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Abstract Landscape-scale approaches to conservation stem largely from the classic ideas

of reserve design: encouraging bigger and more sites, enhancing connectivity among sites,

and improving habitat quality. Trade-offs are imposed between these four strategies by the

limited resources and opportunities available for conservation programmes, including the

establishment and management of protected areas, and wildlife-friendly farming and for-

estry. Although debate regarding trade-offs between the size, number, connectivity and

quality of protected areas was prevalent in the 1970–1990s, the implications of the same

trade-offs for ongoing conservation responses to threats from accelerating environmental

change have rarely been addressed. Here, we reassess the implications of reserve design

theory for landscape-scale conservation, and present a blueprint to help practitioners to

prioritise among the four strategies. We consider the new perspectives placed on land-

scape-scale conservation programmes by twenty-first century pressures including climate

change, invasive species and the need to marry food security with biodiversity conser-

vation. A framework of the situations under which available theory and evidence rec-

ommend that each of the four strategies be prioritized is provided, seeking to increase the

clarity required for urgent conservation decision-making.
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Introduction

After failing to meet the 2010 Convention on Biological Biodiversity (CBD) targets

(Butchart et al. 2010), the global community has been offered a second chance to halt

biodiversity declines by 2020 through the CBD’s Aichi targets (CBD 2011). Current

financial resources available to meet these targets are insufficient (McCarthy et al. 2012)

and in consequence there is urgent need for conservation planners and practioners to have

sufficient information to select and employ efficient, cost-effective actions (Williams et al.

2005). Nevertheless, there is much debate regarding the most effective means for adapting

conservation to accelerating environmental change (Hodgson et al. 2009c), leading to an

extensive literature that presents some apparently conflicting messages to those involved in

conservation planning and decision-making.

Classical approaches to increase the effectiveness of protected area designation and

management have drawn upon the theories of island biogeography (MacArthur and Wilson

1967) and metapopulation dynamics (Levins 1969; Hanski and Gilpin 1991; Hanski 1999).

In these approaches, the four main trade-offs among the size, number, quality and con-

nectivity of protected areas can be summarised by Diamond’s (1975) outline of geometric

principles for the design of nature reserves (Fig. 1). Since the 1990s, however, conser-

vation actions have evolved from a primarily reserve-based approach to give greater

consideration to landscape-scale processes (Opdam and Wascher 2004; Watts et al. 2010),

partly because climate change and increased habitat fragmentation have led to increasingly

dynamic patterns of colonization and extinction (Heller and Zavaleta 2009). Landscape-

level conservation initiatives include the Pan-European Ecological Network (Jongman

et al. 2011) and ‘‘greenways’’ in the USA (Ahern 2004). In England, the recent ‘‘Making

Space for Nature’’ report (Lawton et al. 2010) summarized the recommendations of a now

substantial scientific literature to increase the effectiveness of protected area networks in

fragmented landscapes in four simple words: ‘‘more, bigger, better and joined’’. The report

recommended, in a priority hierarchy: (1) improving the quality of habitat, (2) increasing

the size and (3) number of sites, and (4) enhancing connectivity among sites for conser-

vation. In the UK, these recommendations are incorporated into biodiversity policy

(Department for Environment, Food and Rural Affairs (DEFRA) 2011) and increasingly

inform planning and management by conservation agencies and organisations working to

maintain and restore habitats in the UK’s highly fragmented landscapes.

The Lawton et al. (2010) report provides valuable recommendations regarding the UK’s

network of protected sites, but global variation in land-use history, levels of fragmentation

and biogeographic context drive a need to determine more widely for conservation prac-

titioners the circumstances under which increasing the area, number, connectivity and

quality of conservation sites is most effective. Published research seldom tackles trade-offs

among all 4 approaches together to assist with the transition from theory to practical

application (but see Hodgson et al. 2011a). Moreover, since the origin of the principles of

reserve design, the challenges faced by biodiversity have evolved from emphasis on land

use change in the twentieth century (Sala et al. 2000), to include a rapid rise in impact from

climate change, invasive species and pollution, alongside continuing pressures from

overexploitation in the twenty-first century (Millennium Ecosystem Assessment 2005;

Urban 2015). The ability of the natural environment to provide ecosystem services is

declining as a result of increasingly degraded habitats (Millennium Ecosystem Assessment

2005) which, coupled with increasing human populations, impacts the ability to marry food

security with conservation. These pressing issues necessitate a shift in focus from the
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simplistic interpretation of what was originally thought to be best; effectively factoring

new challenges into decision making from a reemphasis of original ideas, to modifying

classical theory to adapt to a world of accelerating environmental change. To our

knowledge, research to date has not addressed these challenges alongside their impact on

assumptions from classical reserve design.

Here, we synthesize concepts associated with landscape-scale approaches to conser-

vation, and offer a practical blueprint for effective decision making, highlighting how our

priorities change in the context of twenty-first century challenges including climate change,

the spread of invasive species and food security, which were largely unforeseen when the

original approaches were devised (Table 1). We present the four axes of reserve design in

the order of decreasing importance as proposed by Lawton et al. (2010), but consider trade-

offs first associated with habitat quality, then between size and number of reserves, and

Design principle Better Worse

(a) Size

Bigger Smaller

(b) Number

Single Several

(c) Proximity

Aggregated Widely separated

(d)Connectivity

Connected Isolated

(e) Shape

Circular Linear

Fig. 1 Suggested geometric
principles for nature reserve
design derived from Diamond
(1975). In all cases, species
extinction rate would be expected
to be lower on the left (better)
than on the right (worse)
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rü

ck
m

an
n

et
al

.
2

0
1

0
)

H
ab

it
at

re
q
u

ir
em

en
ts

M
ig

ra
to

ry
H
et
er
o
g
en
ei
ty

B
u
ff

er
s

v
ar

ia
ti

o
n

in
re

so
u
rc

es
th

ro
u
g
h

ti
m

e
(B

en
to

n
et

al
.

