitors must adapt quickly to the challenges of riding an unfamiliar and difficult 
course, sometimes on an unfamiliar bike: a challenge that requires rapidly modi-
fying one’s technique in the face of anticipated, idiosyncratic situational demands. 
Opportunities for practice runs are severely limited. Information about the course 
(for example, information about the location of upcoming obstacles such as rocks, 
and the best strategies for negotiating them) is obtained from a variety of sources: 
observation of the course, conversations with other bikers, and a handful of prac-
tice runs. All of this information (observational, testimonial, episodic) must be inte-
grated with fluent skill execution. For example, Bicknell, anticipating a small rock 
around the next corner, having remembered it from a practice run, will very slightly 
adjust her steering and braking to navigate around it.

It is implausible that this integration of situation-specific information with per-
formance is achieved without the involvement of any higher cognitive processing. It 
is equally implausible that it is achieved through explicit planning, deliberation and 
reasoning during skill execution, when decisions must be made in tiny fractions of 
a second. Something intermediate between these extremes is involved: a mode of 
action control open to new information from a variety of sources, yet also closely 
integrated with fine motor execution.

Christensen et al. hypothesize that a skilled agent’s control of the bike on an unfa-
miliar course is achieved by means of a cognitive, model-based representation: a 
cognitive control model. A cognitive control model is a representation of the causal 
structure of a complex skill and the situation in which it is executed. The model 
mediates between explicit plans and low-level (cerebellar) motor control, represent-
ing “causal relations among performance parameters” that allow the individual “to 
flexibly and appropriately identify and influence […] parameters in a particular situ-
ation”, in such a way as to “achieve key performance goals, such as smooth riding 
and positioning for upcoming obstacles” (Christensen et al. 2015a, p. 344). To visu-
alize intuitively the content of such a model, imagine a causal graph, linking direct 
handles of agential control (pressure on a pedal, distribution of the rider’s weight) 
to the expected effects on performance (the speed of the bike, the trajectory taken 
around a corner) given a particular situation (the gradient, the surface, the upcoming 
obstacles).

Christensen and colleagues’ account falls within in a wider trend of positing 
model-based representations to explain motor control, going back to Conant and 
Ashby’s (1970) “good regulator theorem”. For more than two decades, it has been 
widely thought that motor control relies on “internal models” located in the cerebel-
lar cortex (Wolpert and Kawato 1998, Kawato 1999, Wolpert and Ghahramani 2000, 
Frith 2012; Blakemore et al. 2000a, b, 2001; Franklin and Wolpert 2011; Pickering 
and Clark 2014). For example, when one grasps and lifts a cup, the gripping force 
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applied by the fingers is precisely controlled to be just enough to hold the object in 
place at each moment. This precise control can be explained by positing an “inverse 
model” that computes the motor commands needed to achieve a desired result, a 
“forward model” that predicts future arm trajectories given motor commands, and 
a “grip controller” that computes required gripping forces given predicted arm tra-
jectories (Kawato 1999). What Christensen et al. posit is a higher level of model-
based control, probably dependent on the cerebral cortex rather than the cerebellum, 
in which a complex skilful activity embedded in a particular situation is modelled, 
allowing fine adjustment of technique to the details of the situation.1 , 2

Like internal models, cognitive control models are predictive: they predict the 
way an action will unfold, given the current set of situational parameters, allowing 
comparisons between prediction and actual performance, with mismatches between 
prediction and execution informing future adjustments. In this sense, the proposal in 
this section is broadly allied with the “predictive processing” movement (as docu-
mented in Clark 2015), but without being committed to any wider generalizations 
about the role of predictive processing in the brain. However, in contrast to cerebel-
lar internal models, the agent has some degree of cognitive access to the parametric 
structure of the model and is able to make top-down, on-the-fly adjustments to the 
causal structure and parameter values.

For example, when faced with an unfamiliar course, a skilled biker exploits infor-
mation from multiple sources to calibrate her cognitive control model to the param-
eters of this bike and this course, such as the softness of the suspension or the stop-
ping power of the brakes (Christensen et al. 2015a, pp. 347–348). A well-calibrated 
cognitive control model then guides skill execution in high-performance runs. For 
instance, Bicknell, having integrated the upcoming obstacle into her control model 
of the situation, and having calibrated the model to this particular bike, will make a 
precise adjustment on the brakes well ahead of the obstacle to slow the bike, allow-
ing a line around the corner that evades the obstacle.

As noted above, mountain biking is not toolmaking. However, toolmaking at the 
level of Acheulean lithic technology or beyond3 presents an agent with the same 
fundamental challenge: that of adapting a learned technique in the face of antici-
pated, emerging problems that are unique to this situation. Acheulean technology, 

1 There is a welcome convergence here with recent work in moral psychology, which has highlighted the 
importance of forms of model-based learning in norm acquisition (Cushman 2013; Crockett 2013; Cush-
man et al. 2017; Railton 2014, 2017a,b; Greene 2017). We are concerned here with model-based action 
control rather than model-based learning, but these ideas are complementary: a model-based account 
of skill execution helps explain how the evaluative models posited by model-based accounts of norm-
learning become integrated with fluent agency.
2 The general idea of positing intermediate-level predictive models, cognitively accessible to a greater 
degree than internal models, as a means of explaining the flexibility of proximate control, is originally 
due to Pacherie (2008), but Christensen et al. apply the idea in detail to complex motor skills.
3 Acheulean toolmaking corresponds to mode 2 in the “five modes” framework introduced by Clark 
(1969). Later modes are even more cognitively demanding on the toolmaker. For discussion of mode 1 
(Oldowan) techniques, see the section “The standardization of technique”. Oldowan toolmaking is usu-
ally regarded as much less demanding, but some have argued that we tend to underestimate its sophistica-
tion (e.g. Morgan et al. 2015).
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exemplified by the bifacial stone tools usually known as handaxes and cleavers 
(although their precise use is disputed), is thought to have been first developed by 
early African Homo erectus and was used extensively by Homo heidelbergensis, the 
species often seen as the likely common ancestor of modern humans and the Nean-
derthals. Acheulean bifaces, especially late examples, show remarkable craftsman-
ship and symmetry (Lycett 2008; Iovita et al. 2017). Their manufacture was highly 
skilled and is usually taken to indicate a capacity for the precise guidance of action 
by socially acquired knowledge (Shipton 2010; Shipton and Nielsen 2015; Shipton 
2019).4 We see, in Acheulean bifaces, evidence that hominins could make flexible 
adjustments to a learned technique in response to anticipated, emerging problems. 
To craft such an object, one must be attuned to the idiosyncratic demands imposed 
by the shape, size and structure of this particular piece of stone, and one must be 
able to anticipate the problems it will pose (Fig. 1).

