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Abstract Understanding the historical biogeography of this global biodiversity hotspot is

as important to long-term conservation goals as ecology and evolution are to understanding

current patterns and processes. Today’s geography is, however, misleading and typical of

only *2% of the last million years;[90% of that time the region’s land area was 1.5–2.0

times larger as mean sea levels were 62 m below today’s, climates were cooler, and

extensive forests and savanna covered the emerged Sunda plains. The region’s land area

varied two-fold as sea levels fluctuated up to ±50 m with each of *50 Pleistocene glacial

cycles, and forests expanded and contracted with oscillations in land area and seasonality.

This dynamic geographic history is relevant to the development of biogeographic

regionalism and shows that it is today’s forests that are refugial, not those of the Last

Glacial Maximum. This history affects how species will adapt or shift their ranges in

response to global warming and further decreases in land area (submergence of low-lying

coastal areas) during the 21st century. The alternative is mass species extinction. The biota

is also threatened by the continued destruction of forest, destruction of Mekong River

flood-pulse based ecosystems, and continued human population growth. Human bioge-

ography will become more important in conservation planning as tens of millions of people

who depend on protected area forests, riverine ecosystems, and coastal habitats become

environmental refugees. Conservation scientists need to become more involved in regional

ecological education, environmental stewardship, and ecosystem-based adaptation to

sustain as much as possible of this rich biota and the ecological services it provides.
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Abbreviations
ENSO El Nino Southern Oscillation

LGM Last glacial maximum

Ma/ka Million/thousand years ago

Myr/kyr Million/thousand years

Introduction

Biogeography and conservation are linked inexorably by the relationships between habitat

area, primary productivity, earth history, and species richness. This linkage is especially

strong in Southeast Asia where the areal extent of the land has repeatedly fluctuated two-

fold in the last few million years. Today’s Southeast Asia, with its peninsulas and thou-

sands of islands, is unusually small and fragmented. For over 90% of the last two million

years forests have covered up to twice the area they do today. Present day geography is

therefore highly atypical and it will become even more so as the region loses another 7% of

its land area this century, and more in the next. This short and selective introduction to the

biogeography of the region focuses on past, present, and future changes as they affect

conservation. Space limitations preclude a comprehensive coverage of the underlying

distribution patterns of individual species and readers are referred to the proceedings of

several recent conferences for an introduction to the vast literature (Hall and Holloway

1998; Metcalfe et al. 2001; Holloway 2003; Hall et al. 2010; Gower et al. 2010).

Southeast Asia is defined herein as including Myanmar, Xishuangbanna (in southern-

most Yunnan, China), Thailand, Laos, Cambodia, Vietnam, Malaysia, Singapore, Brunei,

the Philippines, the Andaman and Nicobar Islands (of India), and western parts of Indo-

nesia (including Borneo, Java and Sumatra). Wallace (1876) divided this part of Asia into

the Indochinese, Sundaic, and Philippine zoogeographic subregions (Fig. 1). A fourth

subregion, the Wallacean, lies to the east and has a largely Australian biota and will

therefore receive less attention in this review. The diverse communities within each sub-

region share a common biogeographic history and many genera and families of plants and

animals. A finer scale classification of the biota has been proposed by World Wildlife

Fund: dividing the traditional subregions (bioregions) into smaller units called ecoregions,

31 Indochinese, and 28 Sundaic and Philippine ecoregions (Wikramanayake et al. 2002).

These ecoregions contain geographically distinct sets of natural communities that share a

majority of their species, ecological dynamics and environmental conditions. Major natural

vegetation communities include tropical rainforest, tropical seasonal forest, tropical

deciduous forest, savanna woodland and grassland, montane forests, mangrove forests, and

swamp forests (Corlett 2009a). Using the ecoregion as the ‘‘fundamental conservation

unit’’, priorities can be based on each ecoregion’s biodiversity distinctiveness index and a

quantitative assessment of various threats. The biodiversity distinctiveness index captures

measures of endemism, species richness, higher taxonomic uniqueness, and the presence of

rare habitats (Wikramanayake et al. 2002).

Southeast Asia covers only 4% of the earth’s land area but is home to 20–25% of the

planet’s plant and animal species and is a major global biodiversity hotspot (Myers et al.

2000; Mittermeier et al. 2005; Corlett 2009a). The countries in this region are among the

richest in terms of species numbers of plants, mammals, birds and turtles. Indochina hosts

[7,000 endemic plant species (52% of the flora); Sundaland is even richer, with[15,000

endemic plant species (Brooks et al. 2002). Marine patterns are beyond the scope of this

review, but the shallow warm waters of the region harbor 30% of the world’s coral reefs
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and the greatest diversity of reef associated animals in the world (Spalding et al. 2001).

This rich biodiversity is attributed, in part, to the region’s geographic position at the

transition between the well-differentiated Asian and Australian biogeographic regions, its

position in the humid tropics, its history of dramatic changes in land area, and its habitat

fragmentation.

Regional freshwater biodiversity is also extraordinary; the region probably has the

second richest freshwater fauna in the world in terms of species and endemism (Kottelat

2002; Dudgeon 2005; Dudgeon et al. 2006). The Mekong River alone harbors *1,100

species of fish (Rainboth et al. 2010). Indochina has the highest diversity of freshwater

turtles in the world (53 species) (Conservation International 2007), Indonesia ranks first for

dragonflies and amphibians (Dudgeon 2005). Freshwater communities are included here as

many of their conservation problems have biogeographical components stemming from the

international courses of rivers and the migratory habits of many fish.

This rich terrestrial and freshwater biota is threatened by human population growth,

deforestation and habitat conversion, overexploitation (logging, hunting, fishing, collecting

and trade of plants and animals, tissues and parts), invasive species, pollution, and climate

change (Sodhi and Brook 2006; Sodhi et al. 2007; Nijman 2010; Peh 2010; Wilcove and

Koh 2010). Although a significant area has been designated as protected, both species

diversity and ecological services are threatened by habitat destruction proceeding at twice

the rate of other humid tropical areas, and by overexploitation at six times the sustainable

rate (Sodhi and Brook 2006). These workers estimated that 24–63% of the region’s

terrestrial endemic species are threatened with extinction by 2100. Raven (2009) raised this

to 50% of all species, of which 90% will still be formally undescribed; an estimate

supported by Giam et al. (2010). Freshwater biodiversity is probably experiencing rates of

extinction higher than those in the terrestrial biota (Dudgeon et al. 2006) as Asian rivers

and wetlands have been seriously degraded by erosion, pollution, overfishing, invasive

species, and flow regulation (Sodhi et al. 2007). Humans are the main drivers of this

extinction spasm. There are *500 million people living in the region at densities twice

(Wallacea), three times (Indochina and Sundaland), and six times (Philippines) the world

mean of 44 people/km2 (herein, all demographic data from The Economist 2008). During

Indochina

Wallacea

Sundaic

Philippines

Kra

1000 kmFig. 1 Outline map of Southeast
Asia showing the four
biogeographic subregions
(bioregions or hotspots).
According to some authorities the
Indochina and Sundaic
bioregions meet on the Thai-
Malay peninsula at the Kangar-
Pattani Line; others place the
transition near the Isthmus of
Kra. The Sundaic and Wallacea
bioregions meet at Wallace’s
Line between Borneo and
Sulawesi
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2005–2010 the national populations in the region, with the exception of Thailand, were still

growing faster than 1.17%, the world mean annual growth rate. It cannot be overempha-

sized that this population growth is a main driver of habitat conversion which impacts

biodiversity both directly, and indirectly through its contribution to global warming.

