
Vol.:(0123456789)

Biodiversity and Conservation (2020) 29:729–745
https://doi.org/10.1007/s10531-019-01907-4

1 3

ORIGINAL PAPER

The effects of road crossings on stream macro‑invertebrate 
diversity

Blanka Gál1   · András Weiperth2 · János Farkas3 · Dénes Schmera1,4

Received: 1 July 2019 / Revised: 18 October 2019 / Accepted: 19 November 2019 / 
Published online: 27 November 2019 
© The Author(s) 2019

Abstract
Although it is well known that the increasing size of the human population has a nega-
tive effect on freshwater biodiversity, the subject of whether or how the intersection of 
roads and streams (hereafter road crossings) influence the diversity of stream macro-
invertebrates is under-researched. To fill this gap in our knowledge, we collected stream 
macro-invertebrates from road crossings (bridges and culverts) and compared their diver-
sity with upstream and downstream sections. We found that road crossings had negative 
effects on the richness and abundance of native macro-invertebrates, as well as on the num-
ber of protected taxa. Our results showed also that alien individuals were more abundant 
at road crossings. These findings support the assumption that road crossings contribute 
to the spread of alien species. The assessment of environmental variables indicated that 
road crossings caused habitat modifications, and based on these it can be assumed that 
habitat modifications and associated phenomena (e.g. pollutants and storm events) were 
the major drivers of the observed patterns in biodiversity. Our results fill a knowledge gap 
and contribute to the deeper understanding of the effect of road crossings on freshwater 
biodiversity.
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Introduction

One of the greatest challenges facing society today is the need to halt biodiversity decline, 
while promoting social and economic benefits. The increasing size of the human population 
is related to pollution, habitat degradation, species invasions, change in land cover as well 
as the increasing number of different human infrastructures. Unfortunately, these human-
induced phenomena are frequently associated with a decline in biodiversity (Vörösmarty 
et al. 2010; Gál et al. 2019). Linear infrastructure such as roads, highways, railway lines, 
canals and pipelines are among the most widespread manifestations of human activity 
(Forman and Alexander 1998). Despite the fact that roads can promote diversified societal 
and economic benefits, they can also generate high environmental costs (Laurance et  al. 
2009). This problem could not be more timely, because by 2050 it is estimated that there 
will be a 60% increase in the total length of the road and rail network worldwide over that 
in 2010 (Dulac 2013).

Roads and associated crossings of roads and streams (bridges and culverts) can modify 
and degrade the natural flow and biodiversity of streams (Forman and Alexander 1998; 
Wemple et al. 2018). Roads can increase the extent of impermeable surfaces which reduces 
the volume of water infiltrating into the soil during rainfall events. Therefore, roads con-
tribute to large volumes of surface run-off in urban areas (Walsh et al. 2012). Road-cross-
ings are often associated with stormwater-drainage systems which rapidly deliver stormwa-
ter into streams, resulting in flashy hydrology. Moreover, unpaved roads in forests and rural 
areas can also generate overland flow during storm events (Ziegler et al. 2000; MacDonald 
et al. 2001). The intersection of roads and streams (hereafter road crossings) facilitate the 
introduction of sediment into streams due to erosive disturbances and mass wasting from 
adjacent hillslopes (Croke et al. 2005; Brown et al. 2014). Therefore, road crossings can 
contribute massively to sedimentation even during low magnitude rainfall events (Ziegler 
et al. 2001). The removal of macrophytes and riparian vegetation is also common practice 
in urban areas (e.g. nearby bridges and culverts), and results in an increased amount of sed-
iment run-off. Besides fine sediment, road run-off may include various other pollutants like 
heavy metals, deicing salt, nutrients and pesticide depending on the surrounding land use 
(Boxall and Maltby 1997; Hopkins et al. 2013; Sebastiao et al. 2017; Wang et al. 2017).

