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Abstract To understand the patterns and processes

associated with the population dynamics of Balanus

glandula during the early phase of invasion along the

Pacific coast of eastern Hokkaido, population surveys

were conducted from 2002 to 2011 at five shores, each

consisting of five paired plots (scraped recruitment

plot and unscraped establishment plot), along 49 km

of coastline located 144 km east of the eastern front of

the invasion of this species in 2000. Larval recruitment

was first detected in 2004, but the establishment of a

population was not observed until 2 years later at the

westernmost shore of the study area. Occurrence

increased from non-native barnacle present in 4 % of

plots in 2006 to 100 % in 2011, but mean coverage

remained low (\5 %) in 2011. Most local population

coverage fluctuated without indicating clear temporal

trends, but coverage in one plot showed a consistent

pattern of rapid increase. Local extinctions occurred,

but rates of local extinction decreased with time as

larval recruitment increased. Lag times between

recruitment and establishment occurred for 64 % of

the paired plots and ranged from 1 to 4 years. Lag

times decreased after 5 years, when larval recruitment

increased. These findings suggest that the intensity of

larval recruitment determined invasion dynamics

during this early phase of the invasion, and the

monitoring of recruitment is therefore essential for

early detection of invasions by sessile marine organ-

isms and prediction of their range expansion.
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Introduction

A biological invasion starts with the arrival of small

numbers of propagules beyond the native range of the

species. The propagules then become established and

reproduce, the result being spatiotemporal changes in

the distribution and abundance of invading species

(Williamson 1996; Sakai et al. 2001). The early phase,

when the population is not close to its equilibrium

level, is crucial to understanding the dynamics of

invasions (Rouget et al. 2004; Azzurro et al. 2006;

Liebhold and Tobin 2008) and to designing manage-

ment responses (Kolar and Lodge 2001; Hulme 2006).

An important question during the early phase of an

invasion is how propagule pressure, that is, propagule

numbers and spatiotemporal patterns in the arrival of

propagules, limits the success of the invasion. Prop-

agule pressure often plays an important role in

determining whether the introduced species is able to

successfully establish itself and extend its distribution

(Lockwood et al. 2005; Drake and Lodge 2006;

Roman and Darling 2007; Johnston et al. 2009;

Simberloff 2009). Although many previous studies

have focused on the early phase of invasion dynamics

(Strayer et al. 1996; Carey 1996; Crooks 2005, 2011;

Gaubert et al. 2009), most of these studies have not

included an estimate of propagule supply (Cohen and

Carlton 1998; Costello and Solow 2003; Marchetti

et al. 2004; Jeschke and Strayer 2005; Brown et al.

2008; Miller and Ruiz 2009; Marsico et al. 2010),

especially in marine habitats (but see Ruiz et al. 2000;

Verling et al. 2005; Clark and Johnston 2009; Vaz-

Pinto et al. 2012).

Sessile marine animals are a major component of

marine ecosystems and are found in a variety of

habitats. Most of them exhibit complex life cycles that

include pelagic larval and benthic phases linked by

recruitment (Todd 1998). Because of their immobility

at the benthic stage, dispersal of sessile organisms

relies almost completely on larval dispersal. Recruit-

ment should thus play an important role in invasion

dynamics. A simultaneous evaluation of abundance,

distribution, and larval recruitment should therefore

greatly benefit our understanding of the early phase of

invasion by sessile marine organisms.

There are at least three fundamental questions that

concern the dynamics of the early phase of invasion by

sessile marine animals. First, how do abundance,

distribution and recruitment change with time after

invasion (Brown and Kodric-Brown 1977; Hanski

1991, 1998, 1999; Stachowicz et al. 2002; Clark and

Johnston 2009)? Previous studies have focused on the

establishment phase of invasions, whereas there have

been few studies concerning abundance, distribution,

and recruitment during the early phase of invasions in

marine habitats (Burlakova et al. 2006; Lucy 2006;

Kraemer et al. 2007). Second, does the rate of local

extinction decrease with time as the result of a

temporal increase of recruitment or population size?