The purpose of this introductory review is to show how gradual and continuous envi-

ronmental fluctuations in the last few million years have shaped today’s biogeographic

patterns and how regional biodiversity is currently in a spatially compressed or refugial

state. The conservation of this rich biodiversity requires the recognition of accelerating

rates of anthropogenic change and the predictable redistribution of the growing human

population. Human behavior in the next 100–200 years is pivotal to the continued exis-

tence of this global biodiversity hotspot.

The biogeographic theater

Although the basic geographic features, continental outline and mountains have been in

place and relatively stable for the last 20 Myr, the region’s rivers, shorelines, hundreds of

continental islands, and climates, have changed dramatically and repeatedly (Corlett

2009a). The earlier geological history of the region, including the assembly of the [20

Gondwanan terranes by continental drift, are described elsewhere (Hutchison 1989; Hall

2001, 2002; Metcalfe et al. 2001; Metcalfe 2009). The following brief account of the

region’s geomorphology, rivers, climates, and vegetation draws on reviews by Woodruff

(2003a), Gupta (2005), and Corlett (2009a). Among the main features today are: the Indo-

Malayan archipelago of 17,000 islands, including two of the largest islands in the world

(Borneo, Sumatra), and the Philippines comprising another 7,100 islands. The topography

includes the hilly regions of peninsula Malaysia, Sumatra and Borneo, where Mt. Kinabalu

rises to 4,101 m, and many volcanically active islands, including Java and Bali. Ancient

granite and limestone mountains rising to 2,189 m form the backbone of the Thai-Malay

peninsula and, on the continent proper, there are major hilly tracts in Myanmar, northern

Thailand, along the Lao-Vietnamese border (Annamite mountains), and in Cambodia

(Cardamon mountains). Other major features include the Chao Phrya river valley that

drains into the Gulf of Thailand at Bangkok, and the drier Khorat Plateau of northeast

Thailand, which drains east into the current Mekong river.

The region’s largest geographic feature lies hidden today below sea level: the plains of

the Sunda Shelf. The disappearance of the Sunda plains in the last 14 Kyr presents

biogeographers with a highly misleading view of the theater in which today’s patterns have

developed. The history of this feature and the overall paleogeographic outline of Southeast

Asia are closely related to sea levels so the history of the latter must be reviewed at the

outset. During the first half of the Tertiary, when sea levels were higher than today’s, the

Thai-Malay peninsula comprised an island chain with water gaps separating the pre-Tertiary

mountains of continental Asia from those in peninsula Malaysia, Sumatra and Borneo.

During much of the Miocene (23–5.3 Ma) and Pliocene (5.3–2.6 Ma) conditions were hot

(3�C warmer), perhumid (wetter than today and covered with rainforest), and sea levels

were higher (C25 m relative to today’s level) (Haywood et al. 2009; Naish and Wilson

2009). Air temperatures began to decline 3.2 Ma and the Northern Hemisphere continental

ice sheets began to form 2.7 Ma. Northern Hemisphere ice sheets began to fluctuate under

orbital control, expanding and contracting every 41 ka before *800 ka and every 100 ka

since (Bintanja and van de Wal 2008; Sosdian and Rosenthal 2009) (Fig. 2a). The mid-

Pleistocene transition *800 ka was associated with a cooling of deep ocean water and a
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substantial thickening of the ice sheets during subsequent glacial phases. During the longer

cooler glacial phases of each cycle temperatures, rainfall and sea levels were all lower.

During each short interglacial phase sea levels have been within *10 m of today’s level

(0 m). In contrast, mean sea levels have declined gradually from -16 ± 10 m 2.6 Ma, to an

average of -62 ± 50 m during the last million years (Figs. 2a and 3b). The ± estimates are

not uncertainties but the normal glacial-interglacial sea level fluctuations, of which there

were *48 since 2.4 Ma. During periods when sea levels were below -30 m extensive

coastal plains emerged across the Sunda Shelf and the region’s area doubled and provided

dry land habitat between continental Asia, Borneo and Bali (Fig. 3a). For example, during

the last glacial cycle sea levels fell from ?6 m at 120 ka, to between -124 and -130 m

during the last glacial maximum (LGM) 19–26 ka, before rising quickly to ?2.5–5.0 m

between 4,850 and 4,450 years ago, and then falling to 0 m at 3 ka (Horton et al. 2005;

Sathiamurthy and Voris 2006; Clark et al. 2009; Hanebuth et al. 2009). During the extreme

conditions of the LGM, when the Sunda plains reached their greatest extent, mean annual

temperatures on land at sea level were 5–6�C lower than today’s (Kershaw et al. 2007). The

biogeographic significance of the Sunda plains will be discussed further below.

The region is, or was until *10 ka, drained by some of the most productive rivers on

earth: the Salween, Chao Phraya (and its antecedent the Siam), Malacca, North Sunda, East

Sunda, Mekong, and Red rivers. Throughout most of the Pleistocene the region had many

sizable lakes but only the Tonle Sap of Cambodia remains, the others lay on the exposed

Sunda Shelf and are now submerged (Sathiamurthy and Voris 2006). There have been

changes in the paths of some of the rivers that arise on the Tibetan plateau and flow south

through Yunnan (Brookfield 1998; Attwood and Johnston 2001; Meijaard and Groves 2006;
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Fig. 2 a Global sea level fluctuations estimated from deep-ocean foraminiferal d18O isotope ratios over the
last 4 Ma (data from Lisiecki and Raymo 2005 as transformed by Naish and Wilson 2009 and simplified by
hand). b Maximum fluctuations in tropical lowland forest extent in Southeast Asia during the last 1 Ma
(after Cannon et al. 2009). This particular curve was produced assuming an equatorial temperature change of
-3�C and shows the maximal area of forest in km2 9 106. More detailed projections for three forest types
under this and other paleoclimatic models are provided by Cannon et al. (2009)
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Rainboth et al. 2010). The Red river of northern Vietnam, for example, lost its upper reaches

[the current Yangtze river] about 75 ka. Such changes, the results of river captures and local

tectonics, have had a significant impact on the biogeography of freshwater animals. The

Salween, Mekong and Yangtze rivers all flow in sutures between adjacent terranes twisted

north-south by collision of the Indian and Asian plates. The Mekong (and possibly the

Salween by way of today’s Ping River) once flowed south to the Gulf of Thailand through

what is now the Chao Phrya river valley. They formed a mega-river called the Siam, which

delivered enormous quantities of sediment from the Tibetan Plateau to the Sunda Shelf, and

carved out the Gulf of Thailand before emptying into the South China Sea. The sequential

capture of the upper Mekong by the Yom, Nan and Pasak rivers (all Thai tributaries of

today’s Chao Phrya) are not well dated but occurred in the last 3 million years. The present-

day Mekong river did not develop until the Late Pleistocene; it assumed its present course

from Tibet to Vietnam only about 5,000 years ago. The Tonle Sap formed in the last 8 ka.