2
0

0
3
)

M
o
re

si
te
s

M
o

v
e

b
et

w
ee

n
si

te
s

to
m

ee
t

h
ab

it
at

re
q
u

ir
em

en
ts

(B
en

d
er

et
al

.
1

9
9

8
)

M
o
re

co
n
n
ec
te
d

M
o

v
e

b
et

w
ee

n
si

te
s

to
m

ee
t

h
ab

it
at

re
q
u

ir
em

en
ts

(B
en

to
n

et
al

.
2

0
0

3
;

D
o

n
al

d
an

d
E

v
an

s
2

0
0

6
)

R
an

g
e

si
ze

L
ar

g
e

B
ig
g
er

L
es

s
p

ro
n

e
to

ex
ti

n
ct

io
n

in
la

rg
er

si
te

s
(D

i
M

in
in

et
al

.
2

0
1

3
)

an
d

le
ss

at
ri

sk
fr

o
m

h
u

m
an

-w
il

d
li

fe
co

n
fl

ic
t

(A
b

el
e

an
d

C
o
n

n
o

r
1

9
7

9
;

W
o

o
d
ro

ff
e

an
d

G
in

sb
er

g
1

9
9

8
)

M
o
re

co
n
n
ec
te
d

E
n

ab
le

m
o

v
em

en
t

b
et

w
ee

n
si

te
s

(R
o

se
n

b
er

g
et

al
.

1
9

9
7
;

D
o

n
al

d
an

d
E

v
an

s
2

0
0

6
;

L
aw

to
n

et
al

.
2

0
1

0
)

an
d

in
cr

ea
se

re
co

lo
n
iz

at
io

n
ra

te
s

(D
i

M
in

in
et

al
.

2
0

1
3
)

S
m

al
l

H
et
er
o
g
en
ei
ty

M
o
re

v
u
ln

er
ab

le
to

en
v
ir

o
n
m

en
ta

l
ch

an
g
e,

b
u
ff

er
s

th
es

e
ef

fe
ct

s
(O

li
v
er

et
al

.
2

0
1

0
)

M
o
re

si
te
s

S
m

al
le

r
si

te
s

ar
e

su
ffi

ci
en

t
fo

r
ra

n
g

e
re

q
u

ir
em

en
ts

(A
b
el

e
an

d
C

o
n

n
o

r
1

9
7

9
)

B
o

d
y

si
ze

L
ar

g
e

B
ig
g
er

L
ar

g
er

b
o

d
ie

d
sp

ec
ie

s
h

av
e

la
rg

er
ra

n
g

e
si

ze
s

(A
b
el

e
an

d
C

o
n

n
o

r
1

9
7

9
;

C
ar

d
il

lo
et

al
.

2
0

0
5
)

S
m

al
l

M
o
re

si
te
s

S
m

al
le

r
ra

n
g

e
si

ze
s

th
u

s
sm

al
le

r
si

te
s

ar
e

su
ffi

ci
en

t
(A

b
el

e
an

d
C

o
n

n
o

r
1

9
7

9
;

C
ar

d
il

lo
et

al
.

2
0

0
5
)

D
is

p
er

sa
l

ca
p
ab

il
it

y
H

ig
h

M
o
re

si
te
s

C
ap

ac
it

y
to

m
o

v
e

b
et

w
ee

n
si

te
s

(N
ic

o
l

an
d

P
o

ss
in

g
h

am
2

0
1

0
)

L
es
s
co
n
n
ec
te
d

L
in

k
s

w
o

u
ld

h
av

e
li

m
it

ed
w

o
rt

h
(B

en
n

et
t

2
0

0
3
)

In
te

rm
ed

ia
te

B
ig
g
er

L
o
w

er
m

o
rt

al
it

y
ra

te
as

so
ci

at
ed

w
it

h
le

ss
em

ig
ra

ti
o
n

an
d

fa
il

u
re

to
lo

ca
te

si
te

(T
h

o
m

as
2

0
0

0
)

M
o
re

co
n
n
ec
te
d

A
ss

is
t

w
it

h
lo

ca
ti

n
g

p
at

ch
es

(T
h

o
m

as
2

0
0

0
),

es
p

ec
ia

ll
y

m
at

ri
x

re
st

o
ra

ti
o

n
(D

o
n
al

d
an

d
E

v
an

s
2

0
0

6
)

Biodivers Conserv (2017) 26:527–552 531

123



T
a
b
le

1
co

n
ti

n
u
ed

C
o

n
si

d
er

at
io

n
R

ec
o

m
m

en
d

ed
st

ra
te

g
y

S
u

m
m

ar
y

o
f

ev
id

en
ce

V
er

y
p

o
o

r/
se

d
en

ta
ry

H
o
m
o
g
en
ei
ty

R
eq

u
ir

e
g

o
o

d
q

u
al

it
y

h
ab

it
at

(Y
e

et
al

.
2

0
1

3
)

B
ig
g
er

L
es

s
n

ee
d

fo
r

m
o
v

em
en

t
(Ö
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finally consider the importance of connectivity and how to achieve it. The nexus between

conservation theory and modern day application is invariably tangled by complexities and

practicalities. We aim to provide conservation decision-makers with the information they

need to make informed choices on the most effective action given, and plot a path through

some of this tangle.

