Skip to main content
Log in

On the biosorption, by brown seaweed, Lobophora variegata, of Ni(II) from aqueous solutions: equilibrium and thermodynamic studies

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl2 were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz–Schluender model gives the most accurate fit with high regression coefficient, R 2 (0.9911–0.9975) and F-ratio (118.03–179.96), and low standard error, SE (0.0902–0.0.1556) and the residual or sum of square error, SSE (0.0012–0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz–Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz–Schluender (four-parameter). The thermodynamic parameters such as ΔG 0, ΔH 0 and ΔS 0 have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A :

Constant in linear with intercept isotherm model

a K :

Khan model exponent

a R :

Radke-Prausnitz isotherm constant

a RP :

Redlich-Peterson model constant (l mg−1)

a S :

Sips isotherm constant

A :

Fritz-Schluender four-parameter model constant

A HJ :

Harkins–Jura model constant

A KC :

Koble-Carrigan isotherm constant

B :

Constant in linear with intercept isotherm model

b K :

Khan isotherm constant

b T :

Toth isotherm constant

b Te :

Constant in Temkin sorption isotherm (J mol−1)

B :

Constant in Dubinin-Radushkevich sorption model (mol2 kJ−2)

B FS :

Constant in Fritz-Schluender four-parameter model

B KC :

Koble-Carrigan isotherm constant

C e :

Equilibrium concentration of sorbate in solution (mg l−1)

E :

Polanyi potential (kJ mol−1)

F :

Frukin model constant

K F :

Freundlich isotherm constant (l g−1)

K FG :

Fowler–Guggenheim equilibrium constant (l mg−1)

K HE :

Henry’s law constant (l g−1)

K L :

Langmuir isotherm equilibrium binding constant (l mg−1)

K RP :

Redlich-Peterson isotherm constant (l g−1)

K S :

Sips isotherm constant (l g−1)

K T :

Temkin isotherm constant (l mg−1)

M :

Number of experimental data points

N :

Exponent in Freundlich isotherm

n H :

Halsey isotherm constant

n KC :

Koble-Carrigan model exponent

n T :

Toth isotherm constant

p :

Number of parameters in the sorption isotherm

q e :

Amount of sorbate sorbed at equilibrium (mg g−1)

q i :

Observed sorption capacity of batch experiment i

q m :

Maximum sorption capacity (mg g−1)

q t :

Amount of sorbate sorbed at time t (mg g−1)

Q i :

Estimated sorption capacity of batch experiment i

r R :

Radke-Prausnitz isotherm constant

R :

Universal gas constant, 8.314 J mol−1 K−1

R 2 :

Correlation coefficient

R L :

Langmuir separation factor

SE:

Standard error

SSE:

Sum of squares error

W FG :

The interaction energy between adsorbed molecules (kJ mol−1)

Α :

Radke-Prausnitz isotherm constant

α1 :

Fritz-Schluender five-parameter model sorption capacity (mg g−1)

\( \alpha_{1}^{\prime } \) :

Fritz-Schluender five-parameter model constant

α2 :

Fritz-Schluender five-parameter model constant

αFS :

Fritz-Schluender four-parameter model exponent

β:

Redlich-Peterson isotherm constant

β1 :

Fritz-Schluender five-parameter model exponent

β2 :

Fritz-Schluender five-parameter model exponent

βFS :

Fritz-Schluender four-parameter model exponent

γ:

Sips model exponent

θ:

Surface coverage

ΔG 0 :

Gibbs free energy change (kJ mol−1)

H 0 :

Enthalpy change (kJ mol−1)

S 0 :

Entropy change (kJ mol−1 K−1)

References

  • Ajmal M, Rao RAK, Ahmad R, Ahmad J (2000) Adsorption studies on citrus reticulate (fruit peel of orange): removal and recovery of Ni(II) from electroplating waste water. J Hazard Mater 79:17–131

    Article  Google Scholar 

  • Aksu Z (2001) Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochem Eng J 7:79–84

    Article  CAS  PubMed  Google Scholar 

  • Aksu A (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella. Process Biochem 38:89–99