In Southeast Asia temperature variation is less significant in determining the growing

season and the natural vegetation than rainfall and its seasonality. The region’s charac-

teristic seasonal (monsoonal) climate developed after the rise of the Tibetan plateau

(*30 Ma) and the closure of the seaway between the Australian and Asian plates

(*15 Ma) and intensified *10 Ma (Morley 2007; Berger 2009). The frequent interruption

of this seasonality by ENSOs became significant 3–5 Mya. Today the region’s climates

range from perhumid near the equator to markedly seasonal in the interior of Indochina

(Chuan 2005; Corlett 2009a). Annual mean rainfall varies from 1,000–2,000 mm over

most of continental Southeast Asia, to 2,000–3,000 in the Thai-Malay peninsula, Sumatra

and southern Borneo, and [3,000 mm in central Borneo and isolated super-wet spots

elsewhere. Weck’s climatic index (which includes a measure of seasonality based on water

availability and temperature) also shows this north-south variation; from 200–300 in the

seasonal north to[1000 in the perhumid equatorial south. Accordingly, forest productivity

increases from 150–250 Mg C/ha [million grams of carbon per hectare] in the north to

300–350 Mg C/ha in the south (Brown et al. 2001).

-120m

a b

-60m

c

+25m 
+2m 

Fig. 3 Outline maps of Southeast Asia when sea levels are at a 120 m below, b 60 m below, and c 2 m
above and 25 m above today’s sea level. Sundaland had its greatest areal extent about 20 ka when sea levels
fell below -120 m. The average areal extent of Sundaland in the last million years occurred when sea levels
were at -62 m. Sea levels are expected to rise 1–2 m above today’s level in the next 100–300 years. More
detailed maps are provided by Sathiamurthy and Voris (2006) who show regional geography at 5-meter
increments of sea level change between -120 m and ?5 m. Woodruff and Woodruff (2008) provide maps
for sea levels at ?2 m, ?25 m and ?50 m. If all ice sheets on the planet melted sea level would rise to
?50 m, their height 35 Ma

924 Biodivers Conserv (2010) 19:919–941

123



The summer or southwest monsoon brings heavy rain from the warm Indian Ocean from

June through August. In contrast, the typically drier northeast monsoon winds blow in the

reverse direction from January through March. Between the two monsoons, or following

the summer monsoon if there is only one, there is a hot dry season of 1–7 months duration

(December through May is typical). Plant distribution and phenology is associated with

rainfall seasonality and variability, and animals in turn tend to track plant productivity (see

Brockelman 2010 for a recent discussion of the implications of seasonality at one site).

This annual monsoonal pattern has been disrupted by ENSO events every 4–6 years

(during in the 20th century) that are associated with drought and increased fire frequency

(e.g., 1997–8, 2006–7) (Berger 2009; Taylor 2010). There are also super-droughts, some

associated with *40 year global drought cycles and others with 10–15 years concordance

of ENSO and Indian Ocean dipole cycles.

It is in this setting that Wallace first recognized the four zoogeographic subregions and

the major zoogeographic transition between Oriental and Australian regions. That transi-

tion, which lies between the Sundaic and Wallacean subregions, is associated with

Makassar Strait, which serves as a marine barrier to the dispersal of land animals between

Borneo and Sulawesi. This Strait is better known as the location of Wallace’s Line and is

discussed at great length elsewhere (Whitmore 1987; Hall and Holloway 1998; Metcalfe

et al. 2001; Hall et al. 2010; Gower et al. 2010). Plants show a different pattern with a

significant transition between Continental Asiatic and Malesian floral regions occurring,

not at Wallace’s Line, but at a line drawn between Kangar (Malaysia) and Pattani

(Thailand) on the peninsula near the Thai-Malay border (van Steenis 1950) (Fig. 1). The

Malesian floral region encompasses the peninsula south of the Kangar-Pattani Line and all

of the islands of Southeast Asia from Sumatra to the Philippines and New Guinea (Morley

2000; Wikramanayake et al. 2002). The Malesian forests differ from the Indochinese in

having far more species and series of ecologically sympatric congeneric species (especially

dipterocarps), and the tendency to exhibit synchronous mass [mast] fruiting. To locate the

Malesian-Asian transition van Steenis used distribution maps for 1,200 genera of plants; he

found that 375 genera of Sundaic plants reach their northern limits, and 200 genera of

Indochinese plants reach their southern limits, at the Kangar-Pattani Line at 6–7�N. This

transition is twice the magnitude to that occurring in plants at Wallace’s Line.

Wallace (1876) did not recognize the Kangar-Pattani Line but put the boundary between

the Indochinese and Sundaic zoogeographic regions at the northern end of the Thai-Malay

peninsula at about 14�N. For many years this transition has been casually associated with

the Isthmus of Kra (Fig. 1), which is actually 300 km further south at 10�300N. Hughes

et al. (2003) studied the avian Indochinese-Sundaic transition and found a significant

turnover in bird species between 11�N and 13�N, just north of the Isthmus of Kra; 152

species, or half the forest-associated species present regionally, have range limits in this

area. In many genera, northern species are replaced with southern species with very little

range overlap. In mammals, Woodruff and Turner (2009) also traced the transition to the

northern third of the peninsula but, instead of a narrow zone of replacement near the

Isthmus of Kra, they found (1) an area of the peninsula from 8–14�N with 30% fewer

species than expected and (2) Indochinese and Sundaic species range limits clustered just

north (14�N) and south (5�N) of this species richness anomaly. Elements of this pattern are

similar to those found independently by Cattulo et al. (2008). As in the plants, the faunal

dissimilarity across the mammal Indochinese-Sundaic transition is greater than that on

either side of Wallace’s Line (Kreft and Jetz, in review). Comparable analyses of the

magnitude and location of the zoogeographic transition in other phyla are still lacking but,

as a broad generalization, reptiles, amphibians and butterflies exhibit similar patterns
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(references in Woodruff 2003a, b). The history of the Indochinese-Sundaic transition will

be discussed more below.