I hypothesize that, just as in skilled mountain biking, this on-the-fly modification 
of technique is made possible by a cognitive control model: a model that represents 
the control parameters of the process and the likely downstream consequences of 
small adjustments to technique, allowing extremely consistent generation of a highly 
symmetric end-product despite wide variety in the situational demands imposed 
by the stone. This idea is supported by neuroscientific evidence from Stout et  al. 
(2015) and Putt et  al. (2017), who show that Acheulean tool production engages 
mechanisms of cognitive control. Stout and collaborators have long argued for the 

Fig. 1  An Acheulean handaxe. Reference: SUSS-64EE9A. Photograph by the Sussex Archaeological 
Society, via the Portable Antiquities Scheme. CC-BY 2.0

4 There is a dissenting view that is sceptical of a substantial role for social learning in explaining Acheu-
lean toolmaking (Davidson 2002; Corbey et al. 2016; Tennie et al. 2017). Defenders of this dissenting 
view may still accept the core elements of the skill hypothesis, but they will regard the forms of toolmak-
ing that indicate shared technical norms as appearing later in the archaeological record.
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importance of the Acheulean in human cognitive evolution (but not normative cog-
nition in particular). Their results fit well within the framework of the skill hypoth-
esis (Stout et al. 2008; Stout 2010, 2011; Stout and Chaminade 2012). Along similar 
lines, Sterelny (2012b) has argued that Acheulean handaxe manufacture was guided 
by “behaviour programs” and “inner templates” of the end product. I suggest these 
programs/templates can be assimilated to the notion of a cognitive control model.

This theory of complex motor skills and craft skills as actions guided by well-
calibrated cognitive control models is summarised in the following initial account:

Agents who possess a complex motor skill or craft skill possess a well-cali-
brated cognitive control model that accurately represents those aspects of the 
causal structure of the situation relevant to successful execution of the skill, 
anticipates upcoming obstacles and problems, and predicts the flow of sensory 
feedback that will occur if skill execution is successful.

The affective dimension of complex skills

Norms are not yet in the picture. This, however, is only a starting point. The above 
proposal, which emphasizes the cognitive dimension of skill, omits the affective 
dimension. Skill leads to discontent when the agent falls short of the standard of 
performance implicitly encoded in the control model. An incorrect adjustment, lead-
ing to a mismatch between the predictions of the cognitive control model and the 
agent’s behaviour, feels wrong to the agent, independently of (and often temporally 
prior to) any physical discomfort the error may cause. Skill creates internal pressure 
to conform to an internalized standard of correct performance.

Rietveld’s (2008) work on “situated normativity” is insightful in this respect. 
Wittgenstein, in the Lectures on Aesthetics (1966), urges us to move away from visu-
alizing the central case of aesthetic judgement as that of a passive observer looking 
at an artwork and remarking, “That’s beautiful”. He asks us instead to imagine a 
skilled architect inspecting a building under construction at his direction, looking at 
a doorframe and exclaiming, “Too low! Make it higher!” Wittgenstein’s architect is 
moved by a reaction of discontent on seeing the doorframe, and this reactive emo-
tion is coupled with immediate knowledge of what must be done to remove it.

Wittgenstein refers to this phenomenon as directed discontent: discontent directed 
towards an object, motivating a specific action to be performed on that object. Riet-
veld argues that directed discontent is a characteristic feature of all craft skill, not 
just that of a skilled artist or architect (see also Buskell 2015). It is unobvious only 
because it often occurs tacitly: Wittgenstein’s case, in which the architect makes an 
explicit exclamation, is an exception arising from the fact that he cannot personally 
implement the changes he knows to be required. In most cases, a skilled craftsperson 
will see a problem, feel directed discontent (some aspect of the situation will feel 
wrong), and make the necessary adjustments without explicit reflection, delibera-
tion or speech. To possess a craft skill is, in part, to feel directed discontent when 
action falls short of what is required by the situation, and to feel moved to make the 
required improvements.
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Directed discontent can be incorporated within a model-based approach to the 
psychology of skill by positing that cognitive control models are integrated with 
affect: they are such that certain types of mismatch between the actual perfor-
mance and the predictions of the model are apt to trigger an emotional response, 
typically in the form of discontent, directed at the model parameters responsible 
for the mismatch. When a certain type of mismatch between prediction and exe-
cution would, if made, trigger affective pressure directed at the aspect of perfor-
mance responsible for the mismatch, we can describe this mismatch as an error of 
performance by the agent’s lights.

Now we are closing in on norms. For there will not be just one type of mis-
match that, if made, triggers affective pressure to modify one’s technique. There 
will be a whole pattern of such mismatches. For an elite biker, approaching a 
corner too fast will feel wrong, motivating adjustment; too much pressure on the 
brake will feel wrong, motivating adjustment; steering that is too tight or too loose 
will feel wrong, motivating adjustment—and so on. Skill execution must take a 
very specific course (the skill must be executed “just the right way”) to avoid 
triggering any dissatisfaction. This pattern of mismatches implies a standard of 
correct performance by the agent’s lights. A cognitive control model implicitly 
encodes a standard of correct action. When the agent’s behaviour falls short of 
the implicit standard, the performance feels wrong and affective pressure to make 
an adjustment is triggered. Moreover, the more expertise a person has, the more 
exacting their implicit standard will be. In an expert, even tiny deviations from 
the right way of executing the skill cause the performance to feel wrong.

For example, we can think of a skilled craftsperson, such as a flint knapper, 
as tacitly guided by the norms of their craft. Even if the knapper does not have 
explicit, conceptual representations of these norms, has no prior grasp of them, 
and cannot articulate them, the norms may be encoded implicitly in the pattern of 
mismatches between model prediction and actual behaviour that would, if made, 
make the performance feel wrong to the agent. These mismatches might be (as 
in the biking example) at the level of fine motor execution: a particular strike of 
the stone might feel wrong, as the stone fragments in an unexpected way. But in 
a complex craft skill like flint knapping, they may also occur at a higher, more 
zoomed-out level: the individual strikes of the flint may feel right in isolation, 
but the way the specimen is taking shape across a series of successive strikes may 
feel wrong.