The probability of local extinction may decrease with

increasing recruitment density that results from the

rescue effect of a metapopulation (Brown and Kodric-

Brown 1977; Hanski 1991). Third, does the length of

the lag time between population establishment and

initial arrival of recruits decrease with time when

recruitment density increases? If recruitment is low,

there may be a high risk of death of all individuals

before maturation because of demographic stochas-

ticity (Lande et al. 2003; Clark and Johnston 2009). To

our knowledge, the above questions have not yet been

simultaneously answered for a single invasion event.

This fact presumably reflects logistic difficulties: for

this purpose a survey should be performed over a long

timeframe along a long coastline located adjacent to

the leading edge of an invasion front.

The native range of the barnacle Balanus glandula

is the east Pacific coast from the Aleutian Islands to

Baja California (Newman and Ross 1976; Newman

and Abbott 1980). This species becomes sexually

mature at 1 year of age (Barnes and Barnes 1956) and

releases about 30,000 larvae per brood (Newman and

Abbott 1980). These planktonic larvae exist in the

water column for 2–4 weeks (Brown and Roughgar-

den 1985; Strathmann 1987).

Balanus glandula has invaded in the southwest

Atlantic coast of Argentina (Vallarino and Elias 1997),

the southeast Atlantic coast of South Africa (Simon-

Blecher et al. 2008), and the northwest Pacific coast of

Japan (Kado 2003). In Japan, this barnacle was first

found in 2000 at Sasazaki (39�30N, 141�430E) (Kado

2003). However, Kado (2003) speculated that in Japan,

the first arrival of B. glandula was in 1992 (in Geller

et al. 2008). In 2000, its distribution expanded along the

Pacific coast of northern Japan up to Hiroo (42�170N,

143�190E) of Hokkaido (Fig. 1a) (Kado 2003).

To elucidate the patterns and understand the

processes that control the population dynamics of B.

glandula during the early phase of invasion along the
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Pacific coast of eastern Hokkaido, we conducted

population surveys from 2002 to 2011 at five shores,

each consisting of five paired plots, along 49 km of

coastline located 144 km east of the eastern invasion

front of this species in 2000. The specific questions we

asked were as follows: (1) how do the abundance,

distribution, and recruitment density increase with

time after an invasion; (2) does the rate of local

extinction decrease with time, and what are the effects

of recruitment density on local extinction; and (3) does

the length of the lag time between population estab-

lishment and initial arrival of recruits decrease with

time, and what is the effect of recruitment density on

the lag time of local population establishment?

Methods

Study area

The study area was located along the 49 km of coastline

between Nikomanai (shore A) and Mochirippu (shore

E), 144 km east of Hiroo, which was reported to be the

eastern invasion front of B. glandula in 2000 (Kado

2003) (Fig. 1a). The study area is within a sub-arctic

zone (Briggs 1995; Asakura 2003) impacted by the cold

Oyashio (Kurile) current, and is a region where ice scour

occurs once every few years. Low spring tide occurs

during the day from late March to early September and

during the night from late September to early March.

The mid tidal zone examined in this study is dominated

by a native barnacle, Chthamalus dalli (Fukaya et al.

2013). Other typical space occupants include Semibal-

anus cariosus (barnacle; Nakaoka et al. 2006), and the

seaweeds Analipus japonicus, Chondrus yendoi, Cor-

allina pilulifera, Gloiopeltis furcata, and Hildenbrandia

sp. (Okuda et al. 2004). Invertebrate predators include

the whelk Nucella lima and sea star Leptasterias

ochotensis, with the latter species uncommon and

restricted to a lower tidal zone (Nakaoka et al. 2006;

Munroe and Noda 2010). N. lima preys on barnacles at

the mid tidal zone on these shores (AKM Rashidul

Alam, personal observation).

Survey design

A hierarchical design (Noda 2004) was used for the

arrangement of the study, with five paired plots nested

within each of five shores for a total of 25 paired plots

(Fig. 1b). Shores were separated by 10–24 km; plots

were separated by 10–15 m. Each paired plot consisted

of an adjacent recruitment and control plot separated by

several tens of cm and marked with permanent anchors

drilled into roughly vertical rock. The vertical midpoints

of both plots corresponded to the mean tidal levels, and

their vertical heights were 30 cm. This vertical dimen-

sion was chosen to approximately correspond to the

vertical range of B. glandula recruitment determined

from a pilot survey (AKM Rashidul Alam, unpublished

data). The horizontal widths of the control and recruit-

ment plots were 50 and 30 cm, respectively.