Biogeographic issues of relevance to conservation

Documenting biogeographic patterns

Any discussion of regional patterns must begin by noting the strengths and weaknesses in

the underlying distributional database. Its great strengths lie in the richness of the species

lists and the fact that observations of many taxa span 200 years. The two great weaknesses

remain the geographic gaps in the survey work and the ad hoc nature of the record keeping.

Wars, insurgencies and inaccessibility prevented biological exploration of parts of the

region for many years and survey work has been a low priority of regional governments.

Parnell et al. (2003) provide an excellent quantification of the effects of collecting patterns

on our knowledge of Thai plants. The probable extent of our ignorance is indicated by the

description of hundreds of new species of vertebrates and plants in both Vietnam and

central Borneo since 1992 (Sterling et al. 2006; World Wildlife Fund 2009). Similar

surprises can be expected in Myanmar where the northern limits of the Sundaic biota

cannot be considered known until the Tenasserim is surveyed.

The other weakness in the regional distributional database is the lack of standardized

record keeping at national levels. Although progress is being made (e.g., SAMD 2008;

Scholes et al. 2008; GBIF 2009; Webb et al. 2010), occurrence records based on specimens

and sightings are typically buried in notebooks or herbarium sheets and rarely in searchable

archives. Dated records are important as scientists attempt to document range shifts; e.g.

tapir, Sumatran rhinoceros and orangutans were more widely distributed until recently

(Meijaard 2003; Tougard and Montuire 2006; Earl of Cranbrook 2009). Some of the

impediments to developing regional public databases for conservation managers are

discussed by Srikwan et al. (2006) and Webb et al. (2010).

Patterns of distribution

There are many biogeographic patterns within Southeast Asia including temperate—

tropical gradients in species richness, a peninsula effect at the tip of the Thai-Malay

peninsula, and numerous examples of the species-area effect. The latter are important to

conservationists as the rise in sea level (discussed below) will result in more species losses

on smaller islands (Okie and Brown 2009). Other patterns of interest include the location of

biodiversity hotspots, centers of endemism and refugia. Although defining hotspots as

congruent with whole biogeographic subregions (Fig. 1: Indochina, Sundaic, Philippine

and Wallacea), as done by Conservation International (2007), may be too broad-scale for

some purposes, the identification of smaller areas of endemism or species richness can

guide the location of protected areas, e.g., the Mentawi islands with their 17 species of

endemic mammals (Corlett 2009a), numerous isolated karst mountains (Clements et al.

2006, 2008), IUCN’s Key Biodiversity Areas (Brooks et al. 2008), and BirdLife Interna-

tional’s Important Bird Areas (Chan et al. 2004). Understanding the history of today’s

hotspots is necessary to establish whether they are ancient and geographically fixed, or

whether they have moved in response to past climatic change?

Hotspots of freshwater biota are also known: the mid- and lower-Mekong River has

probably the second richest fish fauna in the world (Rainboth et al. 2010) and also harbors a
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very diverse mollusc fauna. Unfortunately, both the basic documentation of this fauna and

the still confused history of the region’s rivers make it difficult to delimit aquatic hotspots.

Although terrestrial biotas may be conserved by protecting hotspots (fortress conservation)

this approach is less useful for river and wetland biotas whose conservation typically

requires watershed level management.

If hotspots capture areas of great species richness today, Pleistocene refugia are thought

to have enabled these species to survive environmental challenges in the past. Several

workers have argued that during cooler glacial conditions rainforest retreated to the hills of

peninsula Malaysia, western Sumatra, the Mentawi Islands, and the center of Borneo, and

that during hypothermal periods the rainforest was replaced by savanna woodland or

grassland on the emerged Sunda plains and elsewhere (Heaney 1991; Morley 2000, 2007).

The extent to which a continuous or broken savanna corridor covered parts of the Sunda

Shelf from Indochina to Borneo is controversial as the evidence is mixed and often site-

specific (Kershaw et al. 2001, 2007; Meijaard 2003; Bird et al. 2005; Meijaard and Groves

2006; Wang et al. 2009). Recently, Cannon et al. (2009) have modeling of the changes in

distribution of major forest types during the last full 120,000-year glacial cycle and found

they actually expanded rather than contracted in their ranges during each hypothermal

phase. They modeled the distribution of lowland evergreen rainforest, upland forest

([1,000 m), and coastal mangrove forest over a large portion of Sundaland and their

results, under several different climate scenarios, show that lowland and montane forests

were far more extensive during most of the glacial period, with or without the development

of a savanna corridor across the region. Modeling the last million years they concluded that

it is today’s rainforests that are refugial and not those of, for example, the LGM. Southeast

Asian forest changes are the opposite of those in better-known temperate regions; rather

than shrinking during cooler periods, the lowland evergreen rainforest doubled in area as it

spread across the emergent Sunda Shelf (Fig. 2b). Upland forest was 2–3 times more

extensive for most of the last 120 kyr than it is during the present interglacial. The

distribution of mangrove forest is more complicated: their minimum extent was during the

LGM and their greatest extent was when sea levels were between -40 m and -70 m,

typical sea levels during most of the last million years. Mangrove forests have moved

almost continuously and repeatedly with the shorelines over distances of[500 km for most

of the last 2 Ma. When their model is extended to nearby continental regions it will be

most interesting to see how the seasonally dry evergreen forests change their distribution or

were transformed into more deciduous forests.

Cannon et al.’s (2009) analysis of vegetation changes coupled with Woodruff and

Turner’s (2009) contribution regarding multiple sea level oscillations and repeated biotic

compression (discussed below) over the last million years present a very different bio-

geographic picture of Southeast Asia than that envisioned by most earlier workers. The

norm for the last few million years involves long cooler periods with slightly reduced

rainfall, significantly lower sea levels, and 1.5 to 1.75 times as much land. The exceptional

state involves the short warmer interglacials (the last 10 ka for example) with higher sea

levels and the fragmentation of the land into islands and peninsulas. Interglacial conditions

prevailed for \10% of last million years.