Culverts and bridges may cause modifications in channel morphology due to altered 
hydraulics, and consequently change habitat quality. They can increase or decrease flow 
velocity, turbulence, the deposition of sediment downstream from the road crossings 
(aggradation), and degradation of the riverbed and channel enlargement (Douglas 1985; 
Roy and Sahu 2018). The substrate composition of the riverbed at road crossings might 
be structurally different from the natural upstream and downstream river sections. The riv-
erbed at road crossings is frequently constructed of concrete and riprap, and this artificial 
surface is covered mostly by deposited silt and sand. All of these factors may reduce habi-
tat heterogeneity at road crossings (Wellman et al. 2000; Bouska et al. 2010). Finally, road 
crossings can be potential barriers to the movement of fish and other aquatic organisms 
(Maitland et al. 2016).

Macro-invertebrates (i.e. invertebrate animals > 0.25 mm in length, Rosenberg & Resh, 
1993) play an important role in freshwater ecosystems by feeding on various food sources 
(e.g. algae, coarse detritus or fine particulate organic matter, Cummins, 1974), by eco-
system engineering (Mermillod-Blondin 2011), as well as by providing food for higher 
trophic levels (Nery and Schmera 2016). Due to their taxon-specific sensitivity, macro-
invertebrates are the most widely used organisms in freshwater biomonitoring of human 
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impact (Bonada et  al. 2006). Although macro-invertebrates show sensitivity to different 
human-induced factors such as habitat modification (Wirth et al. 2010) or species invasions 
(Schmidlin et al. 2012), only sporadic and indirect information is available on how road-
crossing structures influence community diversity (see Peterson 2010 and Cocchiglia et al. 
2012). A possible explanation might be that the phenomenon was examined mostly on fish 
rather than macro-invertebrate communities.

Despite this knowledge gap, we have several predictions on how road crossings affect 
the diversity of stream macro-invertebrates. We already know that the type and abun-
dance of freshwater invertebrates are controlled by the particle size of the stream-bottom 
substrate. Cobble and pebble, for instance, support a greater abundance and diversity of 
macro-invertebrates than sand or silt (Cummins and Lauff 1969; Erman and Erman 1984). 
Regarding run-off, Smith and Kaster (1983) found that pollutant-sensitive taxa are half as 
abundant at sites with an intermediate amount of highway run-off than at control sites. 
Moreover, sedimentation influences food resources such as periphyton quality and quantity 
for algivorous macro-invertebrates (Yamada and Nakamura 2002; Suren and McMurtrie 
2005). The filter feeding apparatus of collectors can also become clogged by fine sedi-
ment, which reduces feeding efficiency (Vuori and Joensuu 1996). The consequence is that 
the community composition of macro-invertebrates will be altered towards burrowers and 
detritus feeders (Larsen et  al. 2011). Macro-invertebrates may drift passively if they are 
dislodged due to anthropogenic disturbances. However, drift can also be active as a behav-
ioral response to some stimulus (Hershey et al. 2010). There are studies suggesting that a 
slow-flow velocity can induce active or direct drift (Pearson and Franklin 1968; Minshall 
and Winger 1968; Waters 1972). This result is obviously due to the fact that there is less 
oxygen in the water at a decreased flow velocity, thereby individuals actively dislodged 
from the substrate seek better flow conditions and more oxygenated water. Changes in sedi-
mentation and flow regimes can support drifting behavior of macro-invertebrate popula-
tions (Imbert and Perry 2000; Shaw and Richardson 2001; Gibbins et al. 2010), which can 
also influence community structure.

From the perspective of water quality degradation related to road run-off, most stud-
ies have investigated the impacts of heavy metals and deicing salt. Road maintenance is 
frequently accompanied by deicing salts which can significantly increase ion concentra-
tions. Deicing salts such as sodium chloride (NaCl) and magnesium chloride (MgCl2) 
are toxic to many macro-invertebrate taxa, especially Ephemeroptera and Plecoptera 
(Kotalik et al. 2017). Heavy metals and other chemicals may accumulate in stream sedi-
ments leading to a loss of macro-invertebrate diversity (Maltby et al. 1995; Boxall and 
Maltby 1997; Beasley and Kneale 2002). The majority of aquatic insects disperse along 
stream corridors and thus the connectivity of the stream channel and the riparian zone at 
the stream bank are essential for colonization processes (Petersen et al. 2004). However, 
road crossings may also act as physical and optical barriers for adult winged aquatic 
insects. Road crossings may physically block insect pathways for upstream flight, and 
thus reduce the density of larvae at upstream sections (Blakely et al. 2006). Road cross-
ings may also change polarization patterns at the water surface, thereby affecting flight 
paths of aquatic insects (Kriska et al. 1998, 2007), and potentially forcing female insects 
to lay eggs downstream from bridges (Málnás et  al. 2011) Bridges can also become 
ecological traps for nocturnal insects due to light sources (e.g., street-lamps). These 
unpolarized light sources may attract flying nocturnal insects (Kriska et  al. 2007). 
Unpolarized light from the street-lamp may also become horizontally polarized through 
reflection from smooth, dark surfaces like asphalt, mimicking the appearance of a natu-
ral water body. This may result in massive numbers of insects laying eggs on the asphalt 
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road of the bridge instead of in the river (Szaz et al. 2015). Based on these observations 
we hypothesized that the abiotic habitat at road crossings is different from the unaltered 
upstream and downstream sections, and that road crossings have a negative effect on the 
diversity of freshwater macro-invertebrates.