Quality in a changing world

Enhancing habitat quality has traditionally been a crux of reserve-based conservation (New

et al. 1995). Numerous studies demonstrate that improved habitat quality reduces the

amount of habitat needed to sustain populations of species (Lawton et al. 2010) and

following the shift in focus to reserve configuration and connectivity promoted by

metapopulation biology, many others highlight the role of habitat quality in enhancing

metapopulation persistence in fragmented landscapes (e.g. Verboom et al. 1991; Thomas

2000; Thomas et al. 2001; Fleishman et al. 2002; Resetarits and Binckley 2013). In the face

of climate change, improving habitat quality through better in situ management is now

generally regarded as the most important step for biodiversity conservation (Lawton et al.

2010; Hodgson et al. 2011a; Resetarits and Binckley 2013; Greenwood et al. 2016).

Enhancing quality can also effectively enhance connectivity by increasing the number of

potential dispersers (Hodgson et al. 2009c), and promote the ability of species to shift in

response to a warming climate (Hodgson et al. 2009c, 2011a; Lawson et al. 2013). Simply

preserving intact habitat, as opposed to enhancing its quality can also be an effective

approach when time and money is serverly limited (Possingham et al. 2015).

Homogeneity or heterogeneity?

Two broad approaches have been suggested as means of enhancing quality: providing more

optimal habitat (homogeneity) or increasing heterogeneity, generally achieved through

restoration of existing degraded habitat, or managing intact areas. The existing trade-offs

between these two approaches have seldom been recognised, yet influence the outcome and

overall effectiveness of management. Studies have demonstrated the positive influence of

creating more optimal habitat on population size (Thomas et al. 2001; Ye et al. 2013),

dispersal success (Ye et al. 2013), and population growth (Griffen and Drake 2008). In

turn, providing more optimal habitat can influence extinction and colonization rates

(Thomas et al. 2001; Fleishman et al. 2002; Franken and Hik 2004; Lawton et al. 2010;

Thomas et al. 2012; Resetarits and Binckley 2013; Ye et al. 2013), providing source

populations and habitats for colonization, which enhance the capacity of species to shift

with climate change (Thomas et al. 2012). In contrast, greater habitat heterogeneity buffers

the effect of environmental fluctuation compared to homogenous habitats, encouraging

population stability (Opdam and Wascher 2004). Since the frequency of extreme climate

events is likely to increase (IPCC 2007), the buffering effects of habitat heterogeneity

could now be important for climate change adaptation (Piha et al. 2007; Maclean et al.

2015). Moreover, irrespective of changes in the frequency of extreme events, the suitability

of various habitat types for species is likely to change with climatic change. Thus pro-

viding greater habitat variety is viewed as a particularly effective adaptation strategy, over

and above homogeneity, within a dynamic environment (Oliver et al. 2010).
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Given these contrasting approaches towards in situ management and supporting evi-

dence for each method particularly in the face of environmental change, evidence and

understanding of the circumstances under which approach to follow is key. This decision

partly depends on whether the primary conservation objective is single species conser-

vation versus the protection of multiple species. Although many conservation programmes

and the direct outcomes through which their success is measured tend to be single-species

oriented, contingent on funding and/or legislation, an underlying assumption is that these

measures will benefit other species or the community as a whole through umbrella or focal

species effects (Bennett et al. 2015). The habitat characteristics that signify high quality are

likely to be species-specific (Mortelliti et al. 2010) and so for individual species conser-

vation programmes, habitats with high quality resources geared towards the focal species

represent the preferred approach. However, this is only true in more stable environments

(Johnson 2007), or by ensuring that habitat management itself offsets climatic changes

(Greenwood et al. 2016). If the stated goal is to conserve multiple species, enhancing

heterogeneity, and thus habitat variety, is likely to be more effective (Oliver et al. 2010).

Field mosaics, for example, have been shown to benefit various species of birds and

invertebrates, and the loss of heterogeneity through agricultural intensification is one of the

reasons for biodiversity declines on farmland (see Benton et al. 2003). Amid the modern-

day landscape, however, an increase in habitat variety can also lead to an increase in

species richness of invasive species (Pyšek et al. 2002) which can result in undesirable

effects on the community structure of native species (Levine et al. 2003). It should also be

recognised that optimal quality can promote range shifts for other (non-focal) species and

thus could still form part of multiple species conservation in the face of climate change

(Lawson et al. 2013), and can be a benefical approach even if a particular focal species is

replaced by non-target species as ranges move (Hodgson et al. 2009c).

Alternatively, if concentrating efforts on a single species, the requirements of that

species and location within its geographic range are important. Specialist species are often

more threatened than generalist species, more sensitive to within-patch variation in quality,

and thus benefit from more homogeneous environments (Devictor et al. 2008; Ye et al.

2013). Nevertheless, if specialist species also have small geographic ranges and restricted

populations, they are more vulnerable to environmental change (e.g. Davey et al. 2012) and

could benefit from the buffering effects of habitat heterogeneity (Oliver et al. 2010), as has

been shown to be the case for birds (e.g. Root 1998) and species of British butterflies

(Dennis et al. 2013). For those with different habitat requirements at varying stages of their

lifecycle, habitat variability may be beneficial or essential (Johnson 2007; Oliver et al.

2010); though in this context, heterogeneity can be considered a component of optimal

habitat quality.

In terms of location, the position of a species in its range and within the landscape

influences levels of exposure to temporal fluctuations in conditions and resource avail-

ability that can be buffered by spatial heterogeneity (Opdam and Wascher 2004; Dover and

Settele 2009). Populations at the edge of species’ ranges or in anthropogenically frag-

mented landscapes typically occupy smaller and more isolated areas of habitat. If dispersal

between populations and rescue/recolonization are inhibited (Opdam and Wascher 2004),

then promoting persistence through enhanced local habitat heterogeneity may be partic-

ularly pertinent (Lawton et al. 2010). Nevertheless, prevailing conditions at the edges of

species’ geographic ranges are expected to represent the environmental limits at which

populations can persist, so ensuring some optimal areas of habitat are present both in

reserves (Thomas et al. 2001) and at the edge of the species range to allow for recolo-

nization (Thomas et al. 2012), is essential. Finally, for species residing in fragmented
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landscapes consisting of networks of smaller patches (Moilanen and Hanski 1998), the

effects of habitat quality on colonization and extinction may be less important than area

and isolation. In this case, the creation of bigger, more connected sites will be more

effective than simply improving patch quality.

