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Abstract
In this paper I review the Neo-Davidsonian semantics of prepositional phrases and 
secondary predication. I argue that certain types of examples pose challenge to this 
semantics. I present an alternative to the Neo-Davidsonian analysis which success-
fully deals with the problematic examples. The core idea lies in representing theta-
roles not as functions from events to their participants, but rather as argument-labels 
encoding the role of each argument in a given verb. As a result, natural-language 
predicates can now be treated in the manner in which relations are treated in the 
relational model of data, that is, as naming sets of tuples in which every object is 
given together with its role named by a corresponding attribute (a theta-role). Such 
a representation allows the employment of relational algebra operators to calculate 
the extensions of complex predicates (predicates built out of atomic predicates and/
or atomic predicates and prepositions). I lay out the foundations of a relational FOL 
appropriate for the representation of natural-language predicates and present solu-
tions to the problematic examples. From a practical perspective, the expressions of 
a relational FOL can be translated to a relational algebra or SQL, which makes it 
possible to operate with these three languages on the same relational model of data. 
From a philosophical perspective, a relational FOL permits a return to ‘property-
based’ semantics, one in which properties named by predicates are those of indi-
viduals, and not of events.
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1  Introduction

Following Frege, a grammatical theory of natural language is considered to have a 
function-argument structure. It is widely assumed (cf. Chierchia (1984)) that mean-
ing in natural language is organized in a function-argument way, and that the func-
tional dependency between basic and complex semantic entities grounds the notion 
of compositionality. Therefore, the main task of a formal theory for natural language 
is to capture and reconstruct the structure of the syntactic and semantic dependen-
cies in natural language. The first step is to establish what should be considered as 
basic syntactic and semantic entities. There is a widely shared agreement between 
philosophers and linguists that thematic roles are among such entities (because they 
‘[...] are somehow involved in associating a predicate’s meaning with its arguments 
on semantic interpretation’, Dowty (1989): 71) and should probably be considered 
universal. That is why the notion of how we should construct a model-theoretic 
account of thematic roles is fundamental.

It is assumed that the meaning of all natural-language predicates semantically 
entails a thematic role of each of its arguments, one distinct enough that no two 
arguments fall under the same role definition (cf. Dowty (1989): 79). Natural-lan-
guage predicates fall under three main categories based on their arity - intransitive 
(with one mandatory argument), monotransitive (with two mandatory arguments, I 
will refer to them simply as transitive) and ditransitive (with three mandatory argu-
ments). Predicates of higher arity (e.g. tritransitive) are extremely rare in natural 
language,1 although we can easily make compound predicates of any arity by add-
ing prepositional phrases to single verbs or by compounding several single verbs 
into one compound predicate (such a combination is called ‘adjunct predication’, cf. 
Rothstein (2004a): 72). These two ways of predicate construction are inductive—
you can take any predicate, add a preposition to it and receive another predicate; 
similarly you can take any predicate and join it with another, receiving a complex 
predicate. In this way, a predicate is understood as a recursive structure—it has its 
basic cases (reflecting three kinds of natural-language predicates) and two inductive 
steps. But how is this structural induction reflected semantically? Is it recursive as 
well?

Both ways of constructing compound predicates (by adding a preposition or by 
compounding predicates together) are handled by Neo-Davidsonian semantics. 
However, as I will point out, the Neo-Davidsonian analysis faces crucial problems 
which may drive us to seek alternatives. The paper is structured in the following 
manner. In Sect.  2 I briefly recall the core tenets of the Neo-Davidsonian analy-
sis of complex predicates, highlighting the semantic properties of theta-roles and 
explaining how it analyses inferential patterns of sentences with complex predicates. 
In Sect. 4 I examine occurrences of prepositional phrases and adjunct predication 
in natural language and highlight groups of examples that resist (simple) Neo-
Davidsonian analysis. In Sect. 5 I mention several attempts within Neo-Davidsonian 

1  Trade is sometimes given as an example of such verbs, ‘John traded Bill an apple for a peach’.
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semantics to provide a satisfactory analysis of problematic cases and show why 
they failed. In the second part of the paper (Sect. 6), I propose an analysis alterna-
tive to the Neo-Davidsonian. My analysis is inspired by a way how relations are 
represented in the relational model of data (RMD). I extend this representation to 
natural-language predicates and provide syntactic and semantic rules of a relational 
FOL appropriate for representing compound predicates. In effect, a relational FOL 
(as well as other languages, a relational algebra or SQL) can be used to operate on 
the same relational model of data in which compound natural-language predicates 
are represented. I argue that a semantic theory based on RMD should be considered 
a good semantic theory since, besides the correct truth-conditions, it provides an 
explanation of the relevant semantic phenomena. In the final sections, I analyze the 
problematic examples and draw conclusions.

2 � Theta‑roles in Neo‑Davidsonian Semantics

In Neo-Davidsonian semantics (cf. Dowty (1989), Link (1998), Parsons (1990), 
Landman (2000), Carlson (1984), Krifka (1992)) verbs denote one-place predicates 
of events, while thematic roles (theta-roles) denote partial functions from the set of 
events into the set of individuals (Link (1998): 257). Each theta-role (e.g. Agent, 
Goal, Source, Location, Theme, Instrument) names one function (called a theta-
function or thematic function) which takes an event as an argument and returns the 
event’s particular participant (an individual) as a value (cf. Link (1998): 248). For 
example, the verb read denotes a set of reading events. There is a set of theta-roles 
connected with read (the verb’s theta-grid) {Agent, Theme}, which is a representa-
tion of the part of the verb’s meaning which expresses constraints on participants of 
reading events. It provides truth-conditionally relevant information about their ways 
of participation in the events (cf. Rothstein (2004a): 137, 139; Carlson (1984): 266). 
Because of the truth-conditional relevance, the content of thematic roles is seman-
tic, that is, it allows us to distinguish one participant from another ‘[...] by virtue of 
the distinctive properties they have as they participate in an event named by a verb, 
properties that can be identified (‘in the real world’) independently of a language or 
its ’semantic representations’’ (Dowty (1989): 73). Thus the logical form of the fol-
lowing sentence 1: 

1.	 John reads ‘War and Peace’.

is expressed as a conjunction 1′:

1�.∃e(Reading(e) ∧ Agent(e)=John ∧ Theme(e)=WP).

As is clear upon observing 1′ , the verb’s arity has no syntactic representation but 
only a semantic one — every verb, irrespectively of its arity, is represented as a 
one-place predicate of events (cf. Krifka (1992): 36). In this way, the essence of 
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‘event-based’ semantics (as opposed to ‘property-based’ semantics) is in treating 
properties named by a predicate as properties of events, and not of individuals,

3 � The essential claim of ‘event‑based’ semantics

‘[...] individuals are not primarily thought of having properties or entering 
relations, but playing roles in certain events.’
(Link (1998): 253).

Note that, despite the fact that theta-roles constitute obligatory parts of the verbs’ 
meaning, not all events with a property expressed by the verb have all participants 
fulfilling these roles (for example, not all events have participants fulfilling agentive 
roles, similarly for the other theta-roles), therefore theta-functions are necessarily 
partial functions (cf. Link (1998): 248, 258).

Thematic functions obey several conditions (Dowty (1989): 83–84; Krifka 
(1992): 41–43). Because they are functions, the situation in which different objects 
fulfill the same thematic role in the same event is excluded (uniqueness of objects, 
Krifka (1992): 39, def. (P27), the unique role requirement, Landman (2000): 38, 
Parsons (1990): 74). As they may constitute parts of theta-grids of different verbs, 
their meaning is independent from the meaning of a verb and semantically basic, 
expressing natural relations between events and their participants (independence, 
Dowty (1989): 84). Because thematic roles are the only way of relating events to 
their participants (there is no other way of expressing that an individual participates 
in an event), it follows that every (surface) argument of a verb fulfills a thematic role 
(completeness, Dowty (1989): 83). Because of the uniqueness condition, it is impos-
sible that two (surface) arguments of a verb bear the same thematic role, and so it 
is possible to distinguish (semantically) one argument from another based on their 
thematic role (distinctness, Dowty (1989): 84).

All of the further conditions that thematic functions have to obey are the con-
sequences of an assumed homomorphism from events to objects which preserves 
the lattice structure (Krifka (1992): 39). Thus, if a theta-function gives one and 
the same object as its value, then it has the same event as its argument (uniqueness 
of events, Krifka (1992): 39, def. (P28)).2 If a theta-function gives values for two 
events, then for their sum it will give the sum of the values (summativity, a connec-
tion between theta-functions and join operations, Krifka (1992): 39, def. (P26)).3 If 

2  This requirement may be viewed as applicable to some but not all thematic relations, as it leads to 
an oversimplified criterion of events identification as listing its participants (two events are one and the 
same iff they have the same values for their theta-functions), see (Krifka (1992): 44), (Carlson (1984): 
274). A problematic consequence of this requirement is clearly seen if we consider one place predicates 
(e.g. yawn, pray, pause etc.), which have none except one theta-function as a part of their meaning, 
namely, ‘the event’s agent’. By uniqueness of events all such events with the same agent are one and the 
same event, which is a highly undesirable result.
3  One may not want to retain homomorphism between events and objects and in case a theta-function 
gives different values for different events leave it undefined for sum of such events, as Link (Link (1998): 
258) did (providing another reason why theta-functions should be partial): ‘A sum event or chunk which 
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a theta-function gives a value (an object) for an event and this event has a subpart, 
then the mentioned object has a subpart as well, which is the value of the theta-func-
tion for the subevent (mapping to objects, Krifka (1992): 39, def. (P29)). Finally, if 
a theta-function gives a value (an object) for an event and this value has a subpart 
(another object), then the latter will be a value for the theta-function for some subev-
ent (mapping to events, Krifka (1992): 39, def. (P30)).4

In Neo-Davidsonian semantics, the verb’s arity has no syntactic representation 
but only a semantic one, as conjunctive constraints on participants of events. Now, 
if we want to characterize events in more detail and bring to attention participants 
other than that obligatory involved in the activity or state described by the predicate, 
one does this with the help of prepositional phrases (PPs). Prepositional phrases 
which convey such auxiliary information (adjuncts) are treated by the theory in a 
similar way as thematic functions—they relate events and objects (cf. Krifka (1992): 
36-37; Landman (2000): 54). Other adjuncts—adverbs—are treated as predicates 
of events (cf. Dowty (1989): 92; Landman (2000): 53). In that way, a well-known 
Davidsonian example: 

2.	 Jones deliberately buttered the toast with a knife, at midnight, in the bathroom.

is analysed as:

2′. ∃e(Buttering(e) ∧ Agent(e)=John ∧ Theme(e)=t ∧With(e)=k ∧ Deliberate(e)

∧At(e)=12am ∧ In(e)=b).