In the present study, we examined the effects of road crossings on the diversity of 
stream macro-invertebrates. In particular, we asked (1) whether the abiotic habitat at 
road crossings is different from the unaltered upstream and downstream sections, (2) 
whether the road crossings decrease the diversity of native macro-invertebrates, (3) 
whether the road crossings attract more alien taxa than the unaltered stream sections and 
(4) whether the road crossings alter the community composition of macro-invertebrates.

Methods

Study sites

Hungary (area: 93,030 km2) is a country in Central Europe. Approximately 68% of the 
area is situated below an altitude of 200 m a.s.l. (lowland). All running waters belong 
to the river Danube system. We selected 9 study sites (Suppl. Table 1) based on the fol-
lowing criteria: (1) sites located in lowland areas, (2) sites where the stream width is 
less than 10 m, and (3) sites situated outside urban areas. Within each site (e.g. Suppl. 
Fig. 1), we defined a road-crossing section located directly below a bridge, where the 
length of the sampling reach corresponded to the bridge width (hereafter road crossing 
section), and two 50-m long sections, one upstream (hereafter upstream section) and 
one downstream (hereafter downstream section). Upstream and downstream sections 
were separated by 100 m from the road crossing sections.

Assessment of environmental variables

The assessment of environmental variables was performed in each stream section in 
October (2016), April (2017) and July (2017). Water chemistry parameters e.g. tempera-
ture, pH, conductivity (μS/cm corrected to 25 °C) and salinity (ppt-parts per thousand) 
were measured with a Hanna Combo pH/EC/TDS/Temp tester (HI 98129 model). Stream 
sections were also characterized by nine visually estimated environmental variables con-
sidering water depth, current velocity and substrate composition (Suppl. Table 2).

Sampling and identification of macro‑invertebrates

A kick and sweep sampling technique was used to collect macro-invertebrates using a 
hand net (500  μm mesh). At each section (upstream, road crossings, downstream) and 
sampling date (October 2016, April 2017 and July 2017), we took 3 replicate three-minute 
samples covering most microhabitats present in the section. Samples were kept separately 
and preserved in 70% ethanol, returned to the laboratory on the same day and identified to 
the lowest possible taxonomic level (usually species) according to the relevant references 
(Soós 1957, 1963; Richnovszky and Pintér 1979; Savage 1989; Csabai 2000; Csabai et al. 
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2002; Eiseler 2005; Kontschán et al. 2006; Waringer and Graf 2011; Borza 2012; Ambrus 
et al. 2018). We followed the taxonomical nomenclature of the Fauna Europaea Web Ser-
vice (de Jong et al. 2014). Taxa were classified as non-native (alien) or native based on 
DAISIE (DAISIE 2008) and other sources (grey literature). Protected species are listed in 
the corresponding 100/2012. (IX.28.) decree of the Ministry of Rural Development.

Data analysis

Constrained Analysis of Principal Coordinates (CAP, Anderson and Willis 2003) with 
Euclidean Distance (Podani 2000) was used to test the separation of stream sections 
(upstream, road crossing and downstream) using standardized abiotic variables (all values 
were standardized between 0 and 1). We ran an ANOVA-like permutation to test for the 
significance of the separation of stream sections in multivariate space. In this test, the num-
ber of permutations is controlled by the targeted “critical” P value (alpha) and accepted 
Type II or rejection error (beta). If the results of permutations differed from the targeted 
alpha at the risk level given by beta, the permutations were terminated (Oksanen et  al. 
2010). Our ANOVA-like permutation tests were terminated at 999 permutations.