Space for nature

Traditionally the theories of island biogeography (MacArthur and Wilson 1967; Simberloff

and Abele 1976) and metapopulation dynamics (Moilanen and Hanski 1998; Hanski 1999)

emphasize the role of habitat area in influencing local population viability, and have

contributed to the prioritization of larger reserves over smaller ones in conservation

planning (Williams et al. 2005; Lawton et al. 2010). Nevertheless, there is conflicting

evidence suggesting that several small reserves may be more effective than a single large

one of equivalent total area (see Ovaskainen 2002). The ‘‘SLOSS’’ (Single Large or

Several Small) debate between these two perspectives originated in the 1970s and remains

contentious despite numerous attempts at resolution (Tjørve 2010). In the current context

of challenges now faced by biodiversity, each strategy continues to offer different pros and

cons depending on the challenge in question.

Larger sites have classically been favoured for their greater carrying capacities (Hanski

1999) and consequently, are less vulnerable to extinction from environmental and demo-

graphic stochasticity (Diamond 1975; Huxel and Hastings 1999; Franken and Hik 2004;

Griffen and Drake 2008). Since climate change is coupled with an increase in extreme

weather events (IPCC 2007), buffering the impact of this with larger population sizes is an

effective strategy. In the ringlet butterfly (Aphantopus hyperantus), for example, larger

sites were less sensitive to droughts and promoted faster population recovery (Oliver et al.

2013). Larger sites also offer a reduced risk of inbreeding (Groeneveld 2005) and loss of

genetic variability due to drift (Jarvinen 1982), potentially increasing intrinsic adaptability

to environmental change (see Merilä 2012). The main appeal for larger sites within

modern-day landscape-scale conservation, however, is the capacity to enhance range shift.

Large source populations in reserves enhance colonization of surrounding habitat, sup-

porting metapopulation persistence in highly fragmented landscapes (Wilson et al. 2002;

Lawson et al. 2012), thus facilitate range shifts in the face of climate change (Hodgson

et al. 2011b). Moreover, large sites have been advocated for their ability to support greater

species richness (e.g. Connor and McCoy 2001; Lees and Peres 2006; Hartter and

Southworth 2009; Lawton et al. 2010; Dennis et al. 2013) and may enhance the capacity of

natural areas to provide ecosystem services such as pollination (Kremen et al. 2004; Palmer

et al. 2004; Klein et al. 2007).

Nevertheless, contrary to classical theory, creating bigger sites is not consistently

effective when accounting for modern-day challenges to biodiversity. Landscapes are

becoming increasingly threatened with large correlated environmental disturbances (Huxel

and Hastings 1999) and exposed to frequent disease epidemics (Jarvinen 1982), under

which the presence of a large continuous block of habitat can increase extinction risk and

reduce the chance of recolonization from surrounding populations (Groeneveld 2005;

Schnell et al. 2013). Whilst large protected area size can reduce propagule pressure from

invasive species because of a reduced perimeter:area ratio (Hulme et al. 2014), effective

monitoring and control of invasive species can be more difficult to achieve in larger

protected areas (Foxcroft et al. 2013). There are also social and cultural constraints to the
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designation of protected areas that were not considered by original solutions to the SLOSS

debate (Williams et al. 2005), such that increasing habitat area for conservation is often not

possible within modern landscapes (Doerr et al. 2011).

In contrast, immigration rates to multiple smaller conservation sites can often be higher

(Fahrig 2003), the landscape-scale risk of extinction lower (Hartley and Kunin 2003;

Groeneveld 2005; Nicol and Possingham 2010) and the variety of habitat greater (Dover

and Settele 2009; Oliver et al. 2010). Consequently, landscapes with several smaller sites

can hold more species than a single large site (Simberloff and Abele 1976; Groeneveld

2005; Báldi 2008; Rybicki and Hanski 2013), but could be missing habitat specialist or

interior species with large body size (Cardillo et al. 2005) or resource and area require-

ments (e.g. Oertli et al. 2002; Ye et al. 2013). Whether or not conservation managers are

directly focusing on single or multiple species, recognition of the dynamic responses of

populations and metapopulations to environmental change calls for the siting of reserves to

support the persistence of species rather than simply the representation of as many as

possible (see Margules and Pressey 2000; Kukkala and Moilanen 2013). Planning tools

have been developed to examine how the area and configuration of reserves can optimise

both persistence and the complementarity of species protected (e.g. Moilanen et al. 2005).

In terms of specific implications of accelerating environmental change for the SLOSS

debate, studies frequently fail to specify the extent to which invasive species contribute to

the increased richness of landscapes with multiple smaller sites (Pyšek et al. 2002).

However, providing an increased number of so-called ‘‘stepping stone’’ habitats or pro-

tected areas can enhance the speed of colonization of new landscapes, increasing the ability

of species to track climate change (Hodgson et al. 2012), both in terrestrial (Lawson et al.

2012) and potentially marine environments (Magris et al. 2014).

Bigger or more?