2′ has the form of a conjunction of predicates, predicated of events. Due to such 
form, it is easy to explain why it is possible to iterate and freely reorder preposi-
tional phrases and adverbs in a sentence without a change in truth-conditions (Car-
nie (2006): 168). This reordering condition is known as Permutation (Davidson 
(1967); Katz (2008); Landman (2000)). Also, due to the conjunction analysis, it is 
easy to explain inferential properties of the sentences with prepositional phrases and 
adverbs. We can infer from 2 that ‘Jones buttered the toast deliberately in the bath-
room’ and that ‘Jones buttered the toast deliberately’, and that ‘Jones buttered the 
toast’. This type of inference is due to a property called Drop (Landman (2000): 
3). Furthermore, from the conjunction of ‘Jones buttered the toast at midnight’ and 

4  Because a sum of individuals may become the value of a theta-function, by mapping to events we end 
up with subevents corresponding to the sum constituents. The consequences may be undesirable in case 
of counting the events. For example, assume that there is a coin on the table and I am touching it together 
with a piece of the table. It is clear that there was one act of touching, with two objects being touched. 
By this token, the sentence ‘I performed exactly two acts of touching’ should emerge as false. But by 
mapping to events there were two events of touching, as they correspond to two constituents of the sum 
of touched things, that is why the sentence comes out as true, which leads to a fallacy.

is composed of heterogeneous aspects with lots of patients also has no defined patient role since unique-
ness fails. If a sum event, however, consists of atomic events which have all of a certain role defined, and, 
in addition, this role is filled by the same object, then the role is also defined for the sum event, with the 
same value’.

Footnote 3 (continued)
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‘Jones buttered the toast in the bathroom’ we cannot infer that ‘John buttered the 
toast in the bathroom at midnight’, as we may be talking about two different events. 
This type of adverbial entailment failure is known as Non-Entailment (Davidson 
(1967); Katz (2008): 227).

Beside Drop and Non-Entailment, sentences with modifiers have one specific 
type of entailment. I will use one of Szabó’s examples (Szabó (2003): 406) for 
illustration. Consider: ‘John is rational as a chess-player’. Applying Drop, we are 
able to infer from this that John is rational. But we cannot infer that John is rational 
simpliciter—he is rational in quite a specific way, that is, as a chess-player (com-
pare a similar case with another prepositional phrase: ‘I am happy about the news’ 
(Szabó (2003): 400). Intuitively, we cannot infer that I am happy simpliciter). From 
the conclusion you get after applying Drop, ‘X is � ’, you cannot infer that ‘X is � 
simpliciter’.5

Permutation, together with Drop, Non-Entailment and Simpliciter inferential pat-
terns, constitute semantic requirements that should be incorporated by any seman-
tics of adverbs and prepositional phrases —but are they and how exactly? Let us 
take a closer look at syntax.

4 � In Search of Lost Syntax

Let us have a closer look at the occurrences of prepositional phrases and adjunct 
predicates. As (Gawron (1986)) I will distinguish the occurrences of PPs as obliga-
tory arguments of verbs (verbal complements) from their occurrences as verbal 
internal and external modifiers (both adjuncts).6 As we will see, the PPs’ ability of 
drop, reordering and iteration depends on their syntactic position. When PPs appear 
as arguments, as in 3-6, 

3.	 I treated my working boots with oil.
4.	 The fog extended from London to Paris. (Gawron (1986): 350)
5.	 The song is meant for children. (Gawron (1986): 327)
6.	 John placed the flute on the table. (Carnie (2006): 221)

5  Szabó (Szabó (2003): 403-4) proposed a way to deal with Simpliciter entailment. In a simplified man-
ner, if a property P of a state s is persistent, that is, is preserved throughout all extensions of a state s 
(through all such states that contains s as a part), you can infer that P(s) simpliciter.
6  Despite the fact that I use this distinction after Gawron (1986), I will not use his terminology due to 
unwanted terminology clash (‘co-predication’ is already reserved for a different semantic process). Thus 
I call ‘internal modifiers’ occurrences of PPs called by Gawron ‘co-predicators’ and call ‘external modi-
fiers’ occurrences of PPs called by Gawron (proper) adjuncts. By ‘modification’ I understand here a syn-
tactical relation defined as follows (Carnie (2006): 85): ‘If an XP (that is, a phrase with some category 
X) modifies some head Y, then XP must be a sister to Y (i.e., a daughter to YP).’ Strictly speaking, modi-
fying position for adjuncts on a tree is not to be a sister to N, V, A or P but to N ′  , V ′  , A ′  or P ′  (Carnie 
(2006): 162), which constitutes the main syntactical difference between adjuncts and complements. How-
ever I will leave aside this difference in tree position between complements and adjuncts.
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they have obligatory occurrences (thus, they cannot be dropped without a signifi-
cant change in the meaning of a verb) and even if they are contextually omitted, 
their presence is still implied (Quirk et al. (1985): 66). Because the theta-role of a 
prepositional complement (marked by a preposition or a case) constitutes a part of 
a verb’s theta-grid, the prepositional complement cannot be iterated (otherwise the 
whole will be ungrammatical, which is formally reflected in Government-Binding 
theory as a violation of the Theta Criterion).

When PPs appear as internal modifiers, they indicate two-place relations between 
new participants introduced by prepositions and one of the main verb’s arguments, 
but not a whole action described by the main verb (‘co-predicators’, Gawron (1986): 
341-343), 

	 7.	 I saw Jones through the window in the door.
	 8.	 Jon saw White Walkers around Winterfell.
	 9.	 Mary drank John under the table. (Rothstein (2004b): 82)
	10.	 I met a fellow journalist from Beijing.

In examples 7-10 it is not the actions that were made in, around, under or from, but 
actions’ participants (the window, White Walkers, John and the journalist respec-
tively) which was placed in, around, under or have had its origin from a new partici-
pant introduced by the preposition. Such occurrences of PPs are called ‘co-predic-
ative’ because the two-place relation indicated by a preposition shares an argument 
with the main verb (Gawron (1986): 343).

Finally, when PPs appear as external modifiers, they add a new participant to the 
relation described by the main verb and express a role which the added participant 
plays with respect to the relation as a whole. Compare occurrences of for in the fol-
lowing sentences: 

	11.	 Isolde baked cookies for Tristan.
	12.	 Isolde left Mark for Tristan.

While we can paraphrase 11 as ‘Isolde baked cookies and Tristan was the intended 
beneficiary of the cookies she baked’ (internal modification, expressing a relation 
between the cookies and Tristan), we cannot paraphrase sentence  12 in the same 
way, *‘Isolde left Mark and Tristan was intended beneficiary of Mark she left’. 
Rather we would say ‘Isolde left Mark and Tristan was the intended beneficiary 
of her leaving Mark’ or ‘Isolde left Mark and Tristan was the reason why she left 
Mark’. In the following sentences PPs with on and out appear as external modifiers 
as well: 

	13.	 It’s often said that if you’re playing [poker] on a table full of tight players then 
you should loosen up.

		    (http://​www.​poker​ology.​com/​lesso​ns/​poker-​playi​ng-​styles/)
	14.	 Mikhail yelled his name out the window. (Svenonius (1994): 223)

http://www.pokerology.com/lessons/poker-playing-styles/
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In 13, it is not you or your partner, but the play itself which is located on the table. In 
the same vein in 14, it is not Mikhail who is out of the window, but the action of his 
shouting. My hypothesis is that PPs’ ability of being iterated and permuted depends 
on their syntactic position: PPs can be permuted only if they modify the same node 
(the same syntactical constituent, represented as a point in a tree diagram7) and can 
be iterated only if they do not modify the same node or express different relationship 
between objects. For example, PPs in 15 and a PP and a secondary predicate in 16 
cannot be permuted because they modify different syntactical constituents (different 
nodes) and permutation leads to a difference in truth-conditions, 

	15.	 Bill made a sweater for Mary for Miles. (Gawron (1986): 371)
		    *Bill made a sweater for Miles for Mary.
	16.	 Bill fried chicken for Mary naked.
		    *Bill fried chicken naked for Mary.

In  18 and  19 PPs can be iterated (forming a sequence of the same PP, a ‘path’) 
because they do not modify the same syntactical constituent and in 20 and 21 sev-
eral locative PPs can appear in one sentence because they express a different space 
relationship between the object in question and other objects, 

	17.	 Mary wrote a letter in every town in every county in every English-speaking 
country.8

	18.	 Look in the wardrobe in the basement. (cf. Baronian (2006): 34)
	19.	 The duck swam from the shore from the tree. (Gruber (1962): 112)
	20.	 Joan hit the ball through the valley between the buildings into Mrs Magilla-

cuddy’s window. (Gawron (1986): 347)
	21.	 The horse galloped from in front of the tree to under the tent. (Gruber (1962): 

105)

Sentences with the main verb of arity higher than one and a PP used as an internal 
modifier are often syntactically ambiguous because it is not clear which argument 
of the main verb is related to a new participant introduced by the PP (the ambiguity 
between internal modifiers), for example 22, 

	22.	 Sherlock saw a man with binoculars [Sherlock/a man was with binoculars].9

7  As arguments, PPs are syntactical sisters of zero level projections (heads). Assuming a binary branch-
ing structure, it is impossible to represent Gawron’s distinction between PPs’ occurrences as internal and 
external modifiers (co-predicators and adjuncts in his terminology)—they both come out as ‘adjuncts’, 
that is, syntactic sisters of X′ (Carnie (2006): 164).
8  A similar example can be found in (Partee (2000): 489).
9  The example is taken from Kai von Fintel. 24.903 Language and its Structure III: Semantics and Prag-
matics Spring 2005. Massachusetts Institute of Technology: MIT OpenCourseWare, https://​ocw.​mit.​edu. 
License: Creative Commons BY-NC-SA.

https://ocw.mit.edu
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The syntactic ambiguity is also present when it is not clear if a PP is used as an 
internal or as an external modifier (the ambiguity between internal and external 
modification), take for example sentences 23, 24 and 37, 

	23.	 The spy shot James Bond from the roof. (cf. Gawron (1986): 349)
	24.	 The boy threw stones from the roof. (Himmelmann and Schultze-Berndt (2005): 

38)

23 and 24 are ambiguous between the reading in which James Bond/the stones were 
propelled from the roof (the PP is used as an internal modifier) and the reading in 
which the shooting/throwing itself took place on the roof (the PP is used as an exter-
nal modifier, Gawron (1986): 349-350).

If we look at the modifying uses of predicates, we can see that they are used in 
a similar manner to PPs. When a predicate is used as a modifier, it can modify a 
particular argument of the main verb (secondary predication, similar to an internal 
modifying use of a PP) or it can modify the whole situation described by the main 
verb (adverbial use, similar to uses of PPs as external modifiers, see Table 1).