Biogeographic regionalism: history as a guide to the future

Understanding of the history of hotspots, refugia and biogeographic transitions is important

for making projections about the future evolution and distribution of the biota and its

conservation (Willis et al. 2007). The transitions between Sundaland and Wallacea
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(discussed above), between Sundaland and the Philippines (see Heaney 2004), and between

Indochina and the Palearctic (Corlett 2009a) are reasonably well known and will not be

discussed further here. In contrast, a still unsolved biogeographic puzzle involves the

differentiation of the Indochinese and Sundaic biotas without any clear geological or

geographic barrier. The position of this transition in forest-associated birds and its possible

history near the Isthmus of Kra were discussed by Hughes et al. (2003) and Woodruff

(2003a, b). Woodruff’s (2003a) hypothesis that the peninsula had been cut by barrier-like

marine transgressions during the Neogene was not supported by subsequently revised

global sea level curves (Miller et al. 2005; Lisiecki and Raymo 2005; Bintanja and van de

Wal 2008; Naish and Wilson 2009) but dramatic sea level fluctuations may well account

for today’s patterns. Woodruff and Turner (2009) hypothesized that the *58 significant

episodes of sea level rise (of[40 m) (Fig. 2a) and the flooding of the Sunda Shelf during

the brief interglacial periods would have halved the habitat area available and forced the

biota back repeatedly into refugia like those they are found in today. They suggested that

the repeated 50–70% reduction in habitat area might account for the observed 30%

reduction in mammal species diversity in the northern and central peninsula, and the

observed clusters of species range limits north and south of the area.

The Indochinese-Sundaic transition in plants lies 500 km south of the Isthmus of Kra on

the Kangar-Pattani Line and ecology rather than history has been used to explain its

position (Fig. 1). Phytogeographers have hypothesized that this transition is associated

with the occurrence of one or more months without rainfall north of the Kangar-Pattani

Line (Whitmore 1998). Although maps of Weck’s Climatic Index show an abrupt change

here (Brown et al. 2001), maps of the number of months with no significant rainfall suggest

a more complex picture (see Wells 1999; Woodruff 2003a, b). The climatological

underpinning of this ecological hypothesis needs to be verified, and van Steenis’ unpub-

lished and lost distribution maps of 1,200 plant genera should now be recreated. If, as it

seems likely, some Malesian species occur at least 500 km further north of the Kangar-

Pattani Line, where seasonal evergreen rainforest transitions to mixed moist deciduous

forest near the Isthmus of Kra, then the plant transition will need reinterpretation

(Woodruff 2003a, b).

Today’s geography is highly unusual and recognizable for perhaps only 42 kyr or 2% of

the last 2 Myr. It follows that today’s plant and animal species distribution patterns may

also be unusual and\10 kyr old (Woodruff 2003a). For most of the last 2 Myr there was

almost continuous dry land access between the continent and the islands of Sumatra, Java

and Borneo. Land emerged whenever sea levels fell below -30 m; land bridges between

the continent and today’s islands were the norm rather than the exception (Fig. 3b). This

makes the position of the biogeographic transitions on today’s peninsula even more

puzzling in the absence of identifiable barriers to dispersal.

Phylogeographic studies using both ancient and modern DNA should eventually resolve

this puzzle. If the Indochinese and Sundaic biotas diverged from one another in refugia

north and south of today’s transitions it should be possible to find genetic evidence of this

history in many extant species. Population genetic models of repeated population expan-

sion and contraction from Plio-Pleistocene refugia lead to predictions regarding the loss of

population variability and homogenization of population structure that can be tested in

extant populations. Phylogeographic studies of diverse plants and animals in Amazonia

and northern temperate regions (regions for which the Pleistocene refugium theory was

developed) show, however, that general predictions are hard to make as some species

follow habitat shifts and others do not (Hofreiter and Stewart 2009). Such differential

species-specific response to the same environmental change makes it difficult but not
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impossible to reconstruct regional paleoecology. Nevertheless, pioneering regional phy-

logeographic studies of forest and savanna associated species coupled with more and

better-dated fossil data are helping resolve this biogeographic puzzle; see for example:

Chaimanee (2000), Gorog et al. (2004), Harrison et al. (2006), Tougard and Montuire

(2006), de Bruyn and Mather (2007), Quek et al. (2007), Earl of Cranbrook (2009),

Esselstyn and Brown (2009).

On-going biogeographic changes and the future evolution of small populations

and communities

Corlett (2009a) provides a good general introduction to the expected climate changes in

Southeast Asia. Since the mid-1970s tropical rainforests have experienced a significant

warming at a mean rate of 0.26�C per decade (Malhi and Wright 2005). Climatologists

make the following predictions for Southeast Asia before the end of this century: a

2.4–2.7�C rise in mean annual temperature (4�C in subtropical China), a 7% increase in

wet season rainfall, and a drier dry season (Christensen et al. 2007; Bickford et al. 2010).

Sea levels are expected to rise 1–2 m by 2150 and 2.5–5 m by 2300 (WBGU 2007;

Rahmstorf et al. 2007; Woodruff and Woodruff 2008) (Fig. 3c). Unfortunately, such

projections are not global end-points but rather the conditions expected when atmospheric

CO2 is double its pre-industrial concentration. Temperatures and sea levels, for example,

will continue to rise after this point if emissions of greenhouse gases are not reduced and if

tundra methane out-gasses as expected. Most projections therefore understate the real end-

point values and threats to biodiversity. In addition, there are significant uncertainties

regarding the monsoon’s seasonality and intensity, the probably higher frequency of ENSO

events, and fire (see Taylor 2010). Even the relatively deterministic relationship between

atmospheric temperature, ice cap melting and sea level rise is complicated by local

isostacy, geoid shape, and the rates of ice sheet melting. Of greatest concern are so-called

ecosystem tipping points beyond which current trends are irrelevant, e.g., the Greenland

ice cap could collapse (raising sea levels to ?7 m) once a certain partial meltdown has

occurred (WBGU 2007).

Conservationists need to know whether and how species will shift their ranges in

response to global warming (Pimm 2009). The mid-Pliocene (*3 Ma), when global

temperatures were on average 3�C higher, is especially useful as a model of coming

vegetation and biome distribution changes (Bonham et al. 2009; Haywood et al. 2009;

Salzmann et al. 2008, 2009). Given that many extant species lived in Southeast Asia during

the Pliocene, and have survived multiple glacial/interglacial cycles since then, they will

probable be less challenged by temperature than seasonality and the length of the dry

season. This suggests that they may have sufficient genetic variability and ecological

plasticity to adapt to the expected climatic changes. Reports of such adaptive variation and

of shifts in species ranges and phenology illustrate the ability of some species to respond

individualistically to significant climate change (Parmesan 2006). The following recent

regional examples are informative: (1) Baltzer et al. (2007, 2008) describe current deter-

minants of tree species distributions and the evolution of drought tolerance in trees north

and south of the Kangar-Pattani Line; (2) Sheridan (2009) found three frog species that

occur in both ever-wet Singapore and seasonal Thailand have adapted to the different

environments with changes in clutch size, body size, and the timing of oviposition;

(3) Round and Gale (2008) found that the lowland Siamese fireback pheasant Lophura
diardi, has increased in abundance at higher elevations over 25 years in central Thailand;

(4) Peh (2007) found evidence that other bird species have also extended their upper limits
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along elevation gradients; (5) Chen et al. (2009) found that the average altitudes of indi-

viduals of 102 montane geometrid moth species on Mount Kinabalu in Borneo increased

by 67 m between 1965 and 2007; (6) Corlett (2009b) discussed the innate dispersal

abilities of trees and other plants and concluded that although altitudinal shifts are feasible

as they involve short distances (a 3�C increase in mean annual temperature is equivalent to

an elevational shift of *500 m), the required latitudinal range shifts, which may require

dispersal of [500 km, and are unlikely to occur naturally in the time available; and (7)

Bickford et al. (2010) also discuss herpetological examples but argue that many regional

amphibians and some reptiles will soon reach the physiological limits of their adaptability.