In reality, many factors influence whether one large or several small reserves are more

effective for achieving conservation goals (Soul and Simberloff 1986), so a more useful

question for conservation decision making concerns the circumstances in which each

approach is favoured (Williams et al. 2005; Tjørve 2010). If the aim is to protect multiple

species, both approaches can enhance species richness as described above, with the

expectation that the lower the proportional overlap in species among sites, the more

effective is a multi-reserve approach (Connor and McCoy 2001; Tjørve 2010). However,

the dynamic and transient responses of species distributions to rapid environmental change

add some new provisos to this general guideline. For example, a greater number of species

are expected to suffer delayed extinctions following habitat loss in landscapes with smaller

rather than larger reserves (Kuussaari et al. 2009) and under climate change, one must also

factor in the location of these sites and whether they remain climatically suitable for their

focal species (Hodgson et al. 2009a, b). Where sites are forecast to remain climatically

suitable, large reserves will benefit species with poor dispersal capability (Hodgson et al.

2009a, b). Conversely, for species with high dispersal rates, it is recommended to focus on

patch number initially before increasing area (Nicol and Possingham 2010), enabling

species to utilise the ‘‘stepping-stones’’ and shift in response to warming temperatures

(Hodgson et al. 2012).

In the context of increasing extreme weather events, the distinction between the benefit

of large reserves for habitat-interior species and small patches for edge species is exac-

erbated (Bender et al. 1998). Edge species are often more vulnerable to climate variability,

especially when confined to small fragments of remaining habitat exposed to extreme
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weather events (e.g. Powell and Wehnelt 2003). Though larger reserves can be viewed as

disadvantageous for species residing in ecotones or edge habitats (Bender et al. 1998), this

is only a limitation in reserves consisting mainly of homogeneous habitat. Larger sites do

tend to offer high levels of heterogeneity (Connor and McCoy 2001), accommodating

pockets of habitat which can create the desired ‘‘edges’’ for these species within the reserve

itself.

For species such as the many amphibians that are vulnerable to increasingly common

disease epidemics amid a warming climate (Harvell et al. 2002; Pounds et al. 2006), more,

smaller sites could provide local refuges from disease. Similarly, more sites are effective

for species susceptible to environmental catastrophes as the risk of extinction is spread

over several locations (Groeneveld 2005) and increases the chance of recolonization from

nearby sites (Schnell et al. 2013). Nevertheless, threshold effects could render smaller sites

too small to act as sources for range shifts, especially for those species with highly

fragmented distributions or narrow geographic ranges (Pimm et al. 2014). When reserves

are too small, wide-ranging species such as carnivores can leave the sites, heightening both

human-wildlife conflict and carnivore mortality (Woodroffe and Ginsberg 1998). Species

which congregate in relatively small areas at varying stages of their lifecycle (e.g. see

BirdLife International 2008), however, could benefit from the presence of several smaller

reserves provided they are situated in locations corresponding to resources favouring

aggregation. The importance of the spatial context and surroundings of sites also appear to

be more important than site area for exposure to invasive species, since sites surrounded by

protected landscapes can have fewer invasive species than those amongst areas with

varying land-uses (Pyšek et al. 2002).

Much attention surrounding the SLOSS debate has focused on the biological benefits of

each strategy (see Space for Nature above). But in cases where there are no clear biological

grounds on which method is likely to be best, how should we determine what is most

practical? The economic aspects associated with the contrasting methods were conven-

tionally not considered by theory (Groeneveld 2005), yet adopting cost-effective approa-

ches is fundamental to meet ambitious biodiversity targets with limited funding (McCarthy

et al. 2012) whether working on a fixed budget to capture as much biodiversity as possible

(maximum coverage), or aiming to conserve a set amount of biodiversity for the minimum

cost (minimum set) (Albuquerque and Beier 2015). Creating large sites could be more

economical in terms of creation and management (Williams et al. 2005) as they start to rely

on natural processes (Lawton et al. 2010) compared to managing smaller, individual sites.

Overexploitation of species and habitats is a continuing challenge for biodiversity (Mil-

lennium Ecosystem Assessment 2005), thus the costs and feasibility of reserve protection

against these threats will inevitably affect decisions. While the costs of internal monitoring

(e.g. through transect surveys) of large sites versus small sites of equivalent area are

comparable, notably less external surveillance is required for fewer, large sites with lower

perimeter lengths (Ayres et al. 1991) and may be less at risk from poaching events (Di

Minin et al. 2013). Enhancing the provision of ecosystem services promotes the ability of

the environment to enhance human health and well-being, and lowers exposure to

anthropogenic disturbances (Mitchell et al. 2015). But despite the expectation of greater

diversity in large sites, whether large sites can enhance ecosystem function and the

delivery of these services, relative to multiple smaller sites, remains equivocal. Nonethe-

less, with continuing land-use change leading to an increasingly fragmented landscape,

there are frequently situations where it is physically not possible to create large sites due to

surrounding land ownership or social and/or cultural costs of using a particular space

(Williams et al. 2005). Moreover, people are altering their behaviour in response to climate
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change (Chapman et al. 2014), shifting agricultural regimes, modifying transport routes

and building coastal defences, for example (see Segan et al. 2015). These indirect impacts

of climate change can create additional barriers to creating large sites for conservation. In

such cases, setting aside more, smaller sites for wildlife or opting for another strategy

altogether, is often the only option.

Exploiting connectivity

Site isolation plays a fundamental role in the theories of island biogeography and

metapopulation biology by determining colonization rates (MacArthur and Wilson 1967)

(Moilanen and Hanski 1998) and the Rescue Effect (Brown and Kodric-brown 1977). As

human land conversion has greatly increased habitat isolation (Bennett 2003; Nicol and

Possingham 2010), connectivity is often promoted to counteract biodiversity loss associ-

ated with habitat degradation (Williams et al. 2005; Donald and Evans 2006; Lees and

Peres 2008). Connectivity is now also fundamental to facilitate species range shifts in

response to climatic change (Lawson et al. 2012; Thomas et al. 2012; Lawson et al. 2013)

and is thus commonly recommended for climate change adaptation (Heller and Zavaleta

2009).