Principal Component Analysis (PCA; Podani 2000) was used to reveal which environ-
mental variables separate upstream, road crossings and downstream sections.

We used linear models to examine whether the numbers of native taxa (log-transformed) 
and individuals (log-transformed) were influenced by the stream section (i.e. upstream, 
road crossing and downstream), study sites and seasons. We selected the best-fit models 
using an information theoretic approach based on the Akaike Information Criterion cor-
rected for the number of cases and parameters estimated (AICc), and Akaike weights 
(Garamszegi and Mundry 2014). Delta AICc indicates the difference in the fit between a 
particular model considered and that of the best fit model. Models with delta AICc < 10 
are presented in the Results section. AIC weight was calculated among all possible pairs. 
If the ANOVA table of the best fit model revealed significant differences, then a Tukey 
test (Zar 1999) was used as multiple comparison method. The individual-based rarefaction, 
originally suggested by Sanders (1968) and corrected by Hurlbert (1971), was used to com-
pare taxa richness independently from the number of individuals collected. For rarefaction 
analyses, site, abundance data for site, seasonal and replicate samples were pooled. Gener-
alized linear models (GLMs) with Poisson distributions were used to test whether stream 
section (i.e. upstream, road crossings and downstream), study sites and seasons influence 
the numbers of protected taxa, protected individuals, alien taxa and alien individuals. The 
application of a Poisson distribution was necessary because of many zeros in the response 
variables. As in linear models, the best-fit models were selected using an information theo-
retic approach based on the Akaike Information Criterion corrected for the number of cases 
and parameters estimated (AICc) and Akaike weights.

Constrained Analysis of Principal Coordinates (CAP, Anderson and Willis 2003) with 
Bray–Curtis distance (Podani 2000) was used to test the separation of the macro-inverte-
brate community in different stream sections (upstream, road crossing and downstream). 
We ran an ANOVA-like permutation to test for the significance of the separation of stream 
sections in multivariate space. Statistical analyses were performed in R (R Core Team 
2016) using the car (Fox and Weisberg 2011), multcomp (Hothorn et  al. 2008), MuMIn 
(Barton 2016) and vegan (Oksanen et al. 2016) packages.
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Results

Environmental variables

CAP showed overall environmental differences between upstream, road crossing and 
downstream sections (ANOVA-like permutation: F = 12.860, P = 0.001). The ordination 
plot showed that road crossing sections were clearly separated (positive side of CAP1 axis) 
from upstream and downstream sections (both at the negative side of CAP1 axis, Suppl. 
Fig. 2). PCA confirmed this separation and showed that road crossings are characterized by 
a high proportion of concrete and riprap habitat with high current velocity, while upstream 
and downstream sections are in general deeper, covered mostly by pebble, and character-
ized by terrestrial and aquatic plants (Fig. 1).

Taxa richness and abundance of native macro‑invertebrates

Altogether 157 taxa were found among the 32,507 identified individuals (Suppl. Table 3). 
We identified 7 protected (Argyroneta aquatica, Dolomedes fimbriatus, Aeshna isoceles, 
Orthetrum brunneum, Calopteryx virgo, Borysthenia naticina, Anisus (Disculifer) vorti-
culus) and 4 non-native taxa (Dikerogammarus bispinosus, Echinogammarus ischnus, 
Limnomysis benedeni and Potamopyrgus antipodarum). Six protected species were present 
exclusively in upstream and downstream sections while a single protected species was pre-
sent only at one road crossing section. The most abundant taxa were Simuliidae sp. (6346 
individuals), Asellus aquaticus (3811 individuals), Baetis rhodani (3717 individuals) and 
Chironomidae sp. (3262 individuals).