Wright et al. (2009) make the same point but more generally: tropical species are likely to

be particularly sensitive to global warming because they are adapted to limited geographic

and seasonal variation in temperature, already live at or near the highest temperatures on

Earth before global warming began, and are often isolated from potential cool refugia.

They found that, even under a moderate global warming scenario, fully 75% of the tropical

forests present in 2000 will experience mean annual temperatures in 2100 that are greater

than the highest mean annual temperature that supports closed-canopy forest today.

Discussions about the future movement of species geographic ranges to adapt to global

change require a deeper understanding of the genodynamics of natural population than is

currently available. The structure and development of species ranges is therefore of great

interest but little research on this subject has been conducted in Southeast Asia. The fact

that many regional species have transboundary distributions has impeded research given

the extra burdens of obtaining research permits to work in two or more countries. Else-

where, conservationists are focusing more attention on small populations at the geographic

edges of species ranges, as these are the ones relevant to tracking adaptation to change and

also the ones at greatest risk of extirpation (Kawecki 2008; Sexton et al. 2009). Unfor-

tunately, opportunities for range expansion are increasingly limited as protected areas and

habitat corridors are rarely in the right places; sustaining populations in place is becoming

the only option. In such cases it is desirable to know whether the peripheral populations

have sufficient inherent genetic variability to justify proposed management efforts. It is not

sensible to go to great lengths to save peripheral populations simply because they are rare;

it would be better to focus on larger populations that have greater evolutionary potential

(Woodruff 2001a; Hoglund 2009). The future evolvability of populations is determined in

part by their innate genetic variability and efforts to sustain selected populations or

accelerate their natural rates of dispersal by translocation (assisted range shifts) presuppose

that conservationists pay more attention to genetic variation than they have in the past. This

is especially true in Southeast Asia where sustaining species increasingly involves con-

serving small populations in recently fragmented patches of forest. The ecological effects

of habitat fragmentation are well known (see Sodhi et al. 2007); area effects and edge

effects may both lead to population extirpation. Lynam (1997) described a case study

involving small mammals isolated on forested islands left when a new reservoir filled in

Thailand. Small isolated populations will also suffer genetic erosion, the loss of allelic

diversity by chance and by inbreeding, and this too may contribute to their extirpation.

Studies in Southeast Asia were the first to demonstrate methods that now enable scientists

to monitor genetic variability in free-ranging animals: (1) Woodruff (1990, 2003c) intro-

duced noninvasive genotyping using, for example, hair of gibbons, dung of elephants, and

feathers of hornbills to obtain DNA without disturbing animals and (2) Srikwan and

Woodruff (2000) introduced a technique sensitive enough to detect and monitor the loss of

genetic variation within populations isolated for a few generations in the above mentioned

reservoir island situation. These genetic techniques will be especially useful in Southeast
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Asia as tropical species typically have patchy distributions, as genetic erosion is an

increasing problem and as interventive population management becomes more necessary.

Goossens and Bruford (2009) provide an overview of the use of noninvasive genetic

analysis in conservation.

An understanding of the history of the biogeographic transitions on the Thai-Malay

peninsula is relevant to predicting the behavior of the extant species involved as they

respond to on-going changes in local climates. Will the transitions shift to the north with

global warming or with changes in the length and distribution of the dry season? Such

shifts involve changes in the range limits of the species involved in the transition and

information about past range shifts would inform projections about future ones. Making

predictions about the future distributions of individual species is difficult as we do not yet

understand how communities of species changed between the long glacial phase (norm)

and short interglacial phase (refugial) of each glacial cycle (Webb et al. 2008). Although

most species appear to make individualistic responses to climate change a lot depends on

their dispersal abilities, niche breadth and ecological plasticity (Parmesan 2006; Hofreiter

and Stewart 2009). In contrast, other species clearly show similar responses to change; for

example, Okie and Brown (2009) analyzed the disassembly of mammal communities

isolated on Sunda Shelf islands in the last 14,000 years, and found that species that occur

on small islands tend to be nested subsets of more diverse communities inhabiting larger

islands. Other examples involve cases where species are known to be even more tightly co-

evolved and biogeographically dependent on one another. Corlett (2009b) points out that

seed dispersing frugivorous birds and mammals will be critical to the survival of many

plant species responding to global warming by distributional shifts. Brockelman (2010)

discusses specific plants including rambutans that are dependent on gibbons. Other species

play critical roles in overall community function as ecological keystone species. So

although many species may be interchangeable (Hubbell 2001), the removal of others from

a community can have a disproportionately large ecological impact. Large carnivores, for

example, are especially vulnerable in fragmented landscapes and their extirpation can lead

to increased numbers of small carnivores (mesopredator release) and, in turn, to the decline

of their prey (birds and other small vertebrates) (Crooks and Soulé 1999). The biogeog-

raphy and ecology of large carnivores therefore merits our attention (Sergio et al. 2008).

In this context it is unfortunate that we do not yet understand the ecological significance

of the extinction of the regional Pleistocene megafauna. Humans and their dogs (domes-

ticated elsewhere *40 ka) are associated with the extinction or widespread extirpation of

[20 species of mammals including proboscideans, rhinoceroses, hippopotamus, tapirs,

hyaenas, giant pangolin, giant panda, river dolphins, and the giant primates, Pongo and

Gigantopithecus. Unfortunately, the events are still too poorly documented to discuss

either causes or ecological consequences (Louys 2007; Louys et al. 2007; Corlett 2009a).