But in today’s landscapes, increasing impacts from invasive species, pollution, disease

and extreme weather events (Millennium Ecosystem Assessment 2005) present possible

counterarguments for enhancing connectivity, given evidence that greater connectivity can

lead to more rapid spread of catastrophic events (e.g. Laine 2004) and invasive species

(Simberloff and Cox 1987; Dover and Settele 2009). Recent research has demonstrated that

the deformed wing virus epidemic in the European honeybee Apis mellifera, is driven by

movement of pollinator populations and spread of the mite Varroa destructor, and greater

functional connectivity (i.e. the behavioural response of an organism to landscape features

[Tischendorf and Fahrig 2000]) for the vectors of the disease therefore enhance its

potential to spread to other wild pollinators (Wilfert et al. 2016). As a result, large dis-

tances between sites and regulated movement are now necessary to reduce the spread of

disease, invasive species, predators, and the impacts of environmental events such as fire or

hurricanes (Williams et al. 2005). Networks of sites that are well connected in terms of the

dispersal capabilities of target species, but remain fragmented with respect to the trans-

mission of disease (Huxel and Hastings 1999; Hartley and Kunin 2003; Williams et al.

2005) or susceptibility to regionally correlated environmental variation, would represent

win–win situations, although providing the information required to define this optimal

level of aggregation is challenging (Williams et al. 2005).

Connectivity has traditionally focused on habitat corridors, which can include natural or

man-made linear features such as rivers, canals, hedgerows and railway embankments

(Lawton et al. 2010). Managing the matrix between sites is often advocated as a means of

making the space between pockets of protected areas amid intense land use more per-

meable to allow for species movement (Lees and Peres 2009). In addition, increasing the

number of sites and aggregating them within the dispersal distance of focal species

enhances movement, though could reduce opportunities for range expansion if not ade-

quately spaced (Magris et al. 2014). More recently, research has begun to highlight the role

of the other strategies associated with reserve design for enhancing connectivity. Local

population dynamics in addition to distance between patches are essential for determining

functional connectivity (i.e. potential rates of immigration). Habitat area and quality
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increase the size and stability of source populations for dispersal and hence rates of

immigration to other patches (Hodgson et al. 2009c). Recent research has shown that

stable abundance trends are more important than dispersal ability in influencing rates of

range expansion in British butterflies (Mair et al. 2014), and reproductive rates of wetland

vertebrates had more influence on immigration rates than species mobility (Quesnelle et al.

2014). Thus promoting population growth through maintaining habitat quality and size is

essential, and directing efforts exclusively to structural connectivity (focusing on the

physical structure of the landscape [Tischendorf and Fahrig 2000]) is only beneficial under

specific circumstances.

The primary purpose of enhanced connectivity (both functional and structural) is to

augment species movement between sites, which is becoming increasingly more important

across landscapes as range shifts are forced by climate change. Therefore, the value of

increased structural connectivity alone depends on whether persistence or range expansion

are limited by the dispersal ability of species relative to the existing configuration of

habitats (Moilanen and Hanski 1998). The most dispersive species may not benefit from

increased connectivity (Bennett 2003), but highly sedentary species may only benefit if

connectivity is increased within the dispersal range of the species concerned (e.g. Doerr

et al. 2011; Johst et al. 2011). With ongoing fragmentation, distances between habitats can

exceed dispersal capacity for many species (Dennis et al. 2013). As a result, guidelines to

identify the level of isolation of sites relative to species dispersal capacity at which

enhanced connectivity most benefits regional persistence, would help to increase the

effectiveness of landscape-scale conservation (Lees and Peres 2009). Such approaches

could benefit the species with intermediate dispersal capabilities that have declined more

than either the most sedentary or mobile species (Thomas 2000). When considering the

level and capability of dispersal, it is also necessary to consider how dispersal mode differs

within and between taxa (Hodgson et al. 2011a). Animal-dispersed plants, for example, can

increase following the introduction of corridors for animals, whereas wind-borne dispersers

may be unaffected (Brudvig et al. 2009).

Finding the space to make sites bigger across the modern human-dominated landscape

is becoming increasingly problematic. As a result, enhancing connectivity may be essential

for species requiring access to the resources needed (Benton et al. 2003), especially those

with varying needs at various stages of their lifecycles (Fahrig 2003) or with seasonal food

requirements (Donald and Evans 2006), and may also encourage animals to reside within

appropriate habitats, reducing human-wildlife conflict (Hartter and Southworth 2009).

Establishing corridors between sites can be expensive (Dennis et al. 2013), in which case

utilising man-made structures or existing natural connections is a plausible solution.

Managing matrix habitat may be needed when a location offers a fragmented network of

protected areas surrounded by intense land use. In return, this not only provides species

with an increased capacity to shift, it enhances the ability of the environment to provide a

range of ecosystem services such as pollination, human well-being and air quality. Nev-

ertheless, in areas vulnerable to spatially autocorrelated contagion-like extinction pressures

(Channell and Lomolino 2000), connectivity should be avoided; instead, opting for widely

separated reserves will be more effective (Hartley and Kunin 2003).
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Box 1 Decision making in the real world: a case study of land spare versus land share

