Skip to main content

Advertisement

Log in

The mobility of phosphorus, iron, and manganese through the sediment–water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The management of external nutrient inputs to eutrophic systems can be confounded due to a persistent pool of phosphorus (P) in lake sediments. The behaviors of P and trace metals depend largely on the reductive dissolution of amorphous iron (Fe) and manganese (Mn) (oxy)hydroxides in sediments; however, a holistic understanding of these dynamics in relation to the broader ecological and hydrodynamic conditions of the system remains elusive. We used a high-frequency monitoring approach to develop a comprehensive conceptual model of P, Mn, and Fe dynamics across the sediment water continuum of a shallow bay in Lake Champlain (Missisquoi Bay, USA). The greatest release of sediment P, Mn, and Fe occurred under stable hydrodynamic conditions, particularly during the onset of the cyanobacterial bloom and was associated with low available P and the accumulation of soluble Mn and Fe above the sediment–water interface (SWI). During the warmest part of the season, bloom severity and sediment P release was partially regulated by hydrodynamic drivers, which changed on hourly time scales to affect redox conditions at the SWI and bottom water concentrations of soluble P, Mn, and Fe. A geochemically distinct increase in soluble P and Fe concentrations, but not Mn, marked the influence of riverine inputs during a late season storm disturbance. Despite continued depletion of the reactive sediment P and metals pool into the bloom period, declining temperatures and a well-mixed water column resulted in bloom senescence and the return of P, Mn, and Fe to surface sediments. The closed cycling of P and metals in Missisquoi Bay poses a significant challenge for the long-term removal of P from this system. Multiple time-scale measures of physical and biogeochemical changes provide a basis for understanding P and trace metals behavior across sediments and the water column, which shape seasonally variable cyanobacterial blooms in shallow eutrophic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen FO, Ring P (1999) Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 408–409:175–183

    Article  Google Scholar 

  • Ann Y, Reddy KR, Delfino JJ (2000) Influence of redox potential on phosphorus solubility in chemically amended wetland organic soils. Ecol Eng 14(1–2):169–180

    Google Scholar 

  • Anschutz P, Zhong SJ, Sundby B, Mucci A, Gobeil C (1998) Burial efficiency of phosphorus and the geochemistry of iron in continental margin sediments. Limnol Oceanogr 43(1):53–64. doi:10.4319/lo.1998.43.1.0053

    Article  Google Scholar 

  • Brendel PJ, Luther GW III (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29(3):751–761. doi:10.1021/es00003a024

    Article  Google Scholar 

  • Buffle J, Zhand Z, Startchev K (2007) Metal flux and dynamic speciation at (Bio)interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic acids. Environ Sci Technol 41(22):7609–7620. doi:10.1021/es070702p

    Article  Google Scholar 

  • Burgess H (2007) Geochemical indicators of productivity change in Lake Champlain, USA-Canada. M.S. Thesis. University of Vermont

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50(2):291–300. doi:10.1111/j.1365-2427.2004.01317.x

    Article  Google Scholar 

  • Canfield DE et al (2005) The iron and manganese cycles. In: Kristensen E, Canfield DE, Bo T (eds) Advances in marine biology, Aquatic Geomicrobiology, vol 48. Elsevier Academic Press, London, pp 269–312

    Chapter  Google Scholar 

  • Coloso JJ, Cole JJ, Pace ML (2011) Short-term variation in thermal stratification complicates estimation of lake metabolism. Aquat Sci 73(2):305–315. doi:10.1007/s00027-010-0177-0

    Article  Google Scholar 

  • Cremona F, Laas A, Noges P, Noges T (2014) High-frequency data within a modeling framework: on the benefit of assessing uncertainties of lake metabolism. Ecol Model 294:27–35. doi:10.1016/j.ecolmodel.2014.09.013

    Article  Google Scholar 

  • Das SK, Routh J, Roychoudhury AN, Klump J, Ranjan RK (2009) Phosphorus dynamics in shallow eutrophic lakes: an example from Zeekoevlei, South Africa. Hydrobiologia 619:55–66. doi:10.1007/s10750-008-9600-0

    Article  Google Scholar 

  • Deborde J, Abrill G, Mouret A, Jezequel D, Thouzeau G, Clavier J, Bachelet G, Anschutz P (2008) Effects of seasonal dynamics in a Zostera noltii meadow on phosphorus and iron cycles in a tidal mudflat (Arcachon Bay, France). Mar Ecol Prog Ser 355:59–71. doi:10.3354/meps07254