However, the communities in which the extirpated species lived have not collapsed and for

conservationists the real worries are not the losses of individual species but the more far-

reaching effects of ecosystem collapse. The best defense against such catastrophe in

Southeast Asia is to reduce human population growth and the rate of habitat conversion

and create the largest possible array of protected areas (Sodhi and Brook 2006; Corlett

2009a; Berry et al. 2010). Reserve size is especially important for terrestrial communities

like the montane forests that are expected to shrink in size or disappear as the climate

warms. Unfortunately, the reserves that we would recommend for today’s conditions are

not the same as those we will need after 100 years of projected habitat loss and climate

change (Lee and Jetz 2008).
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Human biogeography: growing threats to regional biodiversity and ecosystems

Humans have been part of nature in Southeast Asia for a very long time. Homo erectus
walked out of Africa *1.9 Mya and spread as far as China, Vietnam, Java and Flores. They

lived as small bands of hunter-gatherers who made stone tools. We do not yet know what

impact they had on Pleistocene vegetation and megafauna but they used fire for the last

800 ka. H. erectus was replaced in the last hundred thousand years by populations of H.
sapiens that left Africa *85 ka. H. sapiens followed the same coastal route to Southeast

Asia, arriving *75 ka and subsequently spread to China and Australia. There is little

physical evidence of this history as sea levels 70–80 ka were 50–60 m below today’s

(Fig. 3b) and the traces are now submerged. The genetic evidence, on the other hand, is

strong and documents the exodus from Africa, the route taken, the origins of the surviving

descendants of the first wave of beachcombers in Southeast Asia, and the current patterns

of diverse population distribution and admixture (Oppenheimer 2004; Hill et al. 2006).

Beginning at the end of the LGM, *19 ka, the coastal populations would have been

pushed slowly inland for 12,000 years as sea levels rose from -130 m to ?2–5 m,

4,200 years ago. Corlett (2009a) has reviewed the subsequent ecological impacts of these

humans. They began spreading up the river valleys and practiced swidden agriculture at

least 5,000 years ago. Rice was domesticated about 4,500 years ago in societies that

developed water management for paddy field cultivation. Forest clearing accelerated with

the development of great regional civilizations and urban centers in the last 1,500 years.

Most of the remaining lowland forest was cleared in the last 100 years for timber and

replaced by rubber and tree plantations, and much mangrove forest has been converted into

shrimp farms. Wilcove and Koh (2010) argue that the rapid growth in palm oil production

in the last 20 years is the region’s single greatest threat to biodiversity. Today, only 5–7%

of the original vegetation remains except in Wallacea (15%) (Conservation International

2007) and an unknown number of species have disappeared.

Humans are the major drivers of habitat alteration, climate change and species

endangerment and four aspects of human biogeography will increasingly impact regional

biodiversity conservation in the 21st century. These involve changes in the distribution of

populations as a result of the relocation of large numbers of environmental refugees (Myers

2001; Dowie 2009, see also Sodhi et al.’s (2010) discussion of the impact of Indonesian

transmigration). The movement of tens of millions of people, even without further pop-

ulation growth, is going to increase the pressures on protected areas and biodiversity.

Rural environmental refugees

Today nearly half the region’s population is urban. In 2007, the urban population ranged

between 21–32% (Cambodia, Laos, Vietnam, Thailand), to 48% in Indonesia, 67% in

Malaysia and 100% in Singapore. The migration of poor rural people into the cities is

thought to be beneficial in that it is followed by a fall in the birth rate and it reduces

pressures on wildlife in remaining forests. However, the emergence of a class of relatively

rich consumers in the cities creates a national demand for wood and wildlife products

(Nijman 2010). Coupled with these local demands there is now an insatiable international

market for the same products. The negative impact of urban migration will probably

outweigh the positive, as far as biodiversity is concerned, until this aspect of societal

development can be countered by educational and legislative programs.
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Protected area refugees

A second group of environmental refugees are people who live in forests that have recently

been designated as protected areas (Hirsch 1997; Hirsch and Warren 1998; Dowie 2009).

Some tribal groups have lived in remote hills for centuries and others have been pushed

into the forests fairly recently by more powerful lowland groups. These minorities are

significant to conservationists as they now inhabit the last patches of less disturbed forest.

Can they continue swidden farming and live sustainably in the forest or should they be

forcibly removed? Although the Malaysian Orang Asli recently won subsistence use rights

within protected areas, the 2 million members of various hill tribes in Thailand have no

such legal standing yet, and are accused of degrading the remaining forests, water

catchments, rivers and wildlife. The Thai national debate over forest protection has become

polarized with two opposing camps approaching conservation very differently and pejo-

ratively labeling each other as ‘‘bananas’’ or ‘‘watermelons’’ (Watershed 1999; Woodruff

2001b, 2006; Fahn 2003). The ‘‘bananas’’ are often Western-trained government ecologists

who recognize the importance of protected areas of forest in wildlife conservation and

water quality. They have adopted the Western view that man is apart from nature and

therefore humans should be removed from the forest regardless of the fact that hill tribe

members are difficult to resettle as they lacked citizenship, land rights and education. The

alternate view, held by the ‘‘watermelons’’, is that humans are part of nature; their sus-

tainable use of natural resources should be developed and their societal rights must be

strengthened. Such views are likely to be held by academic sociologists and championed

by the NGOs, and conform to traditional views that humans are part of nature. ‘‘Water-

melons’’ are green (environmentalist) on the outside but pink (politically leftist, a

pejorative term in this instance) on the inside. In contrast, ‘‘bananas’’ are yellow (Asian) on

the outside but white (holding Western views of nature) on the inside. This debate provides

a cautionary lesson for some Western conservation biologists on the difficulty of imple-

menting scientific principles cross-culturally; its resolution will determine how many new

refugees are created. Ziegler et al. (2009) provide a critical analysis of the consequences

for conservation of the demise of swidden agriculture in the hills.

River-flow dependent environmental refugees

A third group of people who will become environmental refugees are those currently living

along rivers like the Mekong and Salween that are threatened by hydropower dams.

Damming these rivers will destroy their natural flood-pulse cycle and threatens to exter-

minate many of the fish that migrate annually into the tributaries and floodplains to feed

and breed. It will also impoverish millions who currently depend on flood-related

productivity; the lower Mekong is the largest river fishery in the world (Dudgeon 2005)

and 73 million people live in its watershed. The most dramatic case of a predictable eco-

catastrophe involves the Tonle Sap. The Tonle Sap (Great Lake of Cambodia) lies in a

depression that fills with water when the annual flood in the nearby Mekong river forces

the Tonle Sap river to flow backward for 3 months. This floodwater fills the lake, which

expands from 250,000 to 1.6 million ha and brings nutrients that support 1.2 million people

(another 2.4 million live in the basin), a 200-species fishery that provides Cambodians with

25% of their animal protein, an internationally important migratory bird refuge, and a rich

agricultural area. The lake also protects the Mekong delta of Vietnam, the rice bowl of

Southeast Asia, from inundation by serving as a temporary flood-water reservoir. After the

flood crest, the Tonle Sap river reverses itself and the nutrient rich water flows slowly back
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down to the Mekong delta for 6 months. The flood-pulse pattern of regional riparian life is

now threatened by the construction in China of a cascade of 8 dams on the mainstream of

the upper Mekong. Five dams are now filling including the 292 m-high Xiaowan, the

second largest dam on earth after Three Gorges. These dams are 2,000 km and several

countries away from their effects on people and biodiversity hotspots. Roberts (2001)

termed the expected effects fluvicidal and predicted the Tonle Sap’s destruction by 2030.