Recruitment plots were cleared of all surface organ-

isms each year during low tide events in May by burning

and then scraping the rock surface with a wire brush.

Fig. 1 a Map showing

study area located on the

Pacific coast of eastern

Hokkaido and presence

(filled circle) or absence

(open circle) of B. glandula

at ports along the coast of

Hokkaido in 2000 (Kado

2003), b map indicating the

five shores studied
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This clearing was also conducted immediately after

each survey. Sampling of recruitment plots was per-

formed thrice every year, in May, August, and October.

This sampling began in 2004 and continued until 2011.

Sampling of recruitment plots involved using an

Olympus Digital Camera (Model no. l1030 SW) to

photograph square, 25-cm2 quadrates. Photographs of

12 replicate quadrates were taken from each recruitment

plot. A pilot survey indicated that recruitment density in

photographs taken in May was quite low compared with

August and October (AKM Rashidul Alam, unpub-

lished data). Thus, at each location, we added recruits in

August and October to estimate the annual recruitment

density of B. glandula based on its major recruitment

period.

Control plots were surveyed in each August,

beginning in 2002 and continuing through 2011.

Occurrence of B. glandula was based on presence or

absence in a plot. Estimates of barnacle coverage as a

surrogate of the population size were performed by

using a grid placed over the sample plot, with

observation points at evenly spaced intervals (5 cm

vertically and 5 cm horizontally; 60 grid points total).

Presence or absence of B. glandula at each point on the

grid was used to estimate coverage of B. glandula for

each control plot at each survey.

Data analyses

Evaluation of temporal changes in occurrence

and distribution

If a control plot occupied by B. glandula became

unoccupied in the next year, the local population was

considered to have gone extinct. The rate of local

extinction for each year was obtained by dividing the

total number of extinctions that occurred in a given

year by the total number of control plots occupied in

the previous year. To evaluate the effect of recruitment

density on extinction, the annual recruitment densities

from the previous year were compared between

extinct and surviving populations for each year by a

Mann–Whitney U test.

Elucidation of timing of the local population

establishment

When B. glandula was present on a control plot in at

least two consecutive years, including the final year of

the survey, the local population was considered to be

established. To elucidate the time lag associated with

local population establishment, we calculated the

number of years between the initial arrival of recruits

at the recruitment plot and population establishment at

the control plot. To assess the effect of recruitment

density on the lag time associated with local popula-

tion establishment, log transformed annual recruit-

ment densities of populations that became established

at the initial arrival of recruits without a time lag and

with a time lag were compared by a Mann–Whitney U

test.

Results

Temporal changes in coverage and recruitment

density

Until 2009, the mean coverage of B. glandula was low

(\0.5 %) (Fig. 2a). Coverage then increased rapidly

and approached 5 % in 2011. The coverage of

B. glandula population in all plots except for one
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Fig. 2 Temporal changes in coverage and annual recruitment

density of B. glandula on the study area; a mean coverage during

2002–2011 at control plots, and b mean annual density of

recruits at recruitment plots during 2004–2011. Vertical bar

indicates standard errors
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(in A1) varied substantially from year to year. In A1,

there was a steady increase to 60 % coverage from

2008 to 2011.

On recruitment plots, B. glandula was first detected

in 2004 (Fig. 2b). The mean annual recruitment

density remained low (\0.5 cm-2) until 2008,

increased in 2010, and declined in 2011.

Occurrence dynamics

Control plots

Balanus glandula was first detected in this study area

in 2006, on one plot of the westernmost shore, A

(Fig. 3a). In 2007, B. glandula was found at one plot of

A and another plot of C. In 2008, its occurrence was

recorded at six plots located on two shores: A and the

easternmost shore, E. After 2009, this species was

detected at all shores, the number of occupied plots

increasing from year to year. Extinction and re-

colonization were detected in the cases of three local

populations (C2, A5, and B1). Populations that

colonized plots C2 in 2007, A5 in 2008, and B1 in

2009 were locally extinct in 2008, 2009, and 2010,

respectively.