Taking all this into account, here is a proposal that summarises both the cogni-
tive and affective dimensions of skill execution:

Agents who possess a complex motor skill or craft skill possess a well-cali-
brated cognitive control model that accurately represents those aspects of the 
causal structure of the situation relevant to successful execution of the skill; 
anticipates upcoming obstacles and problems; predicts the flow of sensory 
feedback that will occur if skill execution is successful; creates affective pres-
sure to respond to mismatches between prediction and performance by adjust-
ing one’s technique; and represents a norm of correct performance in the pat-
tern of mismatches that trigger affective pressure to make an adjustment.
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Testing the role of norms in skill execution

What sort of evidence would tell for or against the hypothesis that expert-level 
complex motor skills and craft skills are guided by norms in the above sense? It 
is reasonable here to ask for more than subjective reports from experts, which are 
inconclusive. We could improve on subjective reports by using structured inter-
views and questionnaires specifically designed to probe the role played by cog-
nitive control and directed discontent in guiding skill execution. We could even 
attempt to develop a psychometric scale of “normativity about performance”. 
But perhaps the most striking evidence for the skill hypothesis would come from 
experiments.

First, let us consider what sort of experiment would support the model-based 
view of skill execution presented in Section 2. The model-based view contrasts 
with the strong mindless view on which expert-level skill execution is wholly 
automatic and fully independent of cognitive control. However, the lack of agree-
ment as to what is meant by “automaticity” leads to some obscurity as to what it 
is that the strong mindless view posits and the model-based view denies. I rely 
here on the idea that one signature of cognitive control, as opposed to cognition-
free automaticity, is the appropriate, flexible, one-off adjustment of technique, 
without extensive practice, in response to an anticipated demand imposed by this 
specific situation (e.g. what is around the next corner).

When the contrast is set up like this, it is clear that the model-based view and the 
strong “mindless” view do not diverge when a skill is executed in easy conditions 
(when there are no idiosyncratic situational demands to anticipate) and when the sit-
uation is so novel that the agent is learning a brand new skill, not executing an exist-
ing skill (both views predict a role for norms, rules, and so on in these situations). 
The key, therefore, is to identify “challenging-but-normal” conditions in which the 
agent is clearly executing an existing skill, but doing so in a demanding situation 
(e.g. a competitive mountain biking tournament on a difficult course) (Christensen 
et al. 2016). The strong mindless view predicts that, even in a challenging-but-nor-
mal situation, skill execution will be automatic, and thus performance will not be 
impaired (and might even be enhanced) by engaging the agent’s general cognitive 
resources in a distracting task (such as remembering lists of numbers). The model-
based view predicts that the agent’s performance in such a situation will be impaired 
by a distracting cognitive task. The prediction is testable but a systematic test has not 
yet been done. A related prediction of the model-based view is that brain areas asso-
ciated with cognitive control will be active in challenging-but-normal conditions.

This would test for a cognitive dimension of skill execution, but not specifically 
for a role for normative cognition. This could be put to the test by looking for a dif-
ferential performance impairment when the distracting task places demands on nor-
mative cognition (for example, the distracting task might involve making evaluations 
of others, or ruling on the severity of norm violations). The prediction is that, con-
trolling for the general cognitive demandingness of the task (as measured when no 
practical skill is being executed), the effect on skill execution should be more severe 
when the distracting task is normative than when it is non-normative.
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A second, independent testable prediction concerns the familiar phenomenon we 
might call “skill dumbfounding”. It is well known that skilled agents often strug-
gle to articulate the structure of their skills verbally (this can be seen in post-match 
interviews after any football match), and also well known that people struggle to 
articulate the reasons for their intuitive normative judgements (Haidt 2001). But are 
the two abilities correlated across subjects? For example, do people with unusually 
good access to the structure of their practical skills also have unusually good access 
to the sources of their normative judgements? The skill hypothesis leads to a general 
expectation of such a correlation, on the grounds that both kinds of dumbfound-
ing result from the difficulties of translating a norm encoded in a model of a situa-
tion into a linguistic format. If no such correlation were found, we could reconcile 
this with the skill hypothesis by positing differences between the social and techni-
cal domains in the level of reflective access to norms (so it would not deal a fatal 
blow), but finding such a correlation would be positive evidence in favour of the 
skill hypothesis.

A third type of prediction concerns affective responses to norm violations and 
failures of skill execution. The skill hypothesis predicts a link between the way we 
respond to failures of skilled action and the way we respond to other types of norm 
violation. It predicts correlations across subjects: people who feel stronger affective 
responses to their own failures of skill execution (e.g. strong feelings of shame), 
should also feel stronger affective responses to their own social norm violations. 
Likewise, people who react more strongly to others’ violations of technical norms 
(e.g. with strong feelings of anger) should also react more strongly to others’ vio-
lations of social norms. This could be probed experimentally, but it might also be 
probed through structured interviews with experts.

The evolution of normative cognition

In Sections 2–4, I have hypothesized a link between normative cognition and model-
based cognitive control of complex motor skill and craft skill. I will now turn to the 
second part of the skill hypothesis. If the link is as deep as I have proposed, we are 
looking at one evolutionary story, not two. Rather than thinking about the evolu-
tion of skill and the evolution of normative cognition as wholly separate topics, we 
should try to understand the evolution of norm-guided skill.

Since the evolution of skill can be traced in the archaeological record, it is possi-
ble to construct an empirically credible account. In this section I present an account, 
informed by archaeological evidence, of how some core components of normative 
cognition may have evolved.

The great ape platform

Which ingredients of normative cognition were already present in the last common 
ancestor of Pan and Homo? On the assumption that the last common ancestor was 
chimpanzee-like, studies of chimpanzees suggest that social emotions, such as anger 
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and proto-shame, played a role in managing dominance hierarchies. Anger signalled 
a credible threat of retaliation in response to insubordination; proto-shame signalled 
submission to social superiors or the recognition of diminished rank (Fessler 1999; 
Maibom 2010). Early hominins5 kept track of social rank and conditioned their 
behaviour on rank.

However, this is not guidance of behaviour by norms in anything like the human 
sense. There are at least large quantitative differences here, perhaps qualitative dif-
ferences. I will assume in what follows that the last common ancestor did not flu-
ently self-regulate their behaviour to maintain conformity with socially learned, cul-
turally variable norms. A human observer, looking in on these early hominins, might 
attribute primitive social norms, such as “don’t take food from a dominant”, but I 
assume the hominins themselves did not have cognitive control models in which 
these norms were represented.