The best fit model (with the lowest AICc) revealed that the native taxa richness of macro-
invertebrates was influenced by the stream section, site and season (Table 1). Alternative 

Fig. 1   Ordination plot of Principal Component Analysis (PCA) of the studied sections (white circles: 
upstream section, black circles: road crossing sections, gray circles: downstream sections) based on envi-
ronmental variables (arrows)
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statistical models are not plausible (Table 1). The ANOVA table of the best fit model identi-
fied the significant effect of stream section, site and season (Table 2). The Tukey test showed 
that upstream sections had the highest number of native taxa followed by downstream and 
road crossing sections (Fig.  2). Regarding the number of native individuals, the best fit 
model revealed the effect of stream section and site (Table 1). Alternative statistical models 
explaining the number of native individuals are not plausible (Table 1). The ANOVA table 
of the best fit model identified the significant effect of stream section and site (Table 3), 

Table 2   Summary output of 
ANOVA table explaining the 
effect of stream section, site and 
season on the taxonomic richness 
of native macro-invertebrates

Predictor Df Sum Sq. Mean Sq. F value P

Stream section 2 14.510 7.255 23.445 < 0.001
Site 8 26.523 3.315 10.713 < 0.001
Season 2 3.904 1.952 6.308 0.002
Residuals 230 71.173 0.309

Fig. 2   Effect of stream section 
(upstream [white], road crossing 
[dark grey] and downstream 
[light grey]) on the number 
of native macro-invertebrate 
taxa. Different letters indicate 
differences by Tukey test. Bars 
indicate mean values, whiskers 
standard errors
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Table 3   Summary output of 
ANOVA table explaining the 
effect of stream section and site 
and on the number of native 
macro-invertebrate individuals

Predictor Df Sum Sq Mean Sq F value P

Stream section 2 12.66 6.333 8.062 < 0.001
Site 8 78.279 9.785 12.456 < 0.001
Residuals 232 182.251 0.786

Table 1   Best fit linear models explaining the effects of stream section, site and season on the numbers of 
native taxa and individuals of macro-invertebrates

Only models with delta AICc < 10 are displayed

Response variable Predictors df AICc Delta AICc Weight

Number of native taxa Stream section + site + season 14 421.1 0.00 0.986
Stream section + site 12 429.5 8.49 0.014

Number of native individuals Stream section + site 12 645.1 0.00 0.806
Stream section + site + season 14 647.9 2.87 0.192
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while the Tukey test showed that upstream sections harbor a larger abundance of native indi-
viduals than road crossing and downstream sections (Fig. 3). Rarefied taxa richness revealed 
that upstream sections had the largest taxa richness independent of the number of individu-
als collected, followed by downstream and road crossing sections (Fig. 4).

Taxa richness and abundance of protected and alien taxa

The best fit GLMs revealed that the number of protected taxa was influenced mostly by 
the stream section and site, and that alternative statistical models are not plausible (Suppl. 
Tables 4 and 5). A Tukey test showed that road crossings had a negative effect on the num-
ber of protected taxa (Fig. 5). The most plausible statistical model showed that the number 
of protected individuals was influenced by site and season (Suppl. Tables 4 and 6).

Fig. 3   Effect of stream section 
(upstream [white], road crossing 
[dark grey] and downstream 
[light grey]) on the number of 
native macro-invertebrate indi-
viduals. Different letters indicate 
differences by Tukey test. Bars 
indicate mean values, whiskers 
standard errors
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Fig. 4   Rarefied taxa richness 
of stream macro-invertebrates 
in upstream (solid line), road 
crossing (dashed line) and 
downstream (dotted line) stream 
sections
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Regarding the number of alien taxa, we found several plausible statistical models 
(Suppl. Table 4). Most of the models suggested the importance of site (4 models) while 
two models showed the importance of stream section and season (Suppl. Table  4). Our 
information theoretic approach revealed only a single statistical model to explain the num-
ber of alien individuals (Suppl. Table  4). This statistical model indicates the significant 
effects of stream section, site and season (Suppl. Table 7). A Tukey test showed that road 
crossings had a positive effect on the number of alien individuals (Fig. 6).