    Article  Google Scholar 

  • Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478(7367):29–31

    Article  Google Scholar 

  • Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Cagatay MN, Dale AW, Etiope G, Erdem Z, Geraga M, Gilli A, Gomoiu MT, Hall POJ, Hansson D, He Y, Holtappels M, Kirf MK, Kononets M, Konovalov S, Lichtschlag A, Livingstone DM, Marinaro G, Mazlumyan S, Naeher S, North RP, Papatheodorou G, Pfannkuche O, Prien R, Rehder G, Schubert CJ, Soltwedel T, Sommer S, Stahl H, Stanev EV, Teaca A, Tengberg A, Waldmann C, Wehrli B, Wenzhofer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4):1215–1259. doi:10.5194/bg-11-1215-2014

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43(7):1075–1090. doi:10.1016/0016-7037(79)90095-4

    Article  Google Scholar 

  • Giles CD, Lee LG, Cade-Menun BJ, Hill JE, Isles PDF, Schroth AW, Druschel GK (2015) Characterization of organic phosphorus form and bioavailability in lake sediments using 31P nuclear magnetic resonance and enzymatic hydrolysis. J Environ Qual 44:882–894. doi:10.2134/jeq2014.06.0273

    Article  Google Scholar 

  • Hegmen W, Wang D, Borer C (1999) Estimation of Lake Champlain basinwide nonpoint source. In: Technical report number 31. Lake Champlain Basin Program

  • Holdren GC, Armstrong DE (1980) Factors affecting phosphorus release from intact lake sediment cores. Environ Sci Technol 14(1):79–87. doi:10.1021/es60161a014

    Article  Google Scholar 

  • Huber V, Wagner C, Gerten D, Adrian R (2012) To bloom or not to bloom: contrasting responses of cyanobacteria to recent heat waves explained by critical thresholds of abiotic drivers. Oecologia 169(1):245–256. doi:10.1007/s00442-011-2186-7

    Article  Google Scholar 

  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85(11):2960–2970. doi:10.1890/03-0763

    Article  Google Scholar 

  • Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int Rev Hydrobiol 93(4–5):415–432. doi:10.1002/iroh.200711054

    Article  Google Scholar 

  • Isles PDF, Giles CD, Gearhart TA, Xu Y, Druschel GK, Schroth AW (2015) Dynamic internal drivers of a historically severe cyanobacteria bloom in Lake Champlain revealed through comprehensive monitoring. J Great Lakes Res 41(3):818–829. doi:10.1016/j.jglr.2015.06.006

    Article  Google Scholar 

  • Katsev S, Dittrich M (2013) Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol Model 251:246–259. doi:10.1016/j.ecolmodel.2012.12.008

    Article  Google Scholar 

  • Keren N, Kidd MJ, Penner-Hahn JE, Pakrasi HB (2002) A light-dependent mechanism for massive accumulation of manganese in the photosynthetic bacterium Synechocystis sp. PCC 6803. Biochemistry 41(50):15085–15092

    Article  Google Scholar 

  • Konopka A, Brock TD (1978) Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota. Appl Environ Microbiol 36(4):572–576

    Google Scholar 

  • Lurling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58(3):552–559. doi:10.1111/j.1365-2427.2012.02866.x

    Article  Google Scholar 

  • Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW (2013) Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341(6148):875–878. doi:10.1126/science.1241396

    Article  Google Scholar 

  • Marsden MW (1989) Lake restoration by reducing external phosphorus loading—the influence of sediment phosphorus release. Freshw Biol 21(2):139–162. doi:10.1111/j.1365-2427.1989.tb01355.x

    Article  Google Scholar 

  • Marsden JE, Langdon RW (2012) The history and future of Lake Champlain’s fishes and fisheries. J Great Lakes Res 38(Supplement 1):19–34. doi:10.1016/j.jglr.2011.09.007

    Article  Google Scholar 

  • Moore PA, Reddy KR, Fisher MM (1998) Phosphorus flux between sediment and overlying water in Lake Okeechobee, Florida: spatial and temporal variations. J Environ Qual 27(6):1428–1439

    Article  Google Scholar 

  • Olila OG, Reddy KR (1997) Influence of redox potential on phosphate-uptake by sediments in two sub-tropical eutrophic lakes. Hydrobiologia 345:45–57. doi:10.1023/a:1002975231341

    Article  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. doi:10.1016/j.hal.2011.10.027

    Article  Google Scholar 

  • Pearce AR, Rizzo DM, Watzin MC, Druschel GK (2013) Unraveling associations between cyanobacteria blooms and in-lake environmental conditions in Missisquoi Bay, Lake Champlain, USA, using a modified self-organizing map. Environ Sci Technol 47(24):14267–14274. doi:10.1021/es403490g

    Article  Google Scholar 

  • Reitzel K, Ahlgren J, Rydin E, Egemose S, Turner BL, Hupfer M (2012) Diagenesis of settling seston: identity and transformations of organic phosphorus. J Environ Qual 14(3):1098–1106. doi:10.1039/c2em10883f

    Google Scholar 

  • Reynolds CS, Oliver RL, Walsby AE (1987) Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. NZ J Mar Freshwat Res 21(3):379–390. doi:10.1080/00288330.1987.9516234