There are, in chimpanzees, norm-like phenomena in the form of between-group 
differences that persist across generations due to social learning. These differences 
are sometimes called traditions. For example, chimpanzees in some populations dis-
play a distinctive “handclasp” behaviour when grooming each other. The style of the 
handclasp varies between groups, and chimpanzees learn and conform to the pre-
vailing style of their group (van Leeuwen et al. 2012). In one group, a high-ranking 
female started wearing a piece of grass on her ear, and other group members cop-
ied her (van Leeuwen et al. 2014). There are also between-group differences in tool 
preferences. Some chimpanzee groups prefer to crack nuts with stone hammers, oth-
ers with wooden hammers, and groups also vary in the size of wooden hammer they 
prefer (Luncz et al. 2012).

These cultural traditions are sometimes described as norms (e.g. Andrews 
2009). However, there is no strong case for positing normative cognition to explain 
between-group differences. If the high-ranking individuals in a group prefer (for 
example) stone hammers, and juveniles differentially attend to high-ranking indi-
viduals, they may well come to associate the use of stone hammers with reward, 
and so acquire the same preference by model-free associative learning (Schlingoff 
and Moore 2017). Stable between-group differences alone do not imply normative 
cognition.

Chimpanzees’ reactions to infanticide are also sometimes suggested as evidence 
for norms (Rudolf von Rohr et  al. 2011, 2015). Chimpanzees find these events 
extremely salient, and their attention is drawn strongly to videos of such events 
featuring unfamiliar individuals, in comparison to videos of hunting or aggression 
(Rudolf von Rohr et  al. 2015). For Rudolf von Rohr et  al. (2015), this attentional 
effect is some evidence of a norm against infanticide. But here too, there is no strong 
case for positing normative cognition. As the authors note, these are rare events that 
provoke loud screaming from infants and waa barks from parents, and they would 
be extremely salient events whether or not the bystanders had internalized a norm 
against infanticide. Although the comparison videos (of hunting and aggression) 

5 The term “hominin” encompasses the Homo genus and the australopithecines; in other words, modern 
humans and all ancestral species following the split from Pan.
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also contained salient features, it was nonetheless the case that “both waa barks and 
infant screaming were only present in the Infanticide condition” (Rudolf von Rohr 
et al. 2015, p. 152).6

The search for norm-like phenomena in chimpanzees is on-going, and I am not 
suggesting we can conclude that normative cognition is definitely absent. If it does 
turn out to be present, the great ape platform I assuming here will turn out to be 
more minimal than necessary, and some of the steps in the evolutionary account 
developed here will need to be pushed back in time. Yet even in that scenario, I still 
think it will have been a useful exercise to construct and test hypotheses about the 
evolution of hominin normative cognition that begin from a very basic platform.

In addition to social emotions, rank sensitivity, simple cultural traditions, and 
attentional biases, there were basic capacities for skill learning (including social 
learning of skills) and high-precision skill execution involving fine motor control 
(see, e.g., Boesch 2013, Ch. 6, on nut-cracking). A capacity for motor action guided 
by internal models, largely encapsulated from cognition, may be a core function of 
the cerebellum with a deep evolutionary history, common to the primates and per-
haps to all mammals (Wolpert and Kawato 1998). When a monkey swings between 
tree branches, it is plausibly guided by an internal model. But did the last common 
ancestor also possess cognitive control models, allowing top-down modifications of 
technique in response to anticipated and emerging problems? What is the behav-
ioural marker of this more sophisticated form of action control?

It helps here to return to the example of elite mountain biking: here we find 
agents making on-the-fly adjustments to a learned technique in response to antici-
pated challenges that are idiosyncratic to this situation (they are challenges posed 
by this bike on this terrain, and what is coming around this corner). This is also a 
core feature of craft skill. It is this capacity for flexible adjustment to anticipated 
challenges unique to the present situation that we took to be evidence of cognitive 
control models. Do we find this in chimpanzees?

Arguably the most sophisticated learned technique mastered by chimpanzees is 
ant dipping, in which chimpanzees use tools (such as short poles fashioned from 
the shrub Alchornea hirtella) to harvest army ants. Primatologists have documented 
several different methods of ant dipping, and chimpanzees are able to adjust their 
technique to the demands of the situation in a coarse-grained way (reviewed in 
Humle 2010). Key aspects of technique, such as the length of the tool, are adjusted 
to situational variables such as the species of the prey ant, and other aspects, such as 
the method of eating, are in turn adjusted to the length of the tool.

However, what seems to be missing is evidence of flexibility in the face of antici-
pated, as opposed to observed, situational demands. Sensitivity to regular, recurring 
features of situations, such as the species of prey ant, may be achieved without a 

6 Rudolf von Rohr et  al. (2015) argue that we can exclude the alternative explanation based on sali-
ence, but they do not make a compelling case. They note that the difference in looking times between the 
video with the most infant screams and the fewest was not statistically significant (2015, Table 2), but the 
absence of a statistically significant difference between these two videos, in a study of 17 animals, is not 
compelling evidence of the absence of an effect.
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cognitive control model by having several discrete techniques available to the motor 
system, together with the use of perceptual cues to identify the general type of situa-
tion one is in. The paradigm here is grasping a cup: different types of handle require 
different grasping techniques, but this coarse-grained sensitivity to general types of 
situation is not the same as the ability to anticipate emerging challenges and prob-
lems. While the evidence is inconclusive, I hypothesize that cognitive control mod-
els are unique to the hominin lineage. The caveat noted above applies here too: if 
cognitive control models turn out to be present in chimpanzees, then the great ape 
platform I assuming here will turn out to be more minimal than necessary.

The standardization of technique

Human cognitive evolution is a story of the dramatic expansion and enrichment of 
skill learning and skill execution capabilities, driven by feedback loops connecting 
social foraging, social learning and environmental change. Kim Sterelny (2012a) 
provides an account of how these feedback loops worked. In brief, hunting and 
gathering in a changing environment put an evolutionary premium on the social 
transmission of skill. Foragers needed to know what to hunt and gather and how to 
hunt and gather it, and in a changing environment the necessary skills changed too 
quickly to be genetically encoded. Under this selection pressure, hominins devel-
oped a form of apprentice learning. Early hominins acquired skills from the preced-
ing generation through a process of scaffolded trial-and-error: juveniles would stay 
close to adults, observe both the performance and the products of their skills (such 
as completed tools), and attempt to recreate those performances and products. The 
learning environment was “scaffolded” in the sense that learners were immersed in 
a community of agents performing and completing the skills they needed to learn, 
allowing them to see their own errors and bring their internal standards for correct 
performance into line with those of the group.