    Article  CAS  Google Scholar 

  • Aksu Z, Kutsal TA (1991) Bioseparation process for removing lead(II) ions from waste water by using C. vulgaris. J Chem Technol Biotechnol 52:109–118

    Article  CAS  Google Scholar 

  • Basar CA (2006) Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J Hazard Mater 135:232–241

    Article  CAS  PubMed  Google Scholar 

  • Baudu M (1990) Etude des interactions solute-fibres de charbon actif. Application et regeneration, Ph. D. Thesis, Universite de Rennes I

  • Bhattacharyya D, Cheng CYR (1987) Activated carbon adsorption of heavy metals from single and multi-component systems. Environ Prog 6:110–118

    Article  CAS  Google Scholar 

  • Carrilho EN, Gilbert TR (2000) Assessing metal sorption on the marine algae Pilayella littoralis. J Environ Mon 2:410–415

    Article  CAS  Google Scholar 

  • Chen SG, Yang RT (1994) Theoretical basis for the potential theory adsorption isotherms. The Dubinin–Radushkevich and Dubinin–Astakhov equations. Langmuir 10:4244–4249

    Article  CAS  Google Scholar 

  • Chen Z, Ma W, Han M (2008) Biosorption of nickel and copper onto treated alga (Undaria pinnatifida): application of isotherm and kinetic models. J Hazard Mater 155:327–333

    Article  CAS  PubMed  Google Scholar 

  • Chubar N, Carvalho JR, Correia MJN (2003) Cork biomass as biosorbent for Cu(II), Zn(II) and Ni(II). Colloid Surf A Physicochem Eng Asp 230:57–65

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  PubMed  Google Scholar 

  • Dean JG, Bosqui FL, Lanouette KH (1972) Removing heavy metals from wastewater. Environ Sci Technol 6:518–522

    Article  CAS  Google Scholar 

  • Deng S, Ting Y-P (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177

    Article  CAS  PubMed  Google Scholar 

  • Denkhaus E, Salniknow K (2002) Nickel essentiality toxicity, and carcinogenicity. Crit Rev Oncol/Hematol 42:35–56

    Article  CAS  Google Scholar 

  • Donmez G, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  CAS  Google Scholar 

  • Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev 60:235–266

    Article  CAS  Google Scholar 

  • Eckenfelder WW (1989) Industrial water pollution control, 2nd edn. McGraw Hill, Singapore, pp 356–366

    Google Scholar 

  • Elovich SY, Larinov OG (1962) Theory of adsorption from solutions of non electrolytes on solid (I) equation adsorption from solutions and the analysis of its simplest form (II) verification of the equation of adsorption isotherm from solutions. Izv Akad Nauk SSSR Otd Khim Nauk 2:209–216

    Google Scholar 

  • EPA (Environment Protection Agency) (1981) Control and treatment technology for the metal finishing industry—ion exchange USEPA EPA 625/-81-00, pp 4–10

  • Faust SD, Aly OM (1987) Adsorption processes for water treatment. Butterworth, Stoneham, pp 1–23

    Google Scholar 

  • Fowler RH, Guggenheim EA (1939) Statistical thermodynamics. Cambridge University Press, London, pp 431–450

    Google Scholar 

  • Freundlich HMF (1906) Uber die adsorption in lasugen. Z Phys Chem (Leipzig) 57:385–470

    CAS  Google Scholar 

  • Fritz W, Schluender EU (1974) Simultaneous adsorption equilibria of organic solutes in dilute aqueous solution on activated carbon. Ceram Eng Sci Proc 29:1279–1282

    CAS  Google Scholar 

  • Guo X, Zhang S, Shan X (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:134–142

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Mittal A, Gajbe V (2005) Adsorption and desorption studies of a water soluble dye. Quinoline yellow, using waste materials. J Colloid Interf Sci 284:89–98

    Article  CAS  Google Scholar 

  • Ho YS (2004) Selection of optimum sorption isotherm. Carbon 42:2115–2116

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    CAS  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Kalyani S, Rao PS, Krishnaiah A (2004) Removal of Ni(II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 57:1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Ataullah R, Al-Haddad A (1997) Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interf Sci 194:154–165