Thus in 25 and 26 secondary predicates modify a particular argument of the main 
verb, 

	25.	 Kim ate the steak raw. (Burkhart et al. (2017): 21)
	26.	 Kim ate the steak hungry. (Burkhart et al. (2017): 21)

All arguments of the main verb may be modified by secondary predicates 27-29, 

	27.	 Bill drove the car broken drunk. (Rothstein (2003): 557)
	28.	 Ray put the door shut tired. (Winkler (1997): 131)
	29.	 Kim ate the steak raw hungry (Burkhart et al. (2017): 24)

Similarly to PPs, predicates in their modifying uses can only be iterated if they mod-
ify different syntactic constituents (which gives rise to the intuition that modifiers 
have a ‘scope’),1011

	30.	 John hammered the metal flat hot. (Winkler (1997): 7)
	31.	 They eat the meat raw tender. (Winkler (1997): 7)
	32.	 John painstakingly wrote illegibly. (Parsons (1970): 324)

or they are modifiers of a different type (e.g. place, mode, time etc.), 

10  In the case of modification on different nodes it is possible to use predicates expressing contradictory 
properties without getting a contradiction, ‘John drove the car drunk soberly’ (drunk John was driving in 
a sober manner, Rothstein (2004b): 67).
11  Not all accept examples as  30-32, therefore I take the argument from iteration and scope as support-
ive.
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	33.	 The loggers cut a tree in the front yard into pieces green. (Winkler (1997): 79).

Similarly to sentences with PPs, sentences with predicates as modifiers may be 
ambiguous in two ways, when it is unclear which argument is modified by a second-
ary predicate (examples 34 and 35) and when it is unclear whether a predicate modi-
fies the main verb as a whole or one of its arguments (example 36), 

	34.	 I saw Carroll standing at the window.
	35.	 Tom talked to Meg drunk. (Burkhart et al. (2017): 22)
	36.	 Barbara saw an occasional sailor. (Larson (1998): 19)
		    (‘Barbara saw a person who occasionally sailed / Occasionally, Barbara saw 

a sailor’)

To account for the examples of internal modification and secondary predication 
(examples 7, 10, 25, 26), ‘paths’ examples (17, 18), scope examples 15, 16 and pro-
vide different logical forms for cases of the ambiguity of two types (examples 34-36) 
a Neo-Davidsonian has to assume that nouns, similar to verbs, denote one-place 
predicates of states, while thematic roles denote functions from the set of events and 
states to individuals (cf. Link (1998): 253 footnote 1). To see how this assumption 
helps, let us consider example 37: 

	37.	 I purchased a property in Belize in Washington.

Intuitively 37 has different truth-conditions than ‘I purchased a property in Belize 
and I purchased a property in Washington’. To obtain the right interpretation, we 
have to assume that the noun ‘property’ names a state and thus analyse 37 as 37′:

37′. ∃e∃x(Purchase(e) ∧ Agent(e)=I ∧ Theme(e)=x ∧ In(e)=W ∧ ∃s(Property(s)

∧Experiencer(s)=x ∧ In(s)=B)).

While it is possible to hold (sensibly) that there are states such as ‘a property-in-
Belize’ or ‘a wardrobe-in-the-basement’, this assumption does not work in all cases 
(e.g. there are no such states as ‘Bond/he-from-the-roof’ or ‘Sherlock/he-with-
binoculars’) because proper names, as well as pronouns, are not predicates,,12 so 
they cannot name states nor assign theta-roles. In the same vein, all of the following 
examples remain problematic for the Neo-Davidsonian account taken in a simple 
form:

22′. Sherlock saw Moriarty/him with binoculars. (There is no such state as 
‘Sherlock’/‘Moriarty’/‘he’ which is ‘with-binoculars’.)

12  This argument can be seen as a weaker claim, that proper names and pronouns have referential not 
predicative uses in these examples.
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15. Bill made a sweater for Mary for Miles. (There is no possibility to provide 
different scope for two external modifiers13 and thus block their reordering.)

	38.	 I called Tom from Beijing from London. (From in its two occurrences has the 
same meaning. In its last occurrence from is analyzed as a function which 
returns a participant of the calling event. But what is the correct analysis of its 
former occurrence?)

Summing up, if we share an intuition that in examples of co-predication such as 8 
and 9, it is not the states but objects which were placed around or under something 
(that is why the analysis of 9 as ‘there is a drinking under the table with Mary and 
John as participants’ is intuitively incorrect), then we agree that such examples are 
especially challenging for Neo-Davidsonian semantics, because they constitute 
counterexamples to its essential claim, that is, that only events (not individuals) 
may have properties or enter relations. Taken in its original form, Neo-Davidsonian 
analysis was put forward to provide a logical form for sentences in which modifi-
ers are used to express properties of events as a whole or express relations between 
events as a whole and new individuals introduced by PPs. Because of that, taken 
in its simple version, it cannot provide a unified account of syntactic ambiguities, 
explain syntactic dependencies (the dependency of reordering and iteration on syn-
tactic positions), analyse internal modification or explain scope examples.

Perhaps the best potential strategy for Neo-Davidsonians to deal with mentioned 
problems would be the following:14

–	 hold the claim that only events (not individuals) may have properties or enter 
relations;

–	 accept that there are (basic) predicates with ‘built-in’ prepositions (e.g. ‘being-
located-in’);

–	 and try to analyze problematic examples as those in which these (basic) predi-
cates are used as secondary predicates.

Table 1   Modifying uses of PPs and predicates

Role PPs Predicates

Modify a particular argument of the main 
verb

Internal modifiers Secondary predicates

Modify the main verb with its arguments as 
a whole

External modifiers Adverbs

14  I owe this idea to :Wojciech Suchoń personal communication.

13  Such a reading is clearly possible. We can sensibly ask: What did Bill do for Mary? - Made a sweater. 
And what did Bill do for Miles? - Made a sweater for Mary.
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Even assuming that this strategy will work (so it will be possible to separate internal 
from external modification, thus analyze, for example, two froms in 38 differently), 
example 15 remains problematic because two for in it are external modifiers (that is, 
they characterize an event as a whole) and are analyzed as conjunctive constraints 
on the event’s participants. As conjunctive constraints, they can be freely permuted 
without an impact on truth-conditions but, intuitively, permutation leads to change 
in truth-conditions, therefore it is blocked. It is blocked because two for in 15 mod-
ify different syntactic constituents—intuitively, the latter for in 15 modifies every-
thing already modified by the former for, together with the complement the former 
for adds (otherwise we will get a reading that Bill made a sweater for both Mary and 
Miles, which is clearly ruled out). Moreover, if two instances of for represent the 
same function that takes the same event as argument, then something must be given 
up (because of different values)—either it is not a function, or it does not operate on 
the same event. The other possibility is to assume that there are two different theta-
functions, say Beneficiary1 and Beneficiary2 , but again in this case it follows from 
the logical form 15′ that 15′′,

15′.    ∃e(Making(e) ∧ Agent(e)=B ∧ Theme(e)=s ∧ Ben
1
(e)=Mary ∧ Ben

2
(e)=Miles)

15′′.    ∃e(Making(e) ∧ Agent(e)=B ∧ Theme(e)=s ∧ Ben2(e)=Miles)

which is a logical form for ‘Bill made a sweater for Miles’, the ruled out inference.
In the next section I will explain why secondary predicates’ analysis within Neo-

Davidsonian semantics is problematic and why some other known attempts to ana-
lyze examples of internal modification fail.

5 � Attempts to Fix Syntax Within Neo‑Davidsonian Theory

5.1 � Sum Relation

Rothstein (Rothstein (2004a), Rothstein (2004b)) and Maienborn (Maienborn 
(2003)) attempted to deal with examples from Sect. 4 and in this section I will dem-
onstrate that all these attempts have undesirable consequences. As it was clear from 
the previous section, there is a need to provide a difference between internal and 
external modification. This can be done, for example, by representing internal modi-
fication as secondary predication, but as I will argue in this section, the existing 
semantic analysis of secondary predication proposed by (Rothstein (2004a), Roth-
stein (2004b)) is problematic in itself. So how does Rothstein propose to analyse 
secondary predication? Assume for simplicity what E is a set of atomic events such 
that E equal {e1, e2, e3} . From the completeness axiom (Krifka (1992): 32, def. 
(P2)), for every pair of events from E there exists their sum which is also an event 
(def. (P1)). Alongside this standard join operation on events Rothstein (Rothstein 
(2004b): 67) proposes to consider another operation ∪S (∪S ∶ E × E → E) which 
maps events e1 and e2 to a new singular event e3 which is equal to their sum. Now, 
if two events are happening simultaneously and share a participant (e.g. a thematic 
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participant, Rothstein (2004b): 72), they can be summed up using this operation. Let 
e1 be the event of John’s hammering the metal and e2 the event15 of the metal being 
flat. Sentence 39 is then analyzed as 39′ : 

	39.	 John hammered the metal flat.

39′ . ∃e
3
∃e

2
∃e

1
(e

3
= (e

1
∪S e

2
) ∧ Hammering(e

1
) ∧ Agent(e

1
)=J ∧ Theme(e

1
)=m

∧Flat(e
2
) ∧ Arg(e

2
)=m).

In 39′ Arg stands for a thematic role which adjectives assign to participants of events 
(Rothstein (2004a): 137). In this way, sentences with secondary predication are ana-
lyzed as having a logical form containing a representation of a complex event which 
is a result of the summing operation on events (fulfilling time and participants shar-
ing conditions).16

Let me point out that the condition that two events should be simultaneous and 
share a participant (cf. Rothstein (2004b): 72) is insufficient by itself for a sentence 
with a secondary predication to be true (because of Non-Entailment). Imagine, for 
example, that Jones has marijuana and during the period when he has it, he is caught 
by the police several times, but nevertheless he was never caught possessing mari-
juana. Despite Jones being caught is simultaneous with Jones’ state of possessing 
marijuana, and have a common participant (Jones), these conditions are insufficient 
for ‘Jones was caught by the police possessing marijuana’ to be true.

My first objection to this analysis stems from the definition of a part relation 
defined as x ⊆ y iff x ∪ y = y (Rothstein (2004b): 67). Essentially if x and y are the 
same event, then their sum results in this very event. Because of that, the analysis 
is problematic in cases when both the main and the secondary predicate name the 
same event. Imagine that there are two mirrors hanging opposite each other and I 
utter: 

	40.	 I am seeing myself seeing myself.

40 should be analysed as:

40
�
. ∃e

3
∃e

2
∃e

1
(e

3
= (e

1
∪S e

2
) ∧ Seeing(e

1
) ∧ Agent(e

1
)=I ∧ Theme(e

1
)=I

∧Seeing(e
2
) ∧ Agent(e

2
)=I ∧ Theme(e

2
)=I). 

It would be questionable to claim that there are two events of seeing and that these 
events are different. If the events are one and the same, then adding the event to 
itself results in this very event, thus in effect the sentence is true just in case I am 
seeing myself in a mirror, which is clearly a wrong satisfaction criterion.