These scaffolded learning environments co-evolved with cognitive and life-his-
tory adaptations: adults evolved to be tolerant and supportive of apprentices, who 
evolved to learn from their models during a protracted period of juvenile cognitive 
development. Each incremental increase in the bandwidth and volume of social 
learning led to incrementally more efficient social foraging, which in turn allowed 
for incrementally more protracted learning. Meanwhile, more efficient social forag-
ing further accelerated the pace of environmental change, putting an even greater 
premium on the social learning of skill.

The long-term results can be seen in the symmetry and precision of Acheulean 
bifaces. I have already made a case, in Section 2, for thinking of Acheulean tool-
making as guided by a form of model-based cognitive control. This suggests that H. 
heidelbergensis had evolved this form of cognitive control, and could make flexible 
adjustments to a learned technique in response to anticipated, emerging problems.

This is evidence, then, that the cognitive dimension of skill as seen in modern 
humans was in place by the Acheulean period. However, to be clear, I am not ruling 
out an earlier date of origin for cognitive control models. Oldowan tool production 
is much less complex, and provides less persuasive evidence of cognitive control 
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(Ambrose 2001; Wynn and McGrew 1989), but Morgan et al. (2015) argue that the 
received wisdom about the Oldowan may have underestimated its complexity.

What about evidence of the affective dimension of skill? I have argued that the 
affective dimension of skill consists in affective pressure that motivates an agent to 
correct or forestall performance errors by modifying technique. In short, the per-
formance feels wrong (or feels right), even before it has manifestly gone wrong (or 
right). We can identify two plausible selection pressures for this affective dimension 
of skill.

First, note that the manufacture of Acheulean bifaces was, in at least some cases, 
a collaborative activity involving a division of labour. Shipton and Nielsen (2015) 
report evidence of spatial division of labour at a site in India, with the early stages 
and finishing stages of cleaver manufacture carried out at distinct locations. The best 
explanation, they argue, is that different group members were undertaking different 
tasks. Inherent to collaborative tool manufacture is a special kind of coordination 
problem resulting from the causal opacity of complex skills: individual agents at the 
early stages of the process will not be fully aware of what the finishers do, and con-
sequently will not be fully aware of the downstream consequences of their actions. 
Small variations of technique in the early stages may result in the finisher receiving 
a tool that cannot be finished. The consequences of these variations will not be read-
ily foreseeable unless the agents at the beginning of the production line have also 
mastered the skills to be performed later, which would undercut the advantages of 
dividing the labour.

A solution to this problem is the standardization of technique: all agents involved 
in the process internalize a particular way of doing their part and conform to that 
way even when departures from it seem, from their point of view, inconsequential. 
There is archaeological evidence that techniques were indeed standardized at par-
ticular sites (Wynn 1993; Shipton 2010). A recent study of late Acheulean handaxe 
types in Britain found a range of distinct subtypes at different sites, leading the 
authors to propose that that “the distinctive and difficult to produce handaxes types 
that characterize the British Late Acheulean were reproduced according to norma-
tive expectations of what handaxes should look like” (Shipton and White 2020, 
p. 1). These standardized techniques were passed down the generations with high 
fidelity.

In explaining how they were initially passed down, we should not underestimate 
the importance of the physical tools themselves, in either complete or unfinished 
form, which provide a physical template (an “outer template”, as it were), for what 
constitutes successful toolmaking. Each generation would have internalized the 
standards of the preceding generation by observing their technique and by learn-
ing to copy those tools to which they assigned particular value. I see no opposition 
between positing cognitive control models internal to the agents and positing that 
physical tools also provided valuable external models. Both can be true: the physi-
cal tool, finished or unfinished, can provide a benchmark against which the agent’s 
internal model of correct skill execution is calibrated.

Standardization of a complex skill indicates not just cognitive control, but also a 
robust motivation to adhere to one particular style of skill execution among multiple 
possible styles. It involves internalizing a particular style of skill execution, in the 
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sense of feeling negative affective responses to small departures from that style. I 
suggest that standardized toolmaking is an archaeological marker of norm-guided 
skill execution. Agents were, I suggest, internalizing technical norms—our ways of 
executing practical skills—and feeling negative affect when their performance failed 
to meet the group’s shared standards.7

Moreover, I hypothesize that standardization is not just a marker but also a driver: 
the benefits of group-wide standardization of toolmaking technique created a selec-
tion pressure that favoured (groups of) agents who felt negative affective responses 
when they deviated from a cognitive control model. Although this is a selection 
pressure that arises in the context of a group, the benefit here is a direct fitness ben-
efit: agents who internalize group-wide standards themselves benefit, over the long 
run, from more efficient toolmaking.8

What is the second selection pressure? Mastering a skill as complex as Acheu-
lean tool manufacture requires years of sustained practice. This marks a significant 
watershed compared to anything observed earlier in the archaeological record. What 
motivates sustained practice? Mastering these skills would have yielded long-term 
direct fitness benefits, especially if high quality tools could be exchanged for other 
resources, but it is implausible to suppose that explicit knowledge of the long-term 
fitness benefits motivated practice. Given the long-term fitness benefits and the dif-
ficulty of being motivated by them, I hypothesize that selection favoured agents 
intrinsically motivated to master skills—agents who felt satisfaction in achieving 
excellence in skill execution, and discontent at any aspect of performance that fell 
short of their internalized standard.

Monitoring and teaching others

Standardized techniques of tool manufacture were “norms” in a broad sense: they 
provided a standard of correct performance to which a skilled toolmaker was intrin-
sically motivated to conform. They were also social in the sense of being coordi-
nated across groups. But they need not have involved third-party monitoring, expec-
tation and/or enforcement, which are common features of modern social norms 
(Bicchieri 2005). These elaborations were, I suggest, connected to teaching.