    Article  CAS  Google Scholar 

  • Klimmek S, Stan HJ, Wilke A, Bunke G, Buchholz R (2001) Comparative analysis of the biosorption of cadmium, lead, nickel and zinc by algae. Environ Sci Technol 35:4283–4288

    Article  CAS  PubMed  Google Scholar 

  • Koble RA, Carrigan TE (1952) Adsorption isotherms for pure hydrocarbons. Ind Eng Chem 44:383–387

    Article  CAS  Google Scholar 

  • Krishnani K, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Gupta AK (2006) Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem Eng J 122:93–106

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Lau PS, Lee HY, Tsang CCK, Tam NFY, Wong YS (1999) Effect of metal interference, pH and temperature on Cu and Ni biosorption by Chlorella vulgaris and Chlorella miniata. Environ Technol 20:953–961

    Article  CAS  Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, Tack FMG, De Pauw N, Verloo MG (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325

    Article  Google Scholar 

  • Leusch H, Volesky B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically reinforced biomass of marine algae. J Chem Technol Biotechnol 62:279–288

    Article  CAS  Google Scholar 

  • Malek A, Farooq S (1996) Comparison of isotherm models for hydrocarbon adsorption on activated carbon. AIChE J 42:3191–3201

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q, Woodburn GM (1999) Biosorption of cadmium (II) from aqueous solutions by pre-treated biomass of marine algae Durvillaea potatorum. Water Res 33:335–342

    Article  CAS  Google Scholar 

  • Maurya NS, Mittal AK (2006) Applicability of equilibrium isotherm models for the biosorptive uptakes in comparison to activated carbon-based adsorption. J Environ Eng ASCE 132:1589–1599

    Article  CAS  Google Scholar 

  • McAnally SL, Benefield T, Reed RB (1984) Nickel removal from a synthetic nickel plating wastewater using sulphide and carbonate for precipitation and coprecipitation. Sep Sci Technol 19:191–217

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2001) Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 18:1–13

    Article  Google Scholar 

  • Nilsson R (1971) Removal of metals by chemical treatment of municipal wastewater. Water Res 5:51–61

    Article  CAS  Google Scholar 

  • O’Brien JA, Myers AL (1984) Physical adsorption of gases on heterogeneous surfaces series expansion of isotherms using central moments of the adsorption energy distribution. J Chem Soc Faraday Trans 1(80):1467–1477

    Google Scholar 

  • Ofer R, Yerachmiel A, Shmuel Y (2003) Marine macro algae as biosorbent for cadmium and nickel in water. Water Environ Res 75:246–253

    Article  CAS  PubMed  Google Scholar 

  • Ozcan A, Oncu AE, Ozcan AS (2006) Kinetics, isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions onto natural sepiolite. Coll Surf A 277:90–97

    Article  CAS  Google Scholar 

  • Ozer A, Gürbuz G, Çalimli A, Korbahti BK (2008) Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis. J Hazard Mater 152:778–788

    Article  PubMed  CAS  Google Scholar 

  • Peryasamy K, Namasivayam C (1995) Removal of nickel (II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: peanut hulls. Waste Manag 15:63–68

    Article  Google Scholar 

  • Qi BC, Aldrich C (2008) Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol 99:5595–5601

    Article  CAS  PubMed  Google Scholar 

  • Radke CJ, Prausnitz JM (1972) Adsorption of organic solutes from dilute aqueous solution of activated carbon. Ind Eng Chem Fund 11:445–451

    Article  CAS  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1026

    Article  CAS  Google Scholar 

  • Rengaraj S, Yeon J-W, Kim Y, Kim W-H (2007) Application of Mg-mesoporous alumina prepared by using magnesium stearate as a template for the removal of nickel: kinetics, isotherm, and error analysis. Ind Eng Chem Res 46:2834–2842

    Article  CAS  Google Scholar 

  • Sag Y, Aktay YA (2002) Comparative study for the sorption of Cu(II) ions by chitin and chitosan: application of equilibrium and mass transfer models. Sep Sci Technol 37:2801–2822