15  ‘Being flat’ is a state rather than event, but I follow Rothstein’s (2004b: 80) analysis of ‘flat’ as an 
event.
16  A similar solution for adverbs was proposed by Schäfer (2008): 366.
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My second objection to this analysis stems from the commutativity of sum opera-
tion US . Take two predicates, P and Q, naming different events and let us mark with 
an index which predicate is a primary/secondary. By this analysis P1Q2(a) is true 
iff Q1P2(a) is true as well, which is a wrong entailment dependency. Assume that 
sentence 41 is true. 

	41.	 Being a suspect, Jones refuses to make a statement.

It immediately follows that sentence 41′ is true as well,

41′ . Refusing to make a statement, Jones becomes a suspect.

This is so because both sentences have exactly the same logical form, 
∃e

3
∃e

2
∃e

1
(e

3
= (e

1
∪S e

2
) ∧ Suspect(e

1
) ∧ Agent(e

1
)=J ∧ Refusing(e

2
) ∧ Agent(e

2
)=J)   . 

On Rothstein’s account, sentences as such 41 and 41′ either both true or both false 
but intuitively 41 and 41′ may differ in truth-value.

Thus, in addition to the examples of the blocked reordering of adjuncts (such 
as 15) examples of ‘self-joins’ (such as 40), as well as examples of blocked inter-
changeability of roles of being a primary/secondary predicates in adjunctive joins 
(such as 41 and 41′ ) are where the Neo-Davidsonian analysis fails to deliver satis-
factory interpretative results.

5.2 � Part‑of Relation

There are several reasons to think that a part-of relation between events may be a 
clue to providing the correct analysis of examples from Sect. 4. It seems that we may 
need a part-of relation in order to be able to distinguish between PPs as event-inter-
nal and PPs as event-external modifiers. Maienborn (2003) pointed to the contrast 
between the following sentences: 

	42.	 John eats herring in the office.
	43.	 Jones eats herring in cream sauce.

Although it is possible to understand 43 in such a way that it states that Jones ate 
herring while wading through a sea of cream sauce, this reading is rather bizarre. So 
in order to understand the sentence properly it has to be assumed that not the whole 
event of eating but one of its parts, that is the herring, was in cream sauce. In this 
way, according to Maienborn, event-internal modifiers express relations between 
event integral constituents. I will skip theta-roles assignment for simplicity. In a sim-
plified manner 43 should be analyzed as:

43′ . ∃e∃x, y(Eating(e) ∧ Herring(x) ∧ Sauce(y) ∧ (x ⊆ y) ∧ (y ⊆ e) ∧ (J ⊆ e) ∧ IN(x, y)).

According to this logical form, Jones, herring and sauce are involved in the eating 
event and in this event, the herring was located in the cream sauce.
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So far, so good, but we also have sentences like the following: 

	44.	 Jones hops on one leg.

‘On one leg’ is an internal modifier, so it should express a relation between con-
stituents of the hopping event, that one of its constituents is situated on another. But 
in  44 we have a relation which does not obtain between different individuals but 
between parts of Jones, who in turn is also a part of the event. To express the rela-
tion between parts of an individual, Maienborn added the mereological notions of 
the proper part and the mereological difference ∼ . Using these notions, she proposes 
to analyze 44 as stating that in the hopping event, one proper part of Jones (namely 
‘John-minus-his-leg’, J∼l ) was situated on his other proper part, that is, on his leg 
(Maienborn (2003): 497), I skip theta-assignments for simplicity:

44
�
. ∃e∃!l(Hoping(e) ∧ Leg(l) ∧ (J ⊆ e) ∧ (l ⊆ e) ∧ (J∼l ⊆ e) ∧ (l ⊆ J) ∧ ON(J∼l, l)).

Here, the event-internal modifier ‘on one leg’ provides a location of Jones’ remain-
ing body relative to his leg.

There are several problems with this analysis. For one, it requires us to abandon 
the main thesis of event semantics, that only events (not individuals) may have prop-
erties or enter relations. Secondly, the ‘part-of’ relation is transitive but this tran-
sitivity generates intuitively false consequences. Let me exemplify the presence of 
unwanted transitivity in Maienborn’s account. Consider 45: 

	45.	 Jones balances on fingers.

This sentence has the following logical form according to Maienborn:

45′ . ∃e∃f (Balance(e) ∧ Fing(f ) ∧ (J ⊆ e) ∧ (f ⊆ e) ∧ (J∼f ⊆ e) ∧ (f ⊆ J) ∧ ON(J∼f , f )).

Jones’ palms are proper parts of Jones, p ⊂ J . Take ‘John-minus-palms’. This part of 
Jones is contained in ‘Jones-minus-fingers’ part. If ‘Jones-minus-fingers’ is a part of 
the balancing event and ‘Jones-minus-palms’ is a part of ‘Jones-minus-fingers’, then 
‘Jones-minus-palms’ is a part of the balancing event as well. Jones himself is a part 
of balancing event and his palms are a part of him, and because of that his palms are 
also a part of the balancing event. We know that the ‘Jones-minus-fingers’ part is 
located on the fingers. This is possible only if ‘Jones-minus-palms’ part is located on 
Jones’ palms. In this way if ‘Jones balances on fingers’ truly describes the balancing 
event, so does ‘Jones is balancing on his palms’, but intuitively this is not so (we can 
express this by saying ‘Jones is balancing on his fingers, not on his palms’).

Not only iteration of prepositional phrases but iteration of other modifiers (e.g. 
subsective adjectives (Francez 2017), adverbs (Schäfer 2008)) is not transitive. 
For example an application of a subsective adjectives can be paraphrased with as-
phrases (the possibility of such a paraphrase is considered a diagnosis of their sub-
sective nature Morzycki (2015): 22). Consider: 
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	46.	 Teryl Austin has been confirmed as being hired as the Lions’ defensive coordi-
nator.17

Intuitively, Teryl has been confirmed as being hired as the Lions’ defensive coordi-
nator (modification of a predicate confirmed by the already modified predicate hired 
as a defensive coordinator). We can not interpret 46 in a classical Davidsonian way, 
as a conjunction of predicates predicated of states, because reordering of conjunc-
tive constraints is blocked. Again, we will encounter the mentioned problem using 
a part-of relation in analysis (e.g. such as proposed in Szabó (2003) for as-phrases), 
due to the unwanted transitivity between the states: the state of confirmation is a 
part of the state of being hired, and in turn, the state of hiring is a part of being a 
defensive coordinator state. This means that Teryl has been confirmed as the Lions’ 
defensive coordinator, which is not an intuitive analysis of 46. For example, imagine 
that Teryl has been the Lions’ defensive coordinator for years but was not hired as 
such. Once he was hired and confirmed as being hired as a defensive coordinator, it 
is not a part of a confirmation that he is the Lions defensive coordinator (this infor-
mation is already known and requires no confirmation).

What conclusions follow from Sect. 4 and 5 First of all, Neo-Davidsonian seman-
tics cannot stand as it is - something should be added to it which would allow us 
to properly analyze iteration of modifiers (it is not transitive, as follows from 46), 
analyze self-joins (example 40), examples of blocked reordering for adjuncts, and 
to distinguish between event-internal and event-external modification.18 Moreover, 
we can’t use either the sum operation or the part-of relation for these purposes (as 
examples 40, 41 and 46 show).

Confronted by the above problems, why not to try developing an event-free 
semantics which avoids them?

6 � Representing Natural‑Language Predicates in the Relational Model 
of Data

What if we represent theta-roles not as functions from events to their participants, 
but rather as labels on the arguments of the verb encoding the role which each argu-
ment plays? The idea itself is not novel (cf. Landman (2000), Dowty (1989), Beaver 
and Condoravdi (2007), Eckardt (2010)) and the main differences between the exist-
ing notions and my own proposal need to be highlighted. Landman (2000), Bea-
ver and Condoravdi (2007) and Eckardt (2010) develop a theory of the kind which 
Dowty called (1989: 71-72) ‘an ordered-argument system’, one in which the labels 
for the roles that various arguments fulfill in a relation are arbitrary, and their use 

17  The example is from ‘World News’, accessed 11 July, 2014; http://​artic​le.​wn.​com/​view/​2014/​01/​18/​
Lions_​hire_​Teryl_​Austin_​as_​defen​sive_​coord​inator_​retain_​8_​fr/.
18  I want to highlight that I am not making a strong claim that Neo-Davidsonian event semantics is inca-
pable of analyzing particular data, and therefore should be rejected. I take the presented challenges not as 
evidence against the account but as an inspiration to seek alternatives.

http://article.wn.com/view/2014/01/18/Lions_hire_Teryl_Austin_as_defensive_coordinator_retain_8_fr/
http://article.wn.com/view/2014/01/18/Lions_hire_Teryl_Austin_as_defensive_coordinator_retain_8_fr/
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implies no semantic commitment (they are merely syntactic labels for distinguishing 
one argument from another in the interpreted syntax, not sets of properties, Dowty 
(1989): 76). I do not use this solution - in the theory developed here, labels for roles 
do have semantic interpretation (in the sense that a truth function maps them to 
elements of a model domain). I develop a theory which may be called (Landman 
(2000): 93) ‘neo-McConnell-Ginetian’, since thematic roles play an essential role 
in the theory (a verb accesses arguments through the roles only), and because of 
preserving and expanding the intuition that prepositional phrases increase the verb’s 
valence.19 What I propose is to use an advantage of such a representation of theta-
roles: if we represent them as (meaningful) marks, then we can use an already exist-
ing theory and treat predicates in the same way relations are treated in RMD, as 
naming sets of tuples in which every object is given together with its role named 
by a corresponding attribute (a theta-role), and use operators of a relational algebra 
to calculate extensions of compound predicates. In order to develop this idea, I will 
first briefly present some of the basic notions of RMD.