It is not clear when intentional, deliberate teaching first emerged. Scaffolded trial-
and-error learning, of the type described by Sterelny (2012a, b, c), can occur with-
out intentional teaching. Models need to tolerate the presence of learners, but they 
do not have to knowingly demonstrate their skills or instruct their apprentices. Even 
now, the ethnographic record contains many examples of children learning skills 

7 In a forthcoming paper, Shipton et al. (in press) also suggest that standardized toolmaking techniques 
are an archaeological signature of norms. However, they do not argue that the demands of toolmaking 
were themselves one of the drivers of the evolution of normative cognition.
8 Processes in which change is driven by a direct fitness benefit, but in which the benefit depends on 
organisms living in groups, are sometimes described as cases of “group selection”, but this is in some 
ways a misleading term. See Birch (2017, Ch. 4) for discussion of how to label these cases.
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without any intentional teaching, by means of free exploration in an environment 
full of people displaying the skill (Lancy 2016).

However, Hiscock (2014) argues that, given the high risk of injury inherent in 
even very small errors, Acheulean tool manufacture was probably transmitted 
through intentional teaching. Shipton (2019, pp. 343-347) argues that this is espe-
cially plausible of the Late Acheulean (from 600,000 years ago), due to the presence 
in the archaeological record of subtle forms of platform preparation that would be 
extremely difficult to learn without teaching. Teaching, as opposed to mere tolera-
tion of learners, relies on comparing the behaviour of others to one’s own control 
model: one must notice and anticipate failures of skilled performance in the learner, 
and one must respond appropriately to these failures by signalling the nature of the 
failure, its seriousness, and the appropriate corrective measure.9

In cases where errors by a learner are foreseen and managed by a teacher, physi-
cal injury can be avoided: milder punishments and rewards administered by the 
teacher can take their place. We see in the evolution of teaching the first stage in the 
socialization of cognitive control: a good teacher models the actions of the learner, 
identifying mismatches between the learner’s performance and the predictions of the 
model, and responding with corrective measures to errors of performance. Having 
initially evolved for the self-regulation of behaviour, I hypothesize that control mod-
els were co-opted for the regulation of the behaviour of other agents.

A critic might argue that this suggestion faces a chicken-and-egg problem. How 
plausible is it that pedagogical contexts, in which a learner attends carefully to a 
model who tolerates their presence and supports their learning, arose prior to wide-
spread enforcement of social norms? In contemporary humans, pedagogy is a richly 
norm-governed activity. We instil in children norms of respect for teachers, and we 
have a normative expectation that adults will tolerate, and help to correct, the mis-
takes of children. If norms arose first in the context of toolmaking, and only later 
expanded outwards to other domains, we have to assume that pedagogical contexts 
initially arose without the enforcement of pedagogical norms of respect for teachers 
and tolerance of learners. This is a potential problem for any account which begins 
with self-regulation in the context of skill execution, moves from there to other-reg-
ulation in the context of skill transmission, and from there to more general, more 
abstract social norms.

However, methods of proto-teaching in the Acheulean would not have placed 
anything like as much strain on the agents’ normative capacities as contempo-
rary methods of teaching. Teaching in modern human societies typically involves 
groups of learners, taught by teachers who are neither their relatives nor their co-
residents. The group size strains the learners’ attentional capacities, and cooperat-
ing with non-relatives and non-co-residents strains their emotional capacities, lead-
ing in turn to strain on the teacher’s capacity for tolerance. Norm enforcement is 

9 Boesch (2013, pp. 143-144) offers two anecdotes of active error correction in Taï chimpanzees. So, 
even at this stage of the account, it’s hard to be sure that the traits being described are uniquely hominin. 
If they are not, the central idea of an expansion of the normative domain from technical to non-technical 
norms may still be correct, but we would have to push back the date for the origin of technical norms.
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necessary to stabilize the situation. The challenges, for both teachers and learners, of 
regulating their emotions in the classroom have been well documented by education 
researchers (Sutton 2004; Graziano et  al. 2007; Gullone et  al. 2010). By contrast, 
the transmission of skill in the Acheulean would have occurred between models and 
learners who were, if not closely related, then at least co-resident in the same camp. 
Even now, in contemporary hunter-gatherer societies, craft skills are often transmit-
ted primarily from parents to offspring, usually from the same-sex parent (Hewlett 
and Cavalli-Sforza 1986; Shennan and Steele 1999; Shennan 2002; Mameli 2008). 
Prosocial dispositions towards campmates and kin would have been enough to allow 
simple forms of teaching, based on the demonstration of skills, to be accomplished 
without excessive emotional strain prior to the enforcement of pedagogical norms.

The repurposing of shame

While these gradual transformations were in progress, there was also a transforma-
tion in the affective salience of norm violations. In the context of skilled toolmak-
ing, directed discontent plays an important role (a skilled knapper sees errors and 
is motivated to correct them) but this affective response need not take the form of 
shame or outrage. As noted in Section 2, proto-shame and anger plausibly originated 
in dominance hierarchies, where they regulate social rank (Fessler 1999); in homi-
nins, these emotions were co-opted for the regulation of prestige hierarchies (Fessler 
2004, 2007).

As obligate collaborators, early humans constantly evaluated each other as pro-
spective partners in collaborative enterprises, including toolmaking, and reputa-
tion management was crucial for success (Boehm 2012; Baumard 2016; Tomasello 
2016). Initially, these evaluations need not have involved normative standards: they 
may simply have been predictive judgements about how likely a potential partner 
is to succeed at some task. Agents would prefer cooperative partners with a track 
record of success. But as normative cognition became more sophisticated for the 
reasons suggested above, these evaluations would have acquired a normative dimen-
sion. Once agents were monitoring each other’s behaviour for conformity with an 
internalized standard, it became possible to judge another agent to be doing things 
the wrong way, independently of any manifest, visible failures that resulted from the 
error.

I hypothesize that shame and anger acquired new functions in this context: they 
became a means of signalling recognition that one’s own performance, or the per-
formance of another, fell severely short of the group’s shared internalized standards, 
and a means of motivating improvement (see Tangney et al. 2013 and Sznycer et al. 
2016 for related ideas). Falling short of the standard in the presence of others trig-
gers shame in oneself and anger in others, and these affective responses provide a 
strong motivation to do better next time.



 J. Birch 

1 3

4 Page 18 of 26

The expansion of the normative domain: fairness, reciprocity, ritual and kinship

At this point in the account, normative cognition remains restricted to a core set of 
socially learned skills: it is far from a ubiquitous feature of human social life. I hypoth-
esize that this ubiquity was a later development. The normative domain expanded from 
technical norms to incorporate norms of fairness, reciprocity, ritual and kinship. I sug-
gest that these norms, despite their apparently abstract and general character, were an 
elaboration of a basic capacity for norm-guided skill execution.