Recruitment plots

The number of recruitment plots where B. glandula

occurred increased during 2004–2011. On recruitment

plots, B. glandula was first detected at the westernmost

shore (A) of the study area in 2004 (Fig. 3b). During

2005–2006, the occurrence was observed at two A

plots. B. glandula was found on 12 plots from three

shores (A, D, and E) in 2007 and on six plots from two

shores (A and E) in 2008. At shores B and C,

recruitment occurred first in 2009. From 2009 to 2011,

B. glandula was detected on all plots of all five shores.

Comparison of control and recruitment plots

We found similarities and differences in the occur-

rence of B. glandula between the control and recruit-

ment plots. On both control and recruitment plots, B.

glandula was first found at the westernmost shore

(A) of this study area. The occurrence was first

detected simultaneously on control and recruitment

plots of shore B in 2009. After 2009, B. glandula was

found on both types of plots at all shores. During

2004–2010, except 2008, the presence of this barnacle

was higher on recruitment plots than on control plots.

In 2007, B. glandula was present on recruitment plots

of the easternmost two shores, D and E, whereas B.

glandula was not detected on D and E control plots in

2007.

Local extinction

Three extinction events occurred. The rate of local

extinction gradually decreased from 50 % during
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2007–2008 to 0 % during 2010–2011 (Table 1). The

log-transformed annual recruitment densities

(mean ± SE cm-2) of surviving and extinct popula-

tions were -0.20 ± 0.08 and -0.75 ± 0.38, respec-

tively. The former was significantly higher than the

latter (Mann–Whitney U test, ts = 2.68, P \ 0.01).

Timing of the local population establishment

Out of 22 cases, eight populations became established

in the year when the arrival of recruits was first

detected (Fig. 4). Among the remaining 14 popula-

tions, there were time lags between the years of initial

arrival of recruits and population establishment. The

duration of the time lags ranged from 1 to 4 years. The

slope of the linear regression between the years of

initial arrival of recruits and population establishment

significantly differed from one (P \ 0.001), suggest-

ing that the lag time between the years of initial arrival

of recruits and population establishment decreased

over the course of invasion. The log-transformed

annual recruitment densities (mean ± SE cm-2) of

populations established in the year of initial arrival of

recruits (no time lags) and populations that became

established only after time lags were -0.32 ± 0.12

and -1.56 ± 0.19 cm-2, respectively. The former

was significantly higher than the latter (Mann–Whit-

ney U test, ts = 3.42, P \ 0.01).

Discussion

Spreading pattern and underlying processes

The front of B. glandula’s invasion was located

beyond the western boundary of this study area in

2000 (Kado 2003). The subsequent spreading pattern

and underlying processes were estimated on the basis

of information that was obtained from recruitment and

population surveys. At least in 2004, larvae reached

the westernmost shore, A; larvae may have been

released from a source located beyond the western

boundary of this study area. The supply of larvae to A

did not result in population establishment until 2005.

In 2007, larvae did not arrive at shores B and C, but

instead arrived at shores D and E; these larvae may

have been released from unknown external sources

located to the east of E or from the western shore

around A. The larval supply to D and E did not result in

population establishment until 2008 and 2009 at E and

D, respectively. In 2009, larvae reached B and C and

established local populations immediately; these lar-

vae may have been released from multiple sources

located on the east and west of both B and C.

For the majority of the locations there were time

lags between the initial arrival of recruits and popu-

lation establishment. These time lags may be partially

Table 1 Temporal changes in local extinction rate of B.

glandula during 2006–2011 at 25 control plots

Duration No. of

extinctions

No. of plots occupied

during previous year

Extinction

rate (%)

2006–2007 0 1 0.0

2007–2008 1 2 50.0

2008–2009 1 6 16.7

2009–2010 1 16 5.3

2010–2011 0 23 0.0

R² = 0.51**
b1 = 0.40*** 
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Fig. 4 Temporal relationship between the year of first detection

of recruitment and establishment of B. glandula populations

along the coast of eastern Hokkaido during 2002–2011.