Alongside threats from habitat change, climate change and invasive species, one of the greatest
threats to global biodiversity is the need to balance the increasing demand for food security with
conservation (Green et al. 2005; Donald and Evans 2006; Fischer et al. 2008; Edwards et al. 2010;
Balmford et al. 2012). Land sparing involves the preservation of natural areas for wildlife, segregated
from a smaller area of land for intensive agriculture, while land sharing, or wildlife-friendly farming,
involves the spatial co-occurrence of agriculture and conservation (Phalan et al. 2011; Tscharntke et al.
2012; Grau et al. 2013). Land sharing has been encouraged, particularly in Europe, with the support of
agri-environment payments through the Common Agricultural Policy and various other certification
schemes worldwide. These include the Conservation Reserve Program in the USA (Green et al. 2005;
Kleijn et al. 2011; Hulme et al. 2013) and the Australian Landcare Program (Kleijn et al. 2011); aiming
to cover the net losses that occur from avoiding more intensive farming methods (Lawton et al. 2010),
and provide support to those farmers who opt to make environmental improvements to their land
(Donald and Evans 2006)

The land share, land spare debate epitomises the difficult choices faced in landscape-scale
conservation planning: on one hand, a high quality (relatively homogenous) but smaller area of spared
land for wildlife; on the other, lower quality but larger areas of heterogeneous habitat shared with
farming (Green et al. 2005; Fischer et al. 2008; Adams 2012; Balmford et al. 2012). As with the trade-
offs associated with reserve design, both approaches have strengths and weaknesses (Edwards et al.
2010). Land sharing can enhance and restore connectivity by creating softer barriers to dispersal
between areas of more natural habitat (Donald and Evans 2006; Fischer et al. 2008; Heller and
Zavaleta 2009; Dover and Settele 2009). Sharing also encourages the creation of new wildlife sites
(Donald and Evans 2006; Dover and Settele 2009; Lawton et al. 2010) although more land, potentially
previously intact, must be cultivated to balance the fact that overall yield is low (Green et al. 2005;
Balmford et al. 2012; Hulme et al. 2013; Chandler et al. 2013). Nevertheless, this may mean that more
land is protected in some way (Balmford et al. 2012). In contrast, land sparing can boost species
populations (e.g. Phalan et al. 2011), particularly those of greatest conservation concern (Hulme et al.
2013), and thus assist with climate change adaptation through abundant source populations. It can also
increase overall species richness (Edwards et al. 2010; Chandler et al. 2013) due to more native habitat
(Hulme et al. 2013) and because many wild species cannot survive in even the most wildlife friendly
farmland (Tscharntke et al. 2012). However, some species are specifically adapted to agricultural
landscapes (Benton et al. 2003), particularly in landscapes with a long-history of disturbance
(Donaldson et al. 2016). Land sparing usually produces higher yields (Grau et al. 2013), potentially
reducing deforestation rates since there is less pressure to log other areas to meet demand (see Green
et al. 2005) and more recently reported to save on greenhouse gas emissions as a result of less land
conversion to meet demand for agriculture (Balmford et al. 2012)

Amongst the confounding benefits discussed extensively in the literature, our decision making
framework can be used to demonstrate how theory associated with reserve design can help provide
solution to this intensive debate (Table 2). The homogeneous quality associated with spared land
provides benefits to specialist species, boosts populations of species vulnerable to climate warming,
and provides smaller sites suitable for stationary animals with small range sizes. Providing more,
smaller sites can also enhance the capacity for range shift across the landscape in response to climatic
change. Meanwhile, land sharing generally enhances connectivity between sites, offering benefits to
migratory species and those with low dispersal capabilities and/or large range sizes, but equally may
spread the risk of extinction from correlated weather events and disease. Providing the landscape
remains relatively fragmented with respect to these risks, the heterogeneity associated with land
sharing can help buffer the effects of variable environmental disturbances. Land sharing is also an
appealing option in areas where wildlife and low intensity forms of agriculture have coexisted for long
periods of time, such as parts of Europe (Fischer et al. 2008; Hodgson et al. 2010), where species are
tolerant to disturbance from such activities (Grau et al. 2013). Conversely, in areas with high potential
agricultural activity that do not coincide with those of high biodiversity value, it is possible to zonate
land and opt for a land sparing approach (Hodgson et al. 2010). However, with environmental change,
crop suitability may also shift (Bradley et al. 2012) leading people to encroach on spared land. In this
sense, suitable areas for people to farm with climate change could be equally as important as providing
suitable areas for species’ ranges to shift, or alternatively opt for a land sharing approach where both
have the potential to move. Finally, this challenge highlights the importance of practical considerations
(Table 2), with site ownership, planning and governance being amongst the most fundamental factors
leading to the most appropriate option available
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Interplay between approaches

In reality, it is clearly not a straightforward case of selecting one approach; opting for a

particular strategy can impact the ability to achieve, or even the requirement for another.

Previous work has focused on the effect of habitat quality and area in enhancing functional

connectivity between sites (e.g. Hodgson et al. 2009c, 2011a but see also Doerr et al.

2011), thus choosing to develop quality or area can be an effective option for improving

connectivity if required. Authors have also alluded to the fact that focusing on quality can

mean there is less need to create new areas for wildlife (Lawton et al. 2010), though

improving connectivity directly will ensure that species can actually reach these high

quality habitats (Root 1998). In any case, enlarging sites reduces the need for connectivity

(Rosenberg et al. 1997; Haddad 1999; Dennis et al. 2013) as these areas start to act as

stand-alone reserves (Williams et al. 2005), providing they reside in climatically suitable or

stable areas, and also tend to offer the benefits of habitat heterogeneity when areas are

sufficiently large to host a broad range of habitats. Likewise, the creation of corridors can

effectively increase the size of the site (Benton et al. 2003; Noel et al. 2006; Lawson et al.

2013) and so remains a useful alternative when the creation of big sites is not an option.

But where the designated area of land for conservation purposes is limited in size within

conservation planning, the creation of corridors could mean that the area of the sites

themselves would have to be smaller to meet the overall area on offer (Rosenberg et al.