How did the process of “elaboration” occur? Simple norms of fairness may have 
arisen in the context of collaborative hunting: skilful execution of a hunt would flow 
into skilful division of the spoils, itself guided by technical norms specifying our way 
of dividing a carcass. Norms of equitable division would have been favoured because 
they benefited the agent, in the long run, by showing them to be a trustworthy and prof-
itable cooperation partner (Baumard 2016).

Norms of reciprocal exchange may have originated with the emergence of large-
scale exchange networks in the late Palaeolithic (Marwick 2003). Sterelny (2014) has 
argued that expanding social groups and exchange networks created a “Palaeolithic 
reciprocation crisis”, a package of coordination problems resulting from the demands 
of reciprocity in large networks. Larger groups favour greater specialization: in a late 
Pleistocene “tribal” network of 500 or more individuals there might, for example, be 
market for a full-time specialist toolmaker or spear-thrower. But specialization requires 
reciprocal exchange (e.g. of tools for food), and reciprocal exchange requires norms of 
market value: one must know how much food a handaxe is worth, for example. These 
norms, although apparently quite abstract, may have begun as norms of skilled behav-
iour in specific situations: norms of how to barter skilfully round the campfire, norms 
of what to offer and what to accept in one-on-one interaction.

Larger groups also faced the problem of creating group cohesion by means other 
than one-on-one bonding (Dunbar 2014). A solution was ritual: skilful collective per-
formances, high in emotional and mnemonic resonance. We can see how a capacity 
to internalize technical norms, including norms concerning long sequences of actions, 
would bring with it a capacity for ritual. Indeed, toolmaking practices can themselves 
resemble rituals. Norms of ritual may have begun as norms of skill execution: norms of 
how to dance, or make music, our way.

Norms of ritual are, in turn, a step towards norms of kinship. At some rituals, inter-
band monogamous pairings would have been initiated, guided by norms of who can 
pair up with whom (Chapais 2008; Allen et al. 2011). On the face of it, kinship norms 
are among the most abstract norms, specifying (for example) that one may marry a 
cross-cousin but not a parallel cousin. However, the first kinship norms may have been 
concrete norms of skill execution in group rituals: a skilled performer knows where to 
go, whom to dance with, which moiety (i.e. descent group) to attach to, and is led by 
norms of ritual behaviour to an appropriate mating partner.

In short, behaviourally modern humans evolved elaborate systems of abstract norms 
encompassing trade, ritual and family life, but I hypothesize that these norms were 
learned, stored and executed using mechanisms that had originally evolved for the 
standardization and teaching of toolmaking techniques.
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Comparison to other hypotheses

Normative cognition is a complex adaptation, assembled incrementally over many 
thousands of generations, and any adequate explanation of its evolution must appeal 
to a sustained selection pressure over a long period of time. The skill hypothesis 
proposes that the demands of toolmaking provided the pressure. Acheulean and 
post-Acheulean toolmaking is a complex skill with multiple possible styles of exe-
cution, calling for (1) sophisticated mechanisms of model-based cognitive control, 
(2) group-wide standardization of technique through technical norms, (3) years of 
sustained practice, driven by an intrinsic motivation to achieve an internalized stand-
ard of correct performance, and (4) at least a basic form of teaching, in which a 
teacher monitors the performance of a learner and notices errors. The demands of 
standardization, practice and teaching selected for cognitive changes that made them 
easier, enabling yet higher levels of standardization, yet more demanding practice 
regimes, and more sophisticated forms of teaching. In short, normative cognition 
was the adaptation that facilitated the standardization, practice and teaching of our 
ways of performing complex practical skills. This can be regarded as an example 
of a “gene-culture co-evolution” hypothesis (Boyd and Richerson 1985). That said, 
I have avoided explicitly assuming that mechanisms of model-based control are 
genetically inherited. If they turn out to be themselves culturally inherited, then the 
above story may be reinterpreted as one of “culture–culture co-evolution” (Birch 
and Heyes 2020).

It is worth comparing this idea with other possible gene-culture co-evolution 
hypotheses: those which posit a role for forms of mutualistic cooperation other than 
toolmaking, and those which posit a crucial role for altruism and punishment. There 
is no big disagreement here about the importance of cooperation for the evolution 
of normative cognition, or the importance of gene-culture co-evolution (or perhaps 
culture–culture co-evolution), but there is disagreement about the type of coopera-
tion that mattered most.

Other cooperative activities

The skill hypothesis proposes that normative cognition evolved in response to the 
demands of complex skills that required years of sustained practice and groupwide 
standardization of technique. Acheulean toolmaking is, I suggested above, the earli-
est example of a skill with the requisite features. But I remain open to the possibil-
ity that other collaborative activities were at least as important, and also possessed 
the required features. Big game hunting—another demanding collaborative activity 
requiring at least some division of labour—is another example of a complex motor 
skill that may have the required features.

However, the skill hypothesis predicts that not any form of mutualistic coopera-
tion selects for normative cognition, because not any form of mutualistic cooperation 
will involve a complex skill with the right features. The skill hypothesis proposes 
that it was the need to standardize technique and to motivate practice that initially 
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selected for the internalization of normative standards of correct performance. On 
this hypothesis, normative cognition evolved, as Tomasello (2016, 2020) and Bau-
mard (2010) have also suggested, in the context of skilful mutualistic cooperation. 
But it was not the mutualistic character of the behaviour that generated the selection 
pressure for technical norms: it was its skilful character. Simpler mutualistic activi-
ties would not have created the same selection pressures.

Altruism

Existing approaches often link the evolution of normative cognition to the evolu-
tion of altruism (e.g. Joyce 2006; Kitcher 2011). The general idea is that norma-
tive cognition evolved to make us more altruistic or to “remedy altruism failures” 
(Kitcher 2011, p. 135). The skill hypothesis is compatible with the idea that, once 
early humans had a fairly sophisticated capacity for normative cognition, one of the 
things they could do with it was internalize norms of altruism. What it rejects is the 
idea that a need to be more altruistic was an initial driver of the evolution of norma-
tive cognition.