6.1 � The Relational Model of Data. A FOL and a Relational FOL

The relational model of data was invented by Codd (1970) for modelling data using 
a representation of relations based on tables. Data are represented as a collection of 
tables (called a relational database). Each table represents a relation; it has its own 
(unique) name, as well as the names of columns. A row in a table represents a rela-
tionship among sets of values and corresponds to a tuple. There is a set of possible 
values for each column called a domain. In a set theory relation of a degree n is a 
subset of the Cartesian product of n (not necessary distinct) domains, so in order to 
understand the meaning of a relation, one has to refer to the position of a particular 
domain in the sequence. But once we have labeled the domains (by attributes, stand-
ing for roles domains have in a relation), we may refer to them using these labels, 
therefore the ordering of domains in the relation is insignificant (cf. Atzeni and De 
Antonellis (1993): 4).2021

19  The theory developed here is ‘neo-McConnell-Ginetian’ only in spirit - ultimately I do not follow 
Landman’s or McConnell-Ginet’s semantic analysis.
20  By this definition, all permutations of a relation (achieved by interchanging the relation’s columns) 
are considered to be one and the same relation (cf. Garcia-Molina et al. (2013): 63). Thus, for example, 
active and passive voice (‘somebody hits something’ / ‘something is hit by somebody’) are permutations 
of one and the same relation (cf. Dowty (1989): 74).
21  Since relations are represented as sets, one can apply the usual set operations to them, as well as spe-
cific operations allowing us to derive relations from relations. There are several operations on relations 
specific to a relational algebra (a query language for relational databases), but I confine myself to ‘natural 
join’ and ‘rename’ only (see Definition 8 and Definition 10 in Appendix). Quine (Quine (1960): 344) 
introduced the operator ‘Der’ (abbreviation of ‘derelativization’) which allows to produce a n-1-place 
predicate out of initial n-place predicate (e.g. 1-place predicate ‘bites something’ from the 2-place predi-
cate ‘bites’). This is an example of projection operation (heavily used in the relational database theory), 
that is, deleting the ‘object’ column from ‘bites’ relation.
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I will briefly explain the transition from a FOL to a relational FOL.22 For the 
sake of simplicity, I will use two ‘toy’ languages, a FOL L1 and a relational FOL 
L2 . In a FOL an extension of a n-place predicate [[P]] is a relation, a set of tuples 
⟨d1, d2,… , dn⟩ . Each of such ordered (assigned a natural number) n-tuple can be 
rewritten as paired with an index (thus each ordered n-tuple ⟨d1, d2,… , dn⟩ can be 
rewritten as an unordered set of n pairs, that is, {(1, d1), (2, d2),… , (n, dn)} ). It may 
be clearly seen that the ordering of elements of the set is without importance because 
reordering does not change pairing between index i the domain has in the sequence, 
and di (an element of the domain). We can represent all pairings as a table in which 
each row corresponds to a single mapping f and each column represents a collec-
tion of values of a given index paired with a predicate symbol. In that way, for each 
predicate symbol P each row (a mapping) in a table restricted to (P, 1),… , (P, n) 
columns corresponds to a single tuple included in the relation which is the extension 
of the symbol P.

Consider an example. Let us take an unary symbol P, a binary symbol Q and a ter-
nary symbol R and define their extensions in a standard way, say as [[P]] = {◦, ∙,◻, ▪} , 
[[Q]] = {⟨◦, ∙⟩, ⟨∙, ◦⟩, ⟨▪, ▪⟩} , [[R]] = {⟨◦,◻, ▪⟩, ⟨◻, ▪, ◦⟩, ⟨▪, ◦,◻⟩} . We can represent 
same extensions of these symbols in a FOL L1 as in the following Table 2.

For example, we want to know what the extension of symbol Q is. It is the set 
of mappings f (rows in the table) restricted to Q1,  Q2 columns. Note again, that 
every row restricted to these columns correspond to a single tuple in [[Q]] defined in 
a standard way.

I am now prepared to present a relational language L2 developed on the basis of 
L1 . I see RMD as a choice to operate on unordered named tuples instead of unor-
dered indexed tuples which means that there is a need to choose a set of attributes 
Atr (instead of set of indices) and in the case of every relation define ‘a conver-
sion rule’, that is a bijection between the set of indices Ind and Atr. Such a conver-
sion constitutes a core difference between FOL L1 and a relational FOL L2.23 For 
example, we may define a bijection in such a way that it maps 1 to � (‘agent’), 2 to 
� (‘object’) and 3 to � (‘goal’). Now Table 2 (the set F of L1 ) may be rewritten as 
Table 3 (the set F of a relational L2 ). The extension of a n-place predicate P is a set 
of all rows restricted to (P, �1),… , (P, �n) columns.

Now, after explaining the crucial step in understanding the difference between a 
FOL and a relational FOL, I am ready to present a relational FOL L appropriate for 
the representation of natural-language predicates.

6.2 � Representation of Natural‑Language Predicates: Syntax

The main idea is simple: we use prepositions (as well as other modifiers) to make 
compound predicates from atomic predicates. The other way of obtaining compound 

22  A relational FOL appropriate for representing natural-language predicates is a modified version of a 
standard relational FOL proposed by Reiter (1989).
23  I owe this explicit comparison of tuples in logic and tuples in RMD to Aleksandra Samonek.
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predicates is to join several predicates in one complex adjunctive predication (I will 
refer to such a join as an ‘adjunctive join’). As I have mentioned earlier, I will treat 
predicates in the way that relations are treated in RMD, that is, as naming sets of 
tuples in which every object is given together with its role named by the correspond-
ing attribute. Let �  be a set of attribute-types (domain labels) to be used in differ-
ent relations. From this set we will obtain attributes for every predicate P by tak-
ing an attribute-type � (a domain label) and qualifying it with a predicate symbol in 
dot notation, P.� (see Definition 2, in Appendix).24 What are these attribute-types? 
Inspired by Fillmore’s (1968) notion of ‘labeled relations’, they are: � (‘agent’), � 
(‘object’), � (‘goal’), � (‘beneficiary’), � (‘instrument’) and � (‘location’).25

There are many other roles which objects play in the relations named by natu-
ral-language predicates (e.g. ‘reason’). The roles can also be more finegrained 
(‘inner location’ for in , ‘surface location’ for on ) but, for the sake of simplicity, I 
will restrict myself only to the one from � = {�, �, �, �, �, �} . There is a striking 
resemblance between Fillmore’s, Codd’s and Chomsky’s requirements (for, respec-
tively, ‘a particular case relationship’ (Fillmore (1968): 42), ‘a distinctive role name, 
which serves to identify the role played by that domain in the given relation’ (Codd 
(1970): 380) and ‘a theta-role’ (theta-criterion) Chomsky (1981): 36) which can be 
expressed as a requirement for relational algebra that all attributes in a particular 
relation must be distinct (Elmasri and Navathe (2001): 67).26 Accordingly, I will 
define the basic (atomic) relations together with their relation schemes. Consider a 
set of prepositions and three sets of relation symbols together with distinguished 
relation symbols (see Definition 1 in Appendix):

Table 2   The set F of L
1

P1 Q1 Q2 R1 R2 R3

f1 ◦ ◦ ∙ ◦ ◻ ▪

f2 ∙ ∙ ◦ ◻ ▪ ◦

f3 ◻ ▪ ▪ ▪ ◦  ◻
f4 ▪ −− −− −− −− −−

24  Note that an attribute of a predicate is nothing else but an ‘indexed role’ (Landman (2000): 32).
25  I agree with Williams (1981): 81 that actual labels themselves are not important. Besides the attribute-
types mentioned I will use a distinguished attribute-type id which represents nothing and is used rather as 
a technical tool needed to be able to join extensions of complex predicates in a valid way (I will return to 
this notion later in Sect. 6.3.1).
26  ‘Each argument bears one and only one Θ-role and each Θ-role is assigned one and only one argu-
ment.’ Note that ‘the argument’ in the criterion is understood as a grammatical argument, as a participant 
obligatory involved in the activity or state expressed by the predicate (cf. Haegeman (1994): 44). By this 
token, adjuncts (optional phrasal constituents) are never arguments and they never appear in theta-grids 
(Carnie (2006): 222). However, if we take a revised version of the theta-criterion (revised in order to 
accommodate secondary predication) after Rothstein  (2004a): 186), the criterion amounts to the general 
requirement that an n-place theta-grid is lexically realized by a head that has n syntactic arguments.
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–	 Set of symbols ℙ = {IN, WITH, FOR} which correspond to prepositions;
–	 Infinite sets of symbols IV , TV ,DV ,Γ , where IV, TV, DV are infinite sets of sym-

bols for intransitive, transitive verbs and ditransitive verbs, respectively; includ-
ing a set of symbols Γ = {L,U,D} , where L,  U,  D are interpreted as, respec-
tively, to be located in, to be used as a tool and to be destined for.

Basic relations have a fixed arity (degree, it is a value of function ar, Definition 1). 
Let X be the set of all finite sequences of members of S × �  ( S stands for a set of 
relation symbols and �  for a set of attribute-types). Function ar∗ prescribes an ele-
ment from X for each element of the ordered set of symbols (arity) as follows (Defi-
nition 1):

–	 (P, � ) for P ∈ IV;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P ∈ TV;
–	 ⟨(P, �), (P, �), (P, �)⟩ for ⟨P,P,P⟩ if P ∈ DV;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P = L;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P = U;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P = D.

A value of ar∗(ar(P)) is called a relation scheme and each (P, �) (or simply P.� ) in 
the relation scheme is called a relational attribute (see Definition 2).27

None of the atomic predicates (other than distinguished) have attributes of 
‘instrument’, ‘location’ or ‘beneficiary’. But how do predicates get other attributes, 
for example Q.� (‘instrument of Q’) or Q.� (‘location of Q’)? With the intuition that 
prepositions add a new attribute to a relation scheme,28 we need to explain how 
prepositions gain an attribute, and how to separate (a) prepositions which are added 
internally, that is, to one of the arguments of the main relation, expressing that the 
argument is related to one represented by prepositional complement (expressing a 
relation between two entities (occurrences of PPs as internal modifiers), cf. Quirk 

Table 3   The set F of a relational L
2

P� Q� Q� R� R� R�

f1 ◦ ◦ ∙ ◦ ◻ ▪

f2 ∙ ∙ ◦ ◻ ▪ ◦

f3 ◻ ▪ ▪ ▪ ◦ ◻

f4 ▪ −− −− −− −− −−

27  Note that relation schemes of atomic predicates are nothing other than theta-grids (cf. Carnie (2006): 
221).
28  In some case languages (e.g. in Russian) a new attribute can be added to a relation scheme not by 
means of a preposition but morphologically, with a special case. Case is a morphological marking of a 
distinctive role-name that an argument has in a relation scheme (cf. Chomsky (1981), Stowell (1981), 
Garson (1981)).
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et  al. (1985): 657) from (b) prepositions which are added externally, to a relation 
as a whole, to modify it with an argument with a new role (occurrences of PPs as 
external modifiers).

I propose treating prepositions as syncategorematic expressions29 - despite having 
their own (partial) meaning, they only become fully meaningful in a combination 
with a relation. Take the individual cars in a train as an example. There is a head car 
and a tail car in a train. ‘A head car’ / ‘a tail car’ are names of roles that particular 
cars fulfill in a particular train, and without speaking of a particular train it would 
be pointless to ask if a car is a head / a tail car or not. Similarly, there is no point 
in asking if something is a tool or a beneficiary without speaking of a particular 
relation. With a preposition, we can add a particular attribute to a relation scheme 
(e.g. ‘beneficiary’ or ‘instrument’) and this attribute becomes fully meaningful in 
this scheme. The treatment of prepositions as syncategorematic expressions uses the 
same background intuition as the Neo-Davidsonian approach where an object fulfills 
a particular role not per se but with respect to a particular event.

