Skip to main content
Log in

Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Bacillus sp. strain M10 was observed to produce an antifungal protein that inhibits the growth of Colletotrichum capsici, which is the causal agent of anthracnose disease of chili pepper and tomato. Ammonium sulfate precipitation, anion exchange chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the protein was approximately 55.4 kDa. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and a subsequent sequence database search indicated the antifungal protein was most similar to the Bacillus amyloliquefaciens vegetative catalase (KatA) protein. Light microscopy observation revealed that the antifungal protein induced abnormal hyphal elongation and conidial swelling and rupture. The protein considerably inhibited anthracnose development and protected the fruits from C. capsici infection. Thus, Bacillus sp. strain M10 and/or its putative catalase may be useful as a post-harvest biocontrol agent that protects chili pepper and tomato fruits from anthracnose disease caused by C. capsici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alina SO, Constantinscu F, Petruta CC (2015) Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotech Lett 20:10737–10750

    Google Scholar 

  • Alvindia DG, Acda MA (2015) The antagonistic effect and mechanisms of Bacillus amyloliquefaciens DGA14 against anthracnose in mango cv. ‘Carabao’. Biocontrol Sci Technol 25:560–572

    Article  Google Scholar 

  • Avis TJ (2007) Antifungal compounds that target fungal membranes: applications in plant disease control. Can J Plant Pathol 29:323–329

    Article  CAS  Google Scholar 

  • Barefoot SF, Klaenhammer TR (1983) Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl Environ Microbiol 45:1808–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne JM, Hausbeck MK, Hammerschmidt R (1997) Conidial germination and appressorium formation of Colletotrichum coccodes on tomato foliage. Plant Dis 81:715–718

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—a review. Front Microbiol 6:780. https://doi.org/10.3389/fmicb.2015.00780

    Article  PubMed  PubMed Central  Google Scholar 

  • Diao YZ, Zhang C, Xu JP, Lin D, Liu L, Mtung’e OG, Liu XL (2015) Genetic differentiation and recombination among geographic populations of the fungal pathogen Colletotrichum truncatum from chili peppers in China. Evol Appl 8:108–118

    Article  PubMed  Google Scholar 

  • Dieguez-Uribeondo J, Forster H, Soto-Estrada A, Adaskaveg JE (2005) Subcuticular-intracellular hemibiotrophic and intercellular necrotrophic development of Colletotrichum acutatum on almond. Phytopathology 95:751–758

    Article  CAS  PubMed  Google Scholar 

  • During K, Porsch P, Mahn A, Brinkmann O, Gieffers W (1999) The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 449:93–100

    Article  CAS  PubMed  Google Scholar 

  • El-Awady M, Moghaieb EEA, Haggag W, Sawsan Youssef S, El-Sharkawy AM (2008) Transgenic canola plants over-expressing bacterial catalase exhibit enhanced resistance to Peronospora parasitica and Erysiphe polygoni. Arab J Biotechnol 11:71–84

    Google Scholar 

  • Hou X, Boyetchko SM, Brkic M, Olson D, Ross A, Hegedus D (2006) Characterization of the anti-fungal activity of a Bacillus spp. associated with sclerotia from Sclerotinia sclerotiorum. Appl Microbiol Biotechnol 72:644–653

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Hwang BK (2007) Microbial fungicides in the control of plant diseases. J Phytopathol 155:641–653

    Article  CAS  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Kim JD, Jeon BJ, Han JW, Park MY, Kang SA, Kim BS (2016) Evaluation of the endophytic nature of Bacillus amyloliquefaciens strain GYL4 and its efficacy in the control of anthracnose. Pest Manag Sci 72:1529–1536

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lavermicocca P, Lonigro SL, Evidente A, Andolfi A (1999) Bacteriocin production by Pseudomonas syringae pv. ciccaronei NCPPB2355. Isolation and partial characterization of the antimicrobial compound. J Appl Microbiol 86:257–265

    Article  CAS  Google Scholar 

  • Liao CY, Chen MY, Chen YK, Kuo KC, Chung KR, Lee MH (2012) Formation of highly branched hyphae by Colletotrichum acutatum within the fruit cuticles of Capsicum spp. Plant Pathol 61:262–270

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mataragas M, Metaxopoulos J, Galiotou M, Drosinos EH (2003) Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci 64:265–271

    Article  CAS  PubMed  Google Scholar 

  • McLean KS, Roy KW (1991) Weeds as a source of Colletotrichum capsici causing anthracnose on tomato fruit and cotton seedlings. Can J Plant Pathol 13:131–134

    Article  Google Scholar 

  • Meerak J, Lida H, Watanabe Y, Miyashita M, Sato H, Nakagawa Y, Tahara Y (2007) Phylogeny of gamma-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. J Gen Appl Microbiol 53:315–323

    Article  CAS  PubMed  Google Scholar 

  • Nagorska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54:495–508

    CAS  Google Scholar 

  • Ni J, Tokuyama S, Sogabe A, Kawamura Y, Tahara Y (2001) Cloning and high expression of catalase gene from Bacillus sp. TE124. J Biosci Bioeng 91:422–424

    Article  CAS  PubMed  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez FY, Hassan MN (2017) Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 12(11):e0187412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shafi J, Tian H, Ji MS (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotec Eq 31:446–459

    Article  CAS  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Shuqing L, Nan Z, Zhenhua Z, Jia L, Biao S, Ruifu Z, Qirong S (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fert Soils 49:295–303

    Article  Google Scholar 

  • Wang LT, Lee FL, Tai CJ, Kasai H (2007) Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57:1846–1850

    Article  CAS  Google Scholar 

  • Wang N, Liu M, Guo L, Yang X, Qiu D (2016) A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. Int J Biol Sci 12:757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao ZJ, Lu JR, Ma CQ, Xu P (2009) Formation and identification of trimethylimidazole during tetramethylpyrazine production from glucose by Bacillus strains. Biotechnol Lett 31:1421–1425

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by The 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panan Rerngsamran.

Additional information

Handling Editor: Jesus Mercado Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikhong, P., Lertmongkonthum, K., Sowanpreecha, R. et al. Bacillus sp. strain M10 as a potential biocontrol agent protecting chili pepper and tomato fruits from anthracnose disease caused by Colletotrichum capsici. BioControl 63, 833–842 (2018). https://doi.org/10.1007/s10526-018-9902-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-018-9902-8

Keywords

Navigation