    Article  Google Scholar 

  • Schroth AW, Giles CD, Isles PDF, Xu Y, Perzan Z, Druschel GK (2015) Dynamic coupling of iron, manganese, and phosphorus behavior in water and sediment of shallow ice-covered eutrophic lakes. Environ Sci Technol 49(16):9758–9767. doi:10.1021/acs.est.5b02057

    Article  Google Scholar 

  • Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus Legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42(5):1308–1326. doi:10.2134/jeq2013.03.0098

    Article  Google Scholar 

  • Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141(3):805–810. doi:10.1104/pp.106.079251

    Article  Google Scholar 

  • Shiller AM (2003) Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations. Environ Sci Technol 37(17):3953–3957. doi:10.1021/es0341182

    Article  Google Scholar 

  • Slowey A, Marvin-DiPasquale M (2012) How to overcome inter-electrode variability and instability to quantify dissolved oxygen, Fe(II), mn(II), and S(II) in undisturbed soils and sediments using voltammetry. Geochem Trans 13(1):6

    Article  Google Scholar 

  • Smith L, Watzin MC, Druschel G (2011) Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment-water interface in a eutrophic freshwater lake. Limnol Oceanogr 56(6):2251–2264. doi:10.4319/lo.2011.56.6.2251

    Article  Google Scholar 

  • Sondergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje R (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44(6):1095–1105. doi:10.1111/j.1365-2664.2007.01363.x

    Article  Google Scholar 

  • Thomas DB, Schallenberg M (2008) Benthic shear stress gradient defines three mutually exclusive modes of non-biological internal nutrient loading in shallow lakes. Hydrobiologia 610:1–11. doi:10.1007/s10750-008-9417-x

    Article  Google Scholar 

  • Torremorell A, Llames ME, Perez GL, Escaray R, Bustingorry J, Zagarese H (2009) Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshw Biol 54(3):437–449. doi:10.1111/j.1365-2427.2008.02119.x

    Article  Google Scholar 

  • Troy A, Wang D, Capen D, O’Neil Dunne J, MacFaden S (2007) Updating the Lake Champlain basin land use data to improve prediction of phosphorus loading. In: Technical Report 54. Lake Champlain Basin Program

  • USEPA (1996) Test Method 3050B: Acid digestion of sediments, sludges, soils. In: SW-846, test methods for evaluating solid waste: Physical/chemical methods. SW-846. United States Environmental Protection Agency

  • Vandermolen DT, Boers PCM (1994) Influence of internal loading on phosphorus concentration in shallow lakes before and after reduction of the external loading. Hydrobiologia 275:379–389. doi:10.1007/BF00026728

    Article  Google Scholar 

  • VTDEC (2008) Vermont Department of Environmental Conservation. Lake Champlain long-term monitoring program. http://www.watershedmanagement.vt.gov/lakes/htm/lp_longterm.htm. Accessed 23 Nov 2015

  • Xu Y, Schroth AW, Rizzo DM (2015) Developing a 21st century framework for lake-specific eutrophication assessment using quantile regression. Limnol Oceanogr Methods 13(5):237–249. doi:10.1002/lom3.10021

    Article  Google Scholar 

  • Zamyadi A, McQuaid N, Prevost M, Dorner S (2012) Monitoring of potentially toxic cyanobacteria using an online multi-probe in drinking water sources. J Environ Monit 14(2):579–588. doi:10.1039/c1em10819k

    Article  Google Scholar 

  • Zilius M, Bartoli M, Bresciani M, Katarzyte M, Ruginis T, Petkuviene J, Lubiene I, Giardino C, Bukaveckas PA, de Wit R, Razinkovas-Baziukas A (2014) Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries Coasts 37(3):680–694. doi:10.1007/s12237-013-9717-x

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Research on Adaptation to Climate Change, Summer Internship Program (2013–2014) interns and VT-EPSCoR support staff who contributed many hours directly and indirectly to this work. Thank you also to Andrea Lini and Gabriela Mora (University of Vermont, Geology) for their support in the sediment analysis component of this work. This research was supported by the Vermont Experimental Program to Stimulate Competitive Research with funds from the National Science Foundation Grant EPS-1101317 and a Biotechnology and Biological Sciences Research Council responsive mode grant (BBK0170471). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Courtney D. Giles.

Additional information

Responsible Editor: Maren Voss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Missisquoi River discharge at Swanton, VT (cubic meters per second, cms) in 2013. Red symbols indicate the study period and vertical dashed lines delineate the bloom periods (PDF 42 kb)

Supplementary material 2 (DOCX 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giles, C.D., Isles, P.D.F., Manley, T. et al. The mobility of phosphorus, iron, and manganese through the sediment–water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions. Biogeochemistry 127, 15–34 (2016). https://doi.org/10.1007/s10533-015-0144-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0144-x

Keywords

Navigation