Fig. 5   Effect of stream section 
(upstream [white], road crossing 
[dark grey] and downstream 
[light grey]) on the number of 
protected taxa. Different letters 
indicate differences by Tukey 
test. Bars indicate mean values, 
whiskers standard errors
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Fig. 6   Effect of stream section 
(upstream [white], road crossing 
[dark grey] and downstream 
[light grey]) on the number of 
alien macro-invertebrate indi-
viduals. Different letters indicate 
differences by Tukey test. Bars 
indicate mean values, whiskers 
standard errors
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Community composition

Constrained analysis of principal coordinates showed that the different stream sections dif-
fered in the composition of macro-invertebrate communities (ANOVA-like permutations: 
F2,240 = 2.827, P = 0.001). The ordination plot showed that the community composition of 
road crossings (black) differed from the community composition observed in upstream 
(white) and downstream (gray) sections (Fig. 7).

Discussion

There is a substantial lack of studies that have examined the effects of road crossings on the 
diversity of stream macro-invertebrates. To fill this gap, we collected macro-invertebrates 
from road crossings, as well as from upstream and downstream sections and compared 
their diversity. We found that road crossings have negative effects on the richness and 
abundance of native macro-invertebrates, as well as on the taxonomic richness of macro-
invertebrates with conservation importance (protected taxa). Our results also showed that 
alien individuals were more abundant in road crossings than in upstream and downstream 
sections. These findings suggest that road crossings negatively influence the integrity of 
stream macro-invertebrate communities.

Habitat alteration is probably the greatest anthropogenic threat to freshwater ecosystems 
(Ogren and Huckins 2015). Our results are in line with previous studies stating that road 
crossings cause changes in stream channel geomorphology, and thus modify the natural 
stream bed habitat (Bouska et al. 2010; Roy and Sahu 2018). The most obvious explana-
tion for the difference among habitats at road crossings and the unaltered downstream and 

Fig. 7   Ordination plot of Constrained Analysis of Principal Coordinates (CAP) of the studied section based 
on macro-invertebrate communities (white circles: upstream section, black circles: road crossing sections, 
gray circles: downstream sections)
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upstream sections is the use of concrete stream bed, as well as riprap with gabion (woven 
wire mesh unit filled with stones) at road crossings. These artificial structures reduce habi-
tat heterogeneity and present conditions that are notably different from those present in 
natural stream ecosystems.

Our results suggest that road crossings have negative effects on native macro-inverte-
brate diversity. The native taxon richness and abundance clearly decreased under the road 
crossing sections compared to the upstream sections, where the diversity was the greatest. 
The low diversity was associated with environmental variables reflecting poor habitat qual-
ity and low habitat heterogeneity. A possible explanation is that modified habitats, such as 
road crossings, may have a reduced available surface area compared to natural and more 
complex habitats. Obviously, the reduced available surface area decreases the diversity of 
stream macro-invertebrates (Brauns et al. 2007). Moreover, the complex and stable habitats 
can serve as a refuge during storm events. This is particularly important considering the 
fact that urban areas and roads can create large volumes of surface run-off from the imper-
meable surfaces, resulting in flashy floods (Wemple et al. 2018). Moreover, the road sur-
face run-off may contain different chemicals (Davis et al. 2001) which can also negatively 
impact diversity (Beasley and Kneale 2002; Robson et al. 2006). The differences between 
the diversity in upstream and downstream sections might be explained by the phenomenon 
that the run-off at road crossings may have had impacts not just directly at the road cross-
ings but also at downstream sections (Fig. 2). Finally, the local hydrological and geomor-
phological conditions can also be important for the accumulation and dispersion of road-
sourced contamination in sediment. Consequently, downstream sections might be exposed 
to contamination which can lead to many adverse effects on aquatic ecosystems (Sebastiao 
et al. 2017).

The most abundant macro-invertebrate taxa in our study are relatively tolerant of 
human disturbances. However, we collected protected taxa almost exclusively from 
upstream and downstream sections, and found also that road-crossing structures have 
a negative effect on the number of the protected macro-invertebrate taxa (Fig. 5). This 
result is not surprising because protected taxa are sensitive to anthropogenic stress 
related to habitat modification (Ilmonen et  al. 2012). We collected only a single pro-
tected Mollusca species, Borysthenia naticina at one road crossing section (we also 
found this species at the upstream and downstream sections). A possible explanation 
for this observation is that riprap with gabion may offer adequate habitat for this spe-
cies. For instance, the riprap allowed some submerged macrophytes to grow beneath the 
road crossing and the bottom was covered with sand and a thin detritus layer. Although 
one of the main conclusions of this study is that road crossings had a negative effect on 
protected taxa richness, evidence from previous studies suggests that human-impacted 
waterbodies can also maintain several macro-invertebrate taxa with conservation impor-
tance (Vermonden et al. 2009; Schmera and Baur 2011; Hill et al. 2016), and thus the 
appearance of a protected species at road crossing section is not surprising.