1997). Should more, smaller sites prove to be the best option, these areas can themselves

act as stepping stones, promoting connectivity (Hodgson et al. 2009c) and simultaneously

offering habitat heterogeneity (Dover and Settele 2009). Although if these sites are sep-

arated to protect against climatic disturbance, this could negatively affect the ability to

suitably enhance connectivity and facilitate range shift if required (Magris et al. 2014).

Moving forward

Although context-dependent, formulating a series of generic rules would provide a much

needed starting point to assist conservation practitioners involved in decision-making

regarding the planning and management of protected areas amid future threats. Given the

current and future constraints imposed on biodiversity and the acute shortage of funding

for effective conservation, it is not always possible to implement the creation of bigger,

better and more joined sites for conservation and difficult choices between these strategies

will often need to be made. With increasing land-use change, for example, creating bigger

sites is rarely possible within fragmented landscapes, whilst restoring increasingly

degraded habitat through in situ management can be expensive and time consuming

(Possingham et al. 2015). Responding to an increase in invasive species, pollution and

disease requires protection and management to be undertaken in widely spaced locations,

bearing in mind the trajectories of climate change and routes species may follow as they

shift their distributions in response (Loarie et al. 2009; Early and Sax 2011). It is now

widely accepted that conservation strategies should account for climate change (Jones et al.

2016) and the inevitable need to adapt to changing temperatures, cope with environmental

extremes and shift in response to climatic changes. In this case, focusing on habitat quality

is the most effective strategy (Greenwood et al. 2016) but specifically how to approach this

depends on a series of factors. Bigger sites and multiple smaller sites each offer benefits for

climate change adaptation, whilst the functional connectivity required for this challenge
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can be improved through a focus on other strategies which encourage stable abundance.

Indirect impacts associated with climate change have seldom been recognised in the lit-

erature (Chapman et al. 2014) but can further complicate the ability to adopt particular

strategies, or the overall effectiveness of those employed. With the potential of people to

shift agricultural practices, for example, utilising numerous smaller sites may enable

people to exploit areas of land in between, as opposed to entering those areas designated

for wildlife (Bradley et al. 2012).

The literature associated with conservation planning has vastly progressed since the

origin of reserve design theory presented by Diamond (1975). Many of the ideas proposed

by classical theory still apply in the context of modern-day pressures, such as the ability of

larger sites to deal with stochasticity as a result of high carrying capacities, and enhance the

colonization of surrounding habitat from large source populations. Other recommendations

become even more important when we factor in rapid environmental change, such as the

provision of source populations provided by optimal habitat for species’ range shifts, the

buffering effect supplied by large populations within larger sites, and the reduced

extinction risk of multiple smaller sites from correlated environmental events. Meanwhile,

there are evidently cases where ideas from conventional theory no longer apply. Single

large sites are prone to extinction from increasing environmental disturbances, counter-

acting the traditional desire to maintain structural connectivity between sites, alongside the

fact that it is simply not possible in today’s landscapes to create single large sites for

nature, where levels of biodiversity may be high and often coincide with high human

populations.

Decision-making framework

In essence, the most effective strategy in the context of twenty-first century pressures

depends on circumstance, but by considering the goals of conservation and the charac-

teristics of biota for which conservation is needed, it is possible to make informed choices

about which strategy is likely to be best (Table 1). Nevertheless, practical considerations

such as financial costs, reserve protection (day to day and in the future) and site monitoring

are also important and are seldom considered in studies of reserve design (Groeneveld

2005). From the resulting recommendations shown in Table 1, size and connectivity

represent the most prominent strategies amongst the considerations highlighted. However,

it is noteworthy that this may not consistently be the case, particularly when focusing on

issues associated with modern-day conservation including economic constraints, extent of

habitat fragmentation, vulnerability to climate change and risk of disease and environ-

mental disturbance. Upon adopting a particular conservation strategy, there are evidently

multiple valid options for a particular situation (Table 1). Our review of the literature

suggests that, amid twenty-first century challenges, habitat quality and area should be the

priority (as in Hodgson et al. 2009c; Lawton et al. 2010); enhancing, amongst other things,

the ability of species to shift in a changing climate, cope with environmental extremes and

promote species richness and population viability. This offers the additional advantage of

being more cost-effective than focusing on connectivity between sites, especially when

protecting currently intact habitat. The exception to this rule is within existing fragmented

landscapes, where area and connectivity become more important than quality (Moilanen

and Hanski 1998). Since enhancing the quality and/or quantity of sites offer many of the

benefits associated with connectivity, encouraging connectivity alone is only supported in a

few circumstances. Despite this, more connectivity is generally considered better than

isolation, aside from populations exposed to spatially contagious threats such as disease
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epidemics, but at low risk from climate change and hence not expected to require the

ability to shift their range at least over the short term.

The principles of this framework can effectively be used to provide solutions to twenty-

first century issues (Box 1) where conservation continues to struggle to find answers to

complex debates; highlighting the role of scientific theory in modern day conservation

planning.

Conclusion

As threats to biodiversity and competing demands for land increase, the effective targeting

of conservation resources is increasingly urgent. While many authors have concluded that

simple concrete rules for reserve design do not exist, the knowledge base is extensive. The

very broadness and complexity of the literature regarding reserve design has come to

represent a challenge to those adopting measures to promote landscape-scale conservation,

and new threats to biodiversity conservation demand a reevaluation of classical ideas for

reserve design. We have synthesised and explored existing knowledge to provide updated,

generic guidance to decision makers engaged in landscape-scale conservation planning and

practice in the context of levels of environmental change and biotic consequences that were

not envisaged only decades ago. Ambitious global biodiversity targets are set and funding

for conservation is notoriously limited. By providing an evidence-based framework that

summarises the circumstances under which each strategy is best, we hope to provide

increased clarity to inform urgent, cost effective modern-day conservation decision-

making.
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