The riparian people who will lose their livelihoods are likely to constitute an increasing

threat to the remaining biodiversity as they fish out whatever is left in the river, and if they

leave to settle elsewhere (Watershed 2006; Woodruff 2008). In 2009 the Mekong River

Commission began formulating a Basin Development Plan with environmental flow

allocations to ensure the sustainability of fisheries and aquatic ecosystems for the five

downstream riparian countries but China is not a member of the Commission and no

mitigation agreement has been sought on behalf of the effected people, biodiversity or

ecological services. The impacts of the Chinese dams, and additional mainstream dams

planned for Laos, on conservation and human affairs are discussed elsewhere (see the

journal Watershed (www.terrafer.org), reports of the UN Development Program (UNDP

2008), and Molle et al. 2009). Needless to say, Principle 1 of the 1992 Rio Declaration on
Environment and Development, that States must not cause damage to the environment of

other States, has yet to be implemented in regional affairs.

Coastal environmental refugees

Fourteen million of the 28 million people currently living in the Mekong delta of Vietnam

will be displaced by a 2 m rise in sea level (Warner et al. 2009) (Fig. 3c). Although many

will relocate to towns, others will seek livelihoods elsewhere and their displacement away

from the low-lying coastal areas will impact the region’s protected areas. The effects of

climate change on the region’s typically low-lying rice growing areas will necessitate the

intensification of land use elsewhere or the conversion of remaining forest to agricultural

use (Woodruff 2001b). Throughout Southeast Asia many tens of millions of people will be

driven out of their present homes by sea level rise and storm surge related flooding unless

monumental sea walls are constructed (Woodruff and Woodruff 2008).

New roles for conservation biologists

It is a long time since most humans in Southeast Asia lived in harmony with nature

(Woodruff 1992; Fahn 2003). Planning for the future of life in the region (human and

other), and the ecological services it provides, requires significant changes in the way

people understand their ecological and biogeographic interrelatedness. Biodiversity is a

low priority in regional environmental impact assessments and ecological services are still

taken for granted by policy makers, developers, and the business sector. Attitudinal

problems are exemplified by the Thai government spokesman who, defending the dam-

ming of the Mun River, a tributary of the Mekong, said: ‘‘it is better for the Thais to use the

water as it is only wasted if it flows to Laos’’. Growing political regionalism still amounts

to the exploitation of poorer nations by their more powerful neighbors. International

institutions, civil society and private greed have all frustrated attempts to encourage

environmental stewardship.

Like it or not, conservation scientists have a responsibility to help change this approach

to nature and (1) ensure that full valuations of biodiversity, ecosystems and ecological

services are available and considered in the review of development projects (Daily 1997;
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Baimai and Brockelman 1998; Daily and Matson 2008; Daily et al. 2009; Dasgupta 2010;

Mooney 2010; Sodhi et al. 2007, 2010) and, more importantly, (2) help educate regional

leaders and people who influence the policy making process (Clark 2001). Bierbaum and

Zoellick (2009) note that we need more centers of excellence to build capacity across

public and private sectors to enable innovative education programs, technologies, market

solutions, and management practices. Tomorrow’s scholars will have to be trained to be

more interdisciplinary if they are to solve complex and interrelated environmental and

economic problems in concert with climate change. Putz and Zuidema (2008) are correct in

noting that academic ecologists have got to focus more on human habitats and less on

protected areas if they are to be effective. The biogeography of humans is therefore

critically important to sustaining regional biodiversity and ecological services. Three

approaches to conservation need to be on every academic curriculum and in every gov-

ernment and private agency’s toolkit. First, the community-based conservation approach

has benefitted both people and wildlife in certain situations (Western et al. 1994;

Borgerhoff Mulder and Coppolillo 2005). Second, bioneering, the interventionist ecolog-

ical management of species, communities, and ecosystems in a post-natural world, offers

radically different solutions to traditional engineering, which seeks to control nature

(Woodruff 2001a; Ausubel and Harpignies 2004). Third, ecosystem-based adaptation
deserves wide attention as it incorporates the other two approaches (Bierbaum and Zoellick

2009). Ecosystem-based adaptation aims to reduce the vulnerability of people to climate

change through the conservation, restoration, and management of ecosystems (World Bank

2009). Human adaptation goals can often be achieved through better management of

ecosystems rather than through physical and engineering interventions. For example,

mangrove restoration will protect shoreline habitat more effectively from storm surges than

sea walls; and the mangroves also sequester carbon and enhance local fishing. Forest

restoration is a more effective than agroforestry in watershed protection, builds on local

knowledge, and benefits both biodiversity and local communities. Bioneering and eco-

system-based adaptation are both based on the underlying ecological and evolutionary

processes and our future ultimately depends on these more than the technological fixes we

have enjoyed in the past. It is unfortunate that adaptation and the cooperative behavior it

requires are often frustrated by societal institutions that are more interested in self-

preservation and civic stability than intergenerational well-being (May 2010).

Biogeography provides a longer-term view of past biotic change, the product of ecology

and evolution in this ever-changing geographic theater, and provides a basis for informed

projections about the future. Given the refugial nature of the current Southeast Asian biota,

and the predictable trends of the ongoing environmental changes, it is clear that biodi-

versity and humans together face ominous threats. The window for limiting temperature

increases to a tolerable range is closing fast and, although many of the drivers of change lie

outside this region, much can be achieved locally by thoughtful mitigation. Working

together, biogeographers and conservationists must act as if their efforts in the next

20 years will affect the quality of life in this region for at least a thousand years.
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A-H, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status
and conservation challenges. Biol Rev 81:163–182

Economist, The (2008) Pocket world in figures 2008. The Economist, London
Esselstyn JA, Brown RM (2009) The role of repeated sea-level fluctuations in the generation of shrew

(Soricidae: Crocidura) diversity in the Philippine Archipelago. Mol Phylogenet Evol 53:171–181
Fahn JD (2003) Land on fire. The environmental consequences of the Southeast Asian boom. Westview

Press, Boulder, CO
GBIF (Global Biodiversity Information Facility) (2009) University of Copenhagen, Denmark (viewed

August 15). http://www.gbif.org/
Giam X, Ng TH, Yap VB, Tan HTW (2010) The extent of undiscovered species in Southeast Asia.

Biodivers Conserv. doi:10.1007/s10531-010-9792-2
Goossens B, Bruford MW (2009) Non-invasive genetic analysis in conservation. In: Bertorelle G, Bruford

MW, Hauffe HC, Rizzoli A, Vernisi C (eds) Population genetics for animal conservation. Cambridge
University Press, Cambridge, pp 167–201

Gorog AJ, Sinaga MH, Engstrom MD (2004) Vicariance or dispersal? Historical biogeography of three
Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biol J
Linn Soc 81:91–109
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