One problem with the “altruism failures” hypothesis is that many norms, includ-
ing highly robust norms such as incest prohibitions, have nothing to do with altruism 
(Sripada 2005; Sripada and Stich 2006; Machery and Mallon 2010). However, many 
norms have nothing to do with skill either. It is part of the skill hypothesis that the 
normative domain gradually expanded beyond technical norms to encompass more 
abstract domains via norms of ritual and collaborative activity. A defender of the 
altruism failures hypothesis could argue, in a similar vein, that the normative domain 
gradually expanded beyond altruism failures to encompass non-altruistic norms.

A different problem is that altruism, in the psychologist’s sense of action moti-
vated by concern for others, does not require normative cognition: what it requires 
is sympathy, bonding and trust (Sterelny 2012c, pp. 103–104). Altruism-based 
accounts of the evolution of normative cognition thus face the question: If the prob-
lem was a need to boost altruism, why was it not solved by tuning up the intensity of 
sympathy, bonding and trust? Selection for variants that dialled up these emotions 
would have solved the problem of altruism failures more directly and effectively 
than normative cognition. This too is not a decisive refutation of the “altruism fail-
ures” hypothesis. Sometimes natural selection assembles overcomplicated solutions 
to design problems. But it is unsatisfying to regard normative cognition as nothing 
more than an overcomplicated way of solving a problem that could have been solved 
by fine-tuning an existing affective mechanism. The skill hypothesis shows there 
were other design problems—the need to standardize technique across groups, to 
motivate sustained practice, and to transmit the shared standards down the genera-
tions—to which the distinctive features of normative cognition provide a solution.

Punishment

Some existing approaches also link normative cognition to the evolution of punish-
ment (Sripada 2005; Machery and Mallon 2010; Kitcher 2011, pp. 90-91). The idea 
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is that normative cognition evolved to help individuals evade punishment from oth-
ers. As with altruism, the skill hypothesis is compatible with the suggestion that, 
once early humans had a sophisticated capacity for normative cognition, one of the 
things they could do with it was internalize norms of what to punish and how to 
punish it. It denies, however, that pre-existing punishment practices were an initial 
driver of the evolution of normative cognition.

If we are talking about cognitively sophisticated forms of punishment, in which 
the perpetrator is judged to have violated a norm, then these capacities presuppose 
normative cognition and cannot pre-date it (Sterelny 2012c, p. 105). If, however, 
we are talking about very simple punishment-like phenomena, such as retaliation in 
a dominance hierarchy, we again face the problem that normative cognition would 
have been an overcomplicated solution to the problem. Model-free associative learn-
ing allows agents to learn associations between certain types of action and retalia-
tion. If the problem is insufficient fear of alphas, a direct and effective solution is to 
dial up fear of alphas. Yes, natural selection sometimes assembles overcomplicated 
solutions to design problems. But it is an advantage of the skill hypothesis that it 
does not lead to the same kind of mismatch between the features of normative cog-
nition and the design problem it initially solved.

Language: precondition or consequence?

Some accounts of the evolution of normative or moral cognition assume that lan-
guage is already on the scene and take their explanatory target to be language-
dependent (Gibbard 1990; Joyce 2006). By contrast, language plays no significant 
role in the skill hypothesis, and the elements of normative cognition the hypoth-
esis aims to explain are language-independent. We do not know when language 
originated, but there is no reason to suppose the manufacture of Acheulean bifaces 
required it (Putt et  al. 2014). A relationship the other way, whereby skilled tool-
making enabled and drove the evolution of language, is more plausible (Stout and 
Chaminade 2012; Sterelny 2012b). The same goes for teaching and the group-wide 
standardization of technique: these things may require signalling, but the signalling 
can be gestural. The story is compatible with an origin for full language long after 
the basic elements of normative cognition were in place.10 This is just as well, since 
language is itself a richly norm-guided skill, and accounts that assume it to be there 
at the beginning face a chicken-and-egg problem.

10 For example, full language may be linked to the emergence of large-scale exchange networks in the 
late Palaeolithic, described earlier, and the consequent need to keep track of the obligations created by 
norms of kinship and reciprocity outside of contexts where kin and trading partners were physically pre-
sent (Marwick 2003). Or perhaps full language evolved to enable gossip, a low-cost mechanism for facil-
itating norm enforcement and reciprocity (Dunbar 1996). These are just two of the possibilities that come 
into view once we allow that language post-dates normative cognition.
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Looking for Archaeological Evidence

In Section  4, I argued that the first part of the hypothesis—the proposed link 
between the psychology of norms and the psychology of skills—could be tested 
empirically. The same applies to the evolutionary part of the skill hypothesis. 
This part makes claims about the relationship between the evolution of norms and 
the evolution of skills that can be tested against the archaeological record.

The central empirical prediction is that technical norms (as shown by stand-
ardized toolmaking) should not post-date more abstract norms of ritual, reciproc-
ity, fairness and kinship. If there are cases where abstract norms unrelated to skill 
can be shown to pre-date technical norms for specific skills, this would refute the 
skill hypothesis. It would also count against the hypothesis if there are examples 
of societies with very simple technical norms but highly complex, highly abstract 
social norms. Another prediction is that abstract social norms, such as norms of 
kinship, should be such that they could, at least initially, have been enacted as 
norms of skilled performance in a specific context, such as a ritual.

A further prediction is that the complexity of the technical and non-technical 
norms a society can support will be correlated, both in the ethnographic record 
and over archaeological time. A population’s ability to support more complex 
technical norms will be linked to an ability to support more complex norms in the 
rest of the social world. A clear step up in the sophistication of technical norms, 
such as the shift from mode 2 to mode 3 toolmaking, is predicted to be followed 
in the archaeological record by evidence of a step up in the sophistication of 
non-technical norms. The question of how closely the expansion of the norma-
tive domain tracked the progression through the “five modes” of toolmaking is an 
important question for further work.

I don’t want to exaggerate the support the skill hypothesis would receive from 
the confirmation of these predictions, since it would no doubt be possible to rec-
oncile the evidence with contrasting hypotheses. My aim is simply to give a sense 
of what a future archaeological case for the skill hypothesis might look like.

In sum, although it has yet to receive serious empirical attention, I have made 
a case that the skill hypothesis is supported by recent trends in the psychology of 
skill and compatible with existing data on the archaeology of skill. By bringing 
out a neglected connection between the psychology of skill and the psychology of 
norms, the hypothesis opens up new lines of investigation for cognitive science, 
archaeology, evolutionary anthropology and philosophy.
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