In contrast, alien species frequently occupy these modified and disturbed stream 
habitats. Riverbed modification can provide uncolonized habitats that may allow newly-
arriving alien macro-invertebrates to establish (Wirth et  al. 2010). Low habitat heter-
ogeneity (Kestrup and Ricciardi 2009), fluctuating resources (Davis et  al. 2000) and 
declines in water quality may present conditions that are more adequate for invaders 
than native community members (Karatayev et al. 2009). Many studies have found that 
alien species can use these fragments as stepping stones for dispersal. Consequently, 
these spatially separated but altered habitats present corridors in the landscape and 
may assist in the spread of alien species (Parendes and Jones 2000; Rahel 2002; Havel 
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et al. 2005). We found that alien taxa are present in the studied streams and that road 
crossings had a positive impact on the abundance of alien specimens. The observed sig-
nificant effect of site can be explained by the patchy distribution of alien individuals 
among the studied sites, while that of season by the natural flow regime. At low water 
levels, tributaries can filter population dispersal and population persistence (Wilson 
and McTammany 2014; Tonkin et  al. 2018; Milner et  al. 2019). High water levels, in 
contrast, can promote the dispersal of species in such a way that it abates the filtering 
effects by decreasing the differences between the tributaries and mainstreams (Czeglédi 
et al. 2016). In agreement with this assumption, most of the alien species that we found 
originated from the River Danube (Bódis et al. 2012; Borza 2014; Borza et al. 2017).

Our study provided clear evidence that the composition of macro-invertebrates in 
road crossings differ from upstream and downstream sections. We assume that compo-
sitional differences of macro-invertebrates reflect differences in environmental condi-
tions between stream sections. The Hydropsychidae family, for instance, take advantage 
of stable water flow and use nets to capture suspended organic matter as food (Her-
shey et  al. 2010), while modified flow may break apart their filter feeding-nets (Boon 
1993). The abundance of Ephemeroptera is determined also by habitat requirements, 
thus the growth of algae and moss increase the abundance of some species (Baetis), 
while others that need clean rock surfaces and use suckers or friction pads for attach-
ment (Heptageniidae) are excluded from these habitats (Ward 1976; Ellis and Jones 
2013). Plecoptera are highly sensitive to human disturbances in such a way as their 
abundance increases with distance from human developments (Ward and Stanford 1995; 
Milner et al. 2019). Chironomidae and Oligochaeta are frequently more common near 
human development, where the rate of habitat modification is the largest. Finally, some 
snails (Basommatophora) are able to resist the altering environmental factors and show 
great abundance in regulated streams (Jones 2012). In sum, we found that road cross-
ings harbor a distinct and poorer community than natural stream sections. Generally, it 
can also be considered that the most abundant macroinvertebrate taxa (Simuliidae sp., 
Asellus aquaticus, Chironomidae sp.) were not sensitive to the human disturbances; in 
addition, the most abundant Ephemeroptera taxa (Baetis rhodani) is also a  relatively 
tolerant species.

There is a common view among freshwater ecologists that minor alterations have negli-
gible effects on aquatic ecosystems (Jennings et al. 1999; McGoff et al. 2013). Even though 
road crossings seem to alter habitats and natural stream ecosystems only moderately, these 
changes together have a significant impact on freshwater biodiversity. This insightful study 
investigated the effects of road crossings on macro-invertebrate diversity. We found that 
road crossings caused habitat alterations and contributed to a decrease in the numbers of 
native and protected macro-invertebrate species. Our results suggest also that road cross-
ings might contribute to the spread of alien taxa. In conclusion, our study provides evi-
dence of the negative impacts of road crossings on stream macro-invertebrate diversity.
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