    Article  CAS  Google Scholar 

  • Sanchez A, Ballester A, Blazquez ML, Gonzalez F, Munoz J, Hammaini A (1999) Biosorption of copper and zinc by Cymodocea nodosa. FEMS Microbiol Rev 23:527–536

    Article  CAS  PubMed  Google Scholar 

  • Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235

    Article  CAS  Google Scholar 

  • Saygideger S, Gulnaz O, Istifli ES, Yucel N (2005) Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. J Hazard Mater 126:96–104

    Article  CAS  PubMed  Google Scholar 

  • Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interf Sci 279:307–313

    Article  CAS  Google Scholar 

  • Sen Gupta B, Curran M, Hasan S, Ghosh TK (2009) Adsorption characteristics of Cu and Ni on Irish peat moss. J Environ Manag 90:954–960

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorption capacity and investigation of mechanisms. J Colloid Interf Sci 275:131–141

    Article  CAS  Google Scholar 

  • Sips R (1948) Structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physicochim URSS 12:217–225

    Google Scholar 

  • Toth J (2000) Calculation of the BET-compatible surface area from any type I isotherms measured above the critical temperature. J Colloid Interf Sci 225:378–383

    Article  CAS  Google Scholar 

  • Tsezos M, Volesky B (1984) Recovery of uranium from biological adsorbents-desorption equilibrium. Biotechnol Bioeng 26:973–981

    Article  CAS  PubMed  Google Scholar 

  • Tsui MTK, Cheung KC, Tam NFY, Wong MH (2006) A comparative study on metal sorption by brown seaweed. Chemosphere 65:51–57

    Article  CAS  PubMed  Google Scholar 

  • Vadivelan K, Kumar VK (2005) Equilibrium, kinetics, mechanism and process design for the sorption of methylene blue onto rice husk. J Collids Interf Sci 286:90–100

    Article  CAS  Google Scholar 

  • Vasconcelos HL, Favere VT, Gonçalves NS, Laranjeira MCM (2007) Chitosan modified with reactive blue 2 dye on adsorption equilibrium of Cu(II) and Ni(II) ions. React Functional Polym 67:1052–1060

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2005) Biosorption of cobalt(II) and nickel(II) by seaweeds: batch and column studies. Sep Purif Technol 44:53–59

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Palanivelu K, Velan M (2006a) Treatment of nickel containing electroplating effluents with Sargassum wightii biomass. Process Biochem 41:853–859

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M (2006b) Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. J Hazard Mater 133:304–308

    Article  CAS  PubMed  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press Inc, Boca Raton

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1996) Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bull Environ Contam Toxicol 57:779–786

    Article  CAS  PubMed  Google Scholar 

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two Chlorella species, C. vulgaris (a commercial species) and C. miniata (a local isolate). Bioresour Technol 7:133–137

    Article  Google Scholar 

  • Xue B, Tong D, Sun Y (2001) Characterization of PVA-based magnetic affinity support for protein adsorption. Sep Sci Technol 36:2449–2461

    Article  CAS  Google Scholar 

  • Yang RT, Doong SJ (1985) Gas separation by pressure swing adsorption: a pore diffusion model for bulk separation. AIChE J 31:1829–1842

    Article  CAS  Google Scholar 

  • Yu O, Kaewsarn P (2000) Adsorption of Ni2+ from aqueous solutions by pretreated biomass of marine macroalga Durvillaea potatorum. Sep Sci Technol 35:689–701

    Article  CAS  Google Scholar 

  • Zafar MN, Nadeem R, Hanif MA (2007) Biosorptions of nickel from protonated rice bran. J Hazard Mater 143:478–485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support received from CSIR (NWP 018) and from MoES to carry out the study is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavanath Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basha, S., Jaiswar, S. & Jha, B. On the biosorption, by brown seaweed, Lobophora variegata, of Ni(II) from aqueous solutions: equilibrium and thermodynamic studies. Biodegradation 21, 661–680 (2010). https://doi.org/10.1007/s10532-010-9333-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-010-9333-4

Keywords

Navigation