In general, prepositions denote spatial relations between objects (to, at, away 
from, on, off, in, out of, over, under, above, behind, etc.), as well as relations of 
using something as an instrument (by, with), receiving something (for), being (un)
accompanied with something (with, together with, without) or being in possession 
of something (of). All these relations can be explicitly revealed in different syn-
tactic patterns of the same argument structure realization (‘He is the recipient of 
many awards’ - ‘Many awards were given to him’), as well as function as standalone 
relations (‘I received a phone call’). As I noted in Sect. 4, prepositions (as well as 
predicates) may have internal and external occurrences. Predicates may also incor-
porate a prepositional meaning (their role in a relation). By ‘meaning incorporation’ 
I understand the notion that the relation schemes of relations include an attribute 
of a type connected with a preposition. In that sense ditransitive verbs incorporate 
‘goal’ attribute-type in their relation schemes (they do not get it with a preposition 
to as other predicates) and predicates such as ‘to be located in’, ‘to be meant for’, ‘to 
use something as a tool’ incorporate the meaning of prepositions in their relation 
schemes (place, beneficiary and instrument respectively). Ultimately, I find no rea-
son to maintain that prepositions are ambiguous between their internal and external 
occurrences - any account treating them in the same way in both their occurrences 
is semantically preferable than any other stating an ambiguity. Beside semantic uni-
formity, prepositions in their external and internal occurrences seem to behave in 
much the same way, for example, new arguments added by modifiers could be modi-
fied further.

When a predicate is modified internally I propose to analyze this modification as 
an adjunct predication, that is, the modification of the main predicate by a relation 

29  By ‘syncategorematic expressions’ I mean that the expressions become meaningful only in a combi-
nation with expressions which have a denotation of their own. Such an account was offered by Henry of 
Ghent, cf. (Kretzmann 1982, 213): ‘And they are called syncategorematic as if to say “consignificant” - 
i.e., significant together with others [ … ] not because they signify nothing on their own, but because they 
have a signification [ … ] whose definiteness they derive from those [words] that are adjoined to them.’
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with a prepositional meaning built-in as a part of its scheme - we combine this rela-
tion with the main predicate in order to express a relationship between one argument 
of the main predicate and a prepositional complement. In order to create a new rela-
tion of higher arity with a correspondence among all arguments of the main predi-
cate and a prepositional complement (external modification), we combine the main 
predicate with a preposition. Thus prepositions can be seen as operators on relation 
schemes—added to a predicate, they extend its relation scheme by adding a new 
(specific) attribute.

Here the formal representation of one of the two inductive ways of building pred-
icates in natural language (‘you can take any predicate, add a preposition to it and 
receive another predicate’), that is, a rule of making a predicate symbol for a new 
relation together with a rule of making the relation scheme for this new relation (see 
Definition 1 in Appendix):

–	 If R ∈ S and P ∈ ℙ then R⋅P ∈ S;
–	 The relation scheme of R⋅P is ⟨ar∗(ar(R)), (R, �)⟩ , where

–	 (R, �) = (R, �) , if P = IN;
–	 (R, �) = (R, �) , if P = WITH;
–	 (R, �) = (R, �) , if P = FOR.

	    In case (R, �) is already in ar∗(ar(R)) , we denote it (R, �2).30

How it works? Let Q be a 3-place relation with a relation scheme Q.�,Q.�,Q.� 
(or simply Q(�, �, �) ). We make new relations out of Q by adding prepositions as 
follows:

•	 Q ⋅WITH  with a relation scheme Q.�,Q.�,Q.�,Q.� (or simply Q(�, �, �, �) , 
4-place relation with instrument attribute added);

•	 Q ⋅ FOR with a relation scheme Q.�,Q.�,Q.�,Q.� (or simply Q(�, �, �, �) , 4-place 
relation with beneficiary attribute added);

•	 Q ⋅ IN with a relation scheme Q.�,Q.�,Q.�,Q.� (or simply Q(�, �, �, �) , 4-place 
relation with location attribute added);

•	 Q ⋅WITH ⋅ FOR  with a relation scheme Q.�,Q.�,Q.�,Q.�,Q.� (or simply 
Q(�, �, �, �, �) , 5-place relation with beneficiary attribute added), and so on.

When added to a predicate, a preposition expands the predicate’s relation scheme 
with an attribute of a type connected with it and increases the predicate’s arity. We 
can add a preposition to any predicate, either as a standalone or as a constituent of a 
joined predicate, e.g.: 

30  To be able to handle examples such as 15 and keep the requirement that all attributes in relation 
scheme should be different, in case a relation scheme already contains an attribute associated with a 
preposition, we will distinguish repeating attributes with indexes (see Definition 1 in Appendix). Thus a 
relation scheme for Made a sweater for for in 15 is as follows: M.�,M.�,M.�,M.�2.
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	47.	 Playing rugby, Oscar was admired by thousands of girls.

47′ . Playing rugby for his country, Oscar was admired by thousands of girls.
47′′ . Playing rugby for his country with artificial legs, Oscar was admired by 
thousands of girls.
47′′′ . Playing rugby for his country with artificial legs, Oscar was admired in Bei-
jing by thousands of girls.

I will now show how compound predicates are built from basic predicates using the 
operation of adjunctive join (our second inductive step of predicate construction). 
Since predicates name relations, we can join them with other relations (ultimately 
as we will see, using the operation of natural join). Imagine having a metal toy con-
struction set with metal beams (predicates) with named (by attribute names), regu-
larly-spaced holes (argument places). We may hold two beams together with a ‘bolt’ 
(a common argument) in the following way:

–	 Join beam 1 with beam 2 by connecting any hole of beam 1 with the first hole of 
beam 2;

–	 Join two beams in the overlapping manner, renaming the first hole of the joined 
beam 2.

In an adjunctive join, we join the main predicate on one of its arguments with 
another predicate on its agent argument (cf. Rothstein (2004a): 72). Informally (and 
simplified): let R,  S be relations with relation schemes R(X), S(�, Y) . Adjunctive 
join is a concatenation of relations R �

S
 with attributes XY. In adjunctive join R �

S
 R is 

called ‘primary relation’, S is called ‘secondary relation’. Notation ‘ R �

S
 ’ is read as ‘a 

predicate R is joined with a predicate S on attribute � of R’.
Formally we need a rule of making a predicate symbol for a new relation together 

with a rule of making the relation scheme for this new relation (Definition 1):

–	 If R, S ∈ S and � ∈ �  , then R �

S
∈ S

31

–	 The relational scheme of R �

S
 is ⟨ar∗�(ar(R)), ar∗(2,…,n−1ar(S))⟩ , where ar∗�(ar(R)) 

denotes a sequence identical to ar∗(ar(R)) except (RS.�) belongs to this new 

31  One may wonder why we can’t use a standard notation from relational algebra and instead of R �

S
 write 

something like R ⋈ �R.�;∕S.�(S) . I see the choice to use a relational FOL instead of relational algebra or 
SQL as arbitrary; ultimately I have chosen it because of its intuitiveness and closeness to FOL. Because 
of the closeness, language L contains neither ⋈ (‘bowtie’) nor � symbols. And so, contrary to the stand-
ard relational algebra, � ⋈ � , �A∕B(R) are not expressions of L . Symbol ⋈ appears in a semantic met-
alanguage but the operation of a natural join is not a primitive operation of relational algebra and is 
defined in terms of Cartesian product and projection (see Definition 8). The same holds for the operation 
of attributes renaming (denoted by � symbol, see Atzeni and De Antonellis (1993): 36).
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sequence instead of (R, �) . In case R = S we denote all (S, �) ∈ ar∗(2,…,n−1ar(S)) 
as (S�, �).32

How it works? Let us take ‘give-yawning’ predicate (‘Yawning, she gave Tom a 
book’) and ‘buy-located-in’ predicate (‘I bought stewed chicken in creole sauce’). 
The former predicate is a result of adjunctive join in which a primary predicate G 
(‘give’) is joined on its ‘agent’ attribute with a secondary predicate Y (‘yawn’); we 
write this join as G �

Y
 (Fig. 1). The latter predicate is a result of adjunctive join in 

which a primary predicate B (‘buy’) is joined on its ‘object’ attribute with a second-
ary predicate L (‘located in’); we write this join as B �

L
 (Fig. 2).

The rule of making relation schemes for the adjunctive joins reflects the structure 
of the new relations - one of the attributes becomes ‘an overlapping’ attribute, the 
rest of attributes left unchanged. In that way we have predicates

G
�

Y
 with GY .�,G.�,G.� relation scheme;

B
�

L
 with B.�,BL.�, L.� relation scheme.

The syntactic rule of an adjunct join allows us to expand a predicate further by join-
ing it with another predicate on any argument place of the initial predicate. So for 
example, we can expand a joined predicate ‘buy-located-in’ ( B �

L
 ) to ‘buy-located-in-

yawning’ ( B �

Y
⋅
�

L
 ), then to ‘buy-located-in-yawning-for’ ( B �

Y
⋅
�

L
⋅
�

D
 ) and so on, e.g. to 

‘Yawning, I bought chicken in creole sauce with my credit card, for my nephew who 
was giving a pack of battery to a fellow journalist in Beijing’ (see Fig. 3).

Finally, we combine rules of joining predicates and prepositions. For example, 
the complex predicate from ‘path’ example 37 will be written as P⋅IN⋅ �

L
.

The notion of a formula is defined in a standard way.
Having explained the syntactic element of the theory, let us inspect the semantics 

in more details.

6.3 � Semantics of Complex Predicates: Conceptual Design

6.3.1 � Spurious Tuples and Relationship Relations

The association between attribute-types and domains is established by means of a 
function dom from the set of attribute-types �  ar∗(ar) onto non-empty subsets of 
D (see Definition 4). With this definition, it is possible for several attribute-types 

32  This requirement is needed to handle cases when we join a relation with itself, for example ‘I am 
chasing a dog chasing a cat’, ‘I am seeing myself seeing myself’. At first glance such examples seem 
problematic because they violate the requirement of a relational algebra that all attributes in a joined 
relation must be distinct. To avoid this problem and be able to join a relation with itself (making so 
called ‘a self-join operation’) we need to (make a standard move and) rename one of the copies of a rela-
tion (make it relation R′ ) and then join them.
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to have overlapping (or the same) domains. So, for example, it is possible that there 
are overlapping domains of objects for attribute-types object and instrument - the 
attributes indicate different roles (same) objects have in a relation (cf. Elmasri and 
Navathe (2001): 63). The domain of a model is a non-empty set equal exactly to the 
range of variables of A (see Definition 4).