Numeric character adjacent to each circle indicates number of

plots where barnacles were established. The solid line is the

linear regression between year of first detection of recruitment

and year of population establishment. The value of R2 and slope

(b1) are shown. Each asterisk on the value of R2 and b1 indicates

whether the slope of regression is different from 0 and 1.0,

respectively, at a significance level of **P \ 0.01, and

***P \ 0.001. Dash line corresponds to no lag in population

establishment
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explained by the negative impact of endemic assem-

blages. At control plots, preemption by endemic

sessile organisms may have limited recruitment den-

sity. Indeed, the mean coverage of all sessile organ-

isms was *60 % (AKM Rashidul Alam, unpublished

data), the indication being that free space available for

larvae of B. glandula was limited. In addition,

predation by the whelk, N. lima, may have affected

survival of this barnacle. At control plots, N. lima has

been commonly found, but it was rarely found at

recruitment plots (Takashi Noda, personal observa-

tion). Actually, the absence of the introduced barna-

cles often reflects inhibition associated with

interactions with endemic species, such as competition

(Zabin 2009) and predation (Laird and Griffiths 2008;

Sanford and Swezey 2008).

The arrival of larvae at both B and C was delayed

compared with shores D and E. There are two

hypotheses that may explain the causes of the delay.

First, less exposure to waves caused a lower larval flux

(Noda et al. 1998; Archambault and Bourget 1999;

Gaylord and Gaines 2000; Jenkins and Hawkins 2003)

within Akkeshi Bay. On the basis of this hypothesis,

the dependency of larval flux on wave exposure should

be independent of barnacle species (Macho et al. 2010;

Pfaff et al. 2011). However, the larval recruitment

density of B. glandula was lower at B and C than at D

and E, whereas larval recruitment density of C. dalli

was higher at B and C than at D and E (AKM Rashidul

Alam, unpublished data). This hypothesis is therefore

not supported. Second, the main coastal current that

transports barnacle larvae does not sweep the coast of

a bay (Gaines and Bertness 1992; Todd 1998; Jonsson

et al. 2004). However, there is no available informa-

tion on coastal currents in this area.

Local population dynamics

Most of the local populations fluctuated randomly,

whereas the population at A1 consistently increased

during 2009–2011. Even a few such successful and

growing populations may contribute greatly to range

expansion. The supply of larvae from a hotspot, a

small portion of the locations with remarkably high

abundance, plays an important role in range expansion

(Semmens et al. 2004; Leslie et al. 2005; Ruiz et al.

2011). Indeed, the temporal pattern in the coverage at

A1 was similar to that of the mean population

coverage. If plot A1 is removed from calculations,

the average cover exhibits more unclear temporal

trend, reaching only 2 % at the end of the study period

(i.e., 2011).

Extinction and local population establishment

During the early phase of the B. glandula invasion,

population dynamics were characterized by a higher

rate of local extinction and a longer lag time (4 years

after the initial invasion at this study area) for

population establishment. One of the major underlying

mechanisms may be demographic stochasticity, espe-

cially for the survival of recruits, caused by low

recruitment intensity. We assumed annual mortality to

be 0.97, the mortality of B. glandula recruits in their

native range (Menge 2000). From 2004 to 2008,

recruitment plots where B. glandula was present had

an average density of 0.144 cm-2. Accounting for the

fraction of free space on control plots (0.4), the

probability of complete die-off of recruits before

maturation (1 year of age) was estimated to be 0.5

(SE = 0.077, n = 24). In contrast, from 2009 to 2011,

recruitment on to plots where B. glandula was present

occurred at 1.06 cm-2, and the corresponding esti-

mate of die-off within 1 year was much lower at 0.05

(SE = 0.018, n = 73).

The implications of this study are twofold. First,

propagule pressure (i.e., larval supply) was crucial for

successful invasion of the rocky intertidal barnacle, B.

glandula, within a few years after the arrival of the first

larvae at a given location. When recruitment density

was low, there was a time lag between the initial

appearance of recruits and the establishment of a

population at a location, and local extinction some-

times occurred. Indeed, both the rate of local extinc-

tion and the probability of failure to establish a

population depended on recruitment density. Second,

monitoring of recruitment is essential for the early

detection of invasions by sessile marine organisms and

prediction of their range expansion. The first arrival of

recruits was detected 2 years before the establishment

of a population in this study area. The majority of local

populations were established after a time lag that

followed the initial arrival of recruits. It can be said

that a recruitment survey is cost-effective for moni-

toring of a marine invasion. A recruitment survey can

be performed by setting larval collectors such as shells

of bivalves and artificial substrata, which can be useful

for the rapid detection and identification of similar

Early phase of the invasion of Balanus glandula 1705
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multiple species at the same time, are cheap and easily

available for monitoring of a marine invasion.
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