Basic relations are considered to be atomic predicates (see Definition 3). Preposi-
tions are treated as syncategorematic expressions (they are not allowed be standalone 
predicates) which are either built-in to relations’ schemes (PPs occurrences as argu-
ments) or added to relations in order to express a relationship between a relation’s 
participants and a set of objects from a domain assigned to prepositions’ attribute 
(PPs occurrences as external verbal modifiers). Verbal internal modification is ana-
lyzed as adjunct predication - an adjunct predicate with incorporated prepositional 
meaning is joined on its agent argument with one of the arguments of a main predi-
cate (cf. Rothstein (2004a): 72). Semantically, the extension of such a compound 
predicate (the result of adjunctive join) is a subset of a natural join of the primary 
and the secondary relations. In a natural join we combine tuples from two relations 
which have equal values in attributes with the same name and skip duplicate attrib-
utes (for example we can combine two 3-place relations with attributes �, �, � and 
�, �, � and because of skipping two columns-duplicates, receive a new 4-place rela-
tion with �, �, �, � attributes, see Definition  8). The natural join sign ⋈ (‘bowtie’) 
looks like a cross × with two vertical lines added, suggesting that a natural join is a 
Cartesian product plus two other operations (selection of rows with equal values for 
the common columns, followed by projection to delete redundant columns, Garcia-
Molina et al. (2013): 198-199; Elmasri and Navathe (2001): 161).

Let me explain why adjunctive joins R �

S
 cannot be analyzed (directly) as a natu-

ral join of R and S relations (the same holds for relations with several prepositional 
phrases R⋅P1⋅P2 - they are not equal to a natural join of R⋅P1 and R⋅P2 relations). 
Suppose that Jones is frying meat and frying potatoes. Simultaneously he is using a 
spoon (to fry potatoes) and a fork (to fry meat), see Tables 4 and 5.

To have Fry-using ( F �

U
 ) relation we may rename the attribute U.� (‘Use agent’) 

in Use on F.� ‘Fry agent’) and obtain a 3-place relation with the following rela-
tion scheme Fry-using(Agent, Object, Instrument). If we define the relation Fry-
using as equal to the natural join of Fry and Use relations on ‘agent’ attribute 
( Fry ⋈ �F.�∕U.�Use)33 then we will get the set of triples illustrated by Table 6.

It is clear that this set of triples cannot serve as an extension of Fry-using relation 
because this joined relation contains ‘spurious’ tuples (additional tuples that repre-
sent erroneous information, cf. Elmasri and Navathe (2001): 554)—it immediately 
follows that Jones fries meat not only using a spoon, but also using a fork (the same 
for frying potatoes). To get rid of spurious tuples we need to define a relationship 
between two relations, e.g. as in Table 7. Relation Fry-using is a relationship rela-
tion because each tuple in it represents a relationship instance that relates one tuple 
from Fry with one tuple from Use (cf. Elmasri and Navathe (2001): 289). The exten-
sion of the relationship relation Fry-using is a subset of joined relations it relates 

33  �A∕B(R) denotes operation of renaming of attribute B of R on A, see Definition 10 in Appendix.
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( [[F �

U
]] ⊆ [[F]] ⋈ 𝜌F.�∕U.�[[U]] ; the same holds for extensions of relations with several 

prepositional phrases, [[R⋅P1⋅P2]] ⊆ [[R⋅P1]] ⋈ [[R⋅P2]]).
It is clear from this example that defining the extensions of compound predicates 

as subsets of natural joins of predicates-constituents, allows one to have the Non-
Entailment semantic requirement (the proof is straightforward and stems from the 
definition of a natural join, see Statements in Appendix). While it is true that Jones 
fries potatoes and it is true that he fries using a spoon, it is false that Jones fries 
potatoes using a spoon - no such triple belongs to the relation Fry-using. It is clear 
as well that the Drop condition is also satisfied (it is nothing but a restriction of a 
relation to the selected columns) and the Permutation condition follows from the 
definition of a relations’ tuple (a set of attribute:value pairs, an order of which is 
without importance),34 In order to explain inferential connections among sentences 
involving prepositional phrases and adjunct predication, we need not refer to events 
or states. Consequently, ‘[t]he chief reason this extra complexity is forced upon us 
[...]’ (Szabó (2003): 398) is repealed.

6.3.2 � Explanatory Power: Non‑entailment

The main motivation behind event semantics lies in its explanatory power. It is con-
sidered a good theory because, together with the truth-conditions, it provides their 
explanation. For example, why is it that the truth of (a)‘Brutus stabbed Caesar with 
a knife’ and (b) ‘Brutus stabbed Caesar in the chest’ does not guarantee the truth 
of (c) ‘Brutus stabbed Caesar in the chest with a knife’? This is because (a) and (b) 
may describe two different events: a stabbing with a knife (which might not have 
been done in the chest) and a stabbing in the chest (which might not have been done 
with a knife). Similarly, a theory based on RMD should be considered a good the-
ory, as it provides an explanation of why two pieces of information can/cannot be 
joined together.

Consider an example. Suppose that two astronauts, Dave and Frank, have been 
flying on a spaceship equipped with two supercomputers, Hal and Sal. Mission Con-
trol suspects that the computers have gone out of control. Unfortunately, the connec-
tion with the spaceship is lost but Mission Control still has access to the computers’ 
logs and is able to check what data have been added to Hal and Sal and which astro-
naut has interacted with the computers. Based on this knowledge, Mission Control 
tries to figure out what happened on the spaceship. So far, Mission Control has the 
following information (reflected in Tables 8 and 9): 

34  Statements A-H (see Statements in Appendix), expressing Reordering Drop and Non-Entailment, are 
not only logical truths, but analytic as well because ultimately concern predicates’ relation schemes. The 
relation schemes of compound predicates R �

S
 , R⋅P are sets of theta-roles (formally representing the part 

of the predicates’ meaning which expresses the roles domains have in a relation named by the predicate). 
We may say that the meaning of compound predicates incorporates the meaning of the constituents: the 
relation schemes XY and XZ of predicate-constituents are parts of the relation scheme XYZ of a com-
pound predicate (therefore Drop and Non-Entailment expresses analytic truth); because XYZ is an unor-
dered set, it can be freely reordered (resulting in the same set, therefore Reordering expresses analytic 
truth as well). I am grateful to Justyna Grudzińska-Zawadowska for pointing attention to the issue.
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1.	 Dave has uploaded data to Sal;
2.	 Dave has uploaded data to Hal;
3.	 Frank has uploaded data to Sal;
4.	 Sal processed data to calculate Jupiter’s orbit;
5.	 Hal processed data to calculate Jupiter’s orbit.

Mission Control concludes that this is what happened on the spaceship: 

	 I.	 Dave has uploaded data to Sal to calculate Jupiter’s orbit
		    (Justification: Dave has uploaded data to Sal and the only data has been 

uploaded to Sal concerns Jupiter’s orbit);
	 II.	 Dave has uploaded data to Hal to calculate Jupiter’s orbit
		    (Justification: Dave was the only person who has interacted with Hal and 

the only data that has been uploaded to Hal concerns Jupiter’s orbit);
	 III.	 Frank has uploaded data to Sal to calculate Jupiter’s orbit
		    (Justification: Frank has had an interaction with Sal and the only data that 

has been uploaded to Sal concerns Jupiter’s orbit).

Despite the fact that (4) is a part of the description of two different events, Mission 
Control has the right to join pieces of information (1) and (4), as well as (3) and 
(4) together and draw conclusions I-III, because of the functional dependencies pre-
sent in (1)–(5). If we represent pieces (1)–(5) schematically as a table with columns 
Uploader, Computer, Planet (Table 10), then it becomes clear that the values in the 
Uploader column functionally determine values in Planet column, as well as val-
ues in Computer functionally determine values in Planet column. The presence of 

Fig. 1   ‘Give-yawning’

Fig. 2   ‘Buy-located-in’
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a (specific) functional dependency between pieces of information is a sufficient 
condition for the information being joined in a valid 
way (cf. Song and Jones (1995); Atzeni and De Antonellis (1993)).35

Contrast this scenario with another in which, in addition to information (1)-(5), 
Mission Control receives the following information reflected in Tables 11 and 12.

Note that Tables 8, 11, and 12 constitute all three binary projections of a ternary 
relation Uploader, Computer, Planet. Mission Control concludes: 

	 I.	 Dave has uploaded data to Sal to calculate Saturn’s orbit.
		    (Justification: Sal was the only computer used to calculate Saturn’s orbit, 

Dave has had an interaction with Sal and has uploaded the data needed for 
calculating Saturn’s orbit);

	 II.	 [remains the same];

Fig. 3   Complex predicate with several adjuncts

35  Using the tableu method (Theorem  4.4, Atzeni and De Antonellis (1993): 144–145) it is possi-
ble to prove that relation R(Uploader,Computer,Planet) in Table 10 can be losslessly decomposed on 
R
1
(Uploader,Computer) and R

2
(Computer,Planet) . Lossless decomposition means that R=R

1
⋈R

2
 , that 

is, it is possible to decompose a complex relation on several projections, and these projections joined 
together will generate this very relation with no spurious tuples (cf. Chan and Atzeni (1992); Elmasri and 
Navathe (2001): 535).
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	 III.	 [remains the same].

But what Mission Control can neither confirm nor exclude is the possibility that 
Dave has uploaded data to Sal to calculate Jupiter’s orbit - Dave has used both com-
puters and has uploaded data to calculate orbits of both planets and Sal contained 
data for calculation orbits of both planets. The moral of the story is that even if all 
2-argument projections are known, it is possible that they are the same for two dif-
ferent 3-argument relations describing two different scenarios (Tables 13 and 14).

That is why in situation in which there are no functional dependencies between 
pieces of known information we refrain from joining them because it is possible that 
such joining will result in erroneous information (being a part of a description of a 
wrong scenario). This potential to receive spurious information explains the Non-
Entailment constraint.36

Table 4   ‘Fry’ relation Agent Object

Jones Potatoes
Jones Meat

Table 5   ‘Use’ relation Agent Instrument

Jones Spoon
Jones Fork

Table 6   Fry ⋈ �
F.a∕U.a

Use Agent Object Instrument

Jones Potatoes Fork
Jones Meat Fork
Jones Potatoes Spoon
Jones Meat Spoon

Table 7   ‘Fry-using’ relation Agent Object Instrument

Jones Potatoes Fork
Jones Meat Spoon

36  Larson (2010: 701) objected to Pylkkänen’s (2002) account of low applicative constructions (con-
structions in which the possession relation holds not between an event and an individual, but between 
two individuals) that such account results in an unwanted entailment. For example, assume that John 
wrote a letter and Bill gave it to Mary. If we analyze the conjunction ‘John wrote that letter and Bill gave 
it to Mary’ as a conjunction in which the relation of possession connects Mary and the letter, not Mary 
and the writing event, we must draw an undesirable conclusion that John wrote the letter to Mary. Intui-
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6.4 � Semantics of Complex Predicates: Logical Design

6.4.1 � Compositionality

So far, there are entities of two primitive types in our semantics, atomic predicates 
and prepositions. Prepositions are treated as operators on relation schemes, which 
take a relation scheme as an argument and return another with a new attribute added 
(e.g. ‘in’ adds a location attribute, ‘with’ adds an instrument attribute). Semanti-
cally, a compound predicate (a composition of atomic predicates, atomic predi-
cates and prepositions, or both) is interpreted as a relationship relation(-s) between 
its components. This relationship relation is a subset of a natural join between the 
relations it relates. In that way all relationship relations (extensions of compound 
predicates) appear as semantically primitive - despite the fact they depend on exten-
sions of relations they relate, they cannot be obtained from these extensions in a 
straightforward way (i.e. as their joins).37 We return to the main question mentioned 
in the Introduction: if predicates have a recursive syntax, does they have a recursive 
semantics as well?

We may consider the function version of compositional semantics (Pagin and 
Westerståhl (2010): 254) and define extension of predicates as a restriction of F 
to predicates’ relation schemes (Definition 4), that is, for each predicate symbol P, 
[[P]] = F|P.n , where P.n=ar∗(ar(P)) . But is there any way to have a recursive seman-
tics? The answer is positive – all we need to do is to force functional dependencies 
in order to avoid spurious tuples in natural joins.

Indeed, a recursive semantics can be achieved by forcing a functional dependency 
for relation F. If we add an additional column with attribute id to the F relation and 
place in it a unique index for every row (say, index i of fi , see Definition 9 in Appen-
dix), then the new relation H obtained by this operation has a lossless join property 

37  A relationship relation may be represented as well as a value of a choice function (Pörn 1982). It was 
noted van Fraassen (1973), Fulton (1979) that there is a problem with considering an extension of a 
predicate with an adjunct (a modified predicate) to be a value of a choice function defined on the family 
of subsets of the predicate extension. Because it is a function, in the case of two co-extensive predicates, 
a choice function would necessarily pick up the same subsets (see Author (0002) for details). This objec-
tion does not apply here because relations are considered as sets of ‘attribute: value’ pairs and in case of 
two co-extensive predicates P and Q, these sets trivially differ.

Footnote 36 (continued)
tively, we cannot infer from the facts that John wrote a letter and it came in Mary’s possession that John 
wrote the letter to Mary. I agree with Larson - in general ternary relations have no lossless join property 
(which means that they cannot be obtained as a result of joining their two binary projections and even 
all three - you may have additional spurious tuples, cf. Song et al. (1993). For example, a ternary rela-
tion from Scenario 1 (Table 13) cannot be obtained as a result of joining any of its binary projections). 
In Larson’s example the resulting joined relation (from joining ‘write’ and ‘to-the-possession’ relations) 
suggests a relationship between objects, but in reality such relationship does not exist. This type of con-
nection trap is called a chasm (Sumathi and Esakkirajan (2007): 59-60). Larson’s objection, however, 
does not apply to the account presented here because I join projections of a universal relation H which 
has a lossless join property (for a proof see Lemma 1.1 in Appendix).
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(for a proof see Lemma 1.1 in Appendix). Because of this property, it is possible 
to define extensions of compound predicates as natural joins of respective columns 
from H in a fully recursive way ( � stands for rename operation, see Definition 10 in 
Statements in Appendix, and R.� stands for an attribute added by a preposition to the 
relation scheme of a predicate R):

For a better understanding of how semantic definitions work, consider 2-place 
predicates Sing, Use, 3-place compound predicates Sing⋅IN , Sing⋅Using , Sing⋅FOR , 
4-place compound predicates Sing⋅IN⋅Using , Sing⋅IN⋅FOR , Sing⋅Using⋅FOR , 5-place 
compound predicate Sing⋅IN⋅Using⋅FOR and consider the following story about sing-
ing. Suppose there were three singing fellows, Jones, Smith and Brown. Jones and 
Brown sing ‘Hallelujah’ and Smith sings ‘Yesterday’. Jones sings simultaneously 
in a bar and on YouTube, Brown sings on YouTube and we do not know where 
Smith sings. In a bar, Jones sings using a mike and he sings for the charity organiza-
tion YMCA. Beside a mike, Jones uses a pen (but not for singing). Brown sings for 
Jones, and Smith sings for himself. Let us reflect this story by creating the following 
model which represent extensions of our relations (see Table 15).

By Definition 4 (relation F) we list all attributes which appear in our relations, 
that is, S.�, S.�,U.�,U.�, S.�, S.�, SU.� (‘singing agent’, ‘singing object’, ‘using 
agent’, ‘using instrument’, ‘singing location’, ‘singing beneficiary’, ‘singing using 
agent’). We start to populate our relation F with values from the first row. For any 
new information (not already contained in the previous rows) we start a new row, 
and in case information is missing or unknown for some of the attributes, we assign 
− (null) to them.Value − (null) represents a missing value (mappings fi are partial) 
and is interpreted as ‘a value is not applicable’ (Elmasri and Navathe (2001): 116).

By Definition  1 atomic and compound predicates have relation schemes as in 
Table 16. Extension of the predicates is defined as a restriction of F to predicates’ 
relation schemes. However, the extension may be obtained in a recursive way, by 
joining (by a natural join operation) columns of H for the respective attributes.

What will be the truth conditions for ‘John is singing ‘Hallelujah’ using a mike 
in a bar for YMCA’? The sentence is true iff (Definition 7) there exists a 5-tuple of 
attribute-value pairs in [[S �

U
⋅IN⋅FOR]] , and the value for agent attribute is John, and 

the value for object attribute is ‘Hallelujah’ etc.
In the next section I will resolve problematic examples from Sects. 4 and 5.

6.4.2 � Solving Problematic Examples

From a syntactic point of view, there are two ways of constructing compound predi-
cates. Either we ‘go along’ with a predicate R and add a preposition P to it (having 
R⋅P , modification of a predicate as a whole), or we ‘go orthogonally’ and concate-
nate a predicate R with a predicate S on an attribute � of R (having an adjunctive join 

[[Q]] =

⎧
⎪
⎨
⎪
⎩

H�id,Q.n, where Q.n = ar∗(ar(Q)) if Q is atomic;

[[R]] ⋈ H�id,R.�, if Q = R⋅P;

�RS.�∕R.�[[R]] ⋈ H�id,RS.� ⋈ �RS.�∕S.�[[S]] if Q = R
�

S
.



S1024	 Axiomathes (2022) 32 (Suppl 3):S993–S1039

1 3

R
�

S
 ). If we modify the predicate as a whole, we increase its arity by adding a new 

attribute to its relation scheme; the extension of such a complex predicate is a natu-
ral join of the extension of the predicate and two columns for two attributes from a 
universal relation, that is, of id attribute (which secures a lossless join) together with 
the column for the new attribute added by a preposition, [[R⋅P]] = [[R]] ⋈ H|id,R.� . 
Note that in case of examples of blocked reordering, such as (15) repeated here,

	15.	 Bill made a sweater for Mary for Miles. (Gawron (1986): 371)

Table 8   Mission control data 
(part 1)

Uploader Computer

Dave Sal
Dave Hal
Frank Sal

Table 9   Mission Control Data 
(part 2)

Computer Planet

Sal Jupiter
Hal Jupiter

Table 10   Data received by 
Mission Control

Uploader Computer Planet

Dave Sal Jupiter
Dave Hal Jupiter
Frank Sal Jupiter

Table 11   MC data (part 3) Uploader Planet

Dave Jupiter
Dave Saturn
Frank Jupiter

Table 12   MC Data (updated 
part 2)

Computer Planet

Sal Jupiter
Hal Jupiter
Sal Saturn
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 we obtain a modified predicate Make⋅FOR⋅FOR with a relation scheme in which 
there are two ‘beneficiary’ attributes with different indexes (by Definition  1), 
Make⋅FOR⋅FOR(M.�,M.�,M.�,M.�2) . It is possible that attributes M.�,M.�2 have 
different values in a universal relation, for example as in Table 17.

While we can reorder the attributes Beneficiary and Beneficiary2 in the relation 
scheme for Make, as well as reorder attributes with their values in the tuples (reorder 
Beneficiary:Mary and Beneficiary2:Miles), we cannot keep an order between attrib-
utes (with respect to an index) and permute their values (having Beneficiary:Miles 
and Beneficiary2:Mary), because we may obtain a spurious tuple (a tuple which does 
not belong to a relation) as a result. This explains why the reordering between iter-
ated prepositions is blocked in natural language.

Now let us turn to a semantic definition of an adjunctive join. As I have noted in 
Sect. 6.3.1, semantically an adjunctive join is a relationship relation between the rela-
tions-constituents. This relationship relation encodes the following information: (i) 
what tuples from two relations are related and (ii) what attribute from a primary relation 
is considered a ‘juncture’ attribute, and that (iii) the relations share a ‘juncture’ point 
(the same value for junction attribute). The idea behind the definition of the extension 
of an adjunctive join between relations 1 and 2 can be schematically represented as

1
○

2
= 1 ⋈ ○ ⋈ 2

[[R
�

S
]] = [[R]]∗ ⋈ H|id,RS.� ⋈ [[S]]∗

that is, as a join of extensions of relations 1 and 2 with a ‘node’ of concatenation. A 
complex relation 1 ○

2
 may itself be an argument of a more complex relation, e.g. 

1
◦

2
⋈ 2

◦

3
⋈ … or 1

◦

2
⋈ 1

◦

3
⋈ … . Such a semantics of an 

adjunctive join is compositional: denotations of basic constituents (values assigned 
to attributes) are context-free, the extensions of complex relations are computed by 
function application and function composition in a way determined (only) by the 

Table 13   Scenario 1 Uploader Computer Planet

Dave Sal Saturn
Dave Hal Jupiter
Frank Sal Jupiter

Table 14   Scenario 2 Uploader Computer Planet

Dave Sal Saturn
Dave Hal Jupiter
Frank Sal Jupiter
Dave Sal Jupiter
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syntactic structure of the complex relation and finally syntactic components of a 
complex relation can be computed independently of the relation.

Let us now see how the semantic definition of an adjunctive join works in prac-
tice, starting from the example of self-join 40 repeated here,

40.    I am seeing myself seeing myself.

Assume that we have a model with a universal relation F={f1} such that a map-
ping f1 assigns values to attributes in a relation scheme for See as in Table 18.

When we make an adjunctive join of a relation with itself, we mark the joined 
relation with the prime symbol ′ , S �

S′
 . The relation scheme of S �

S′
 is S.�, SS.�, S′.� 

(Definition 1). Let us see if 40, written as S �

S�
(I, I, I) , is true (I will assume for sim-

plicity that indexical ‘I’ denotes John).

40′.   ⊧I,𝜌 S
�

S�
(I, I, I) iff (Definition 7) (S.�∶‖I‖�

I
, SS.�∶‖I‖�

I
, S�.�∶‖I‖�

I
) ∈ [[S

�

S�
]] iff 

(Definition 4) (S.�∶‖I‖�
I
, SS.�∶‖I‖�

I
, S�.�∶‖I‖�

I
) ∈ F�S.�,SS.�,S�.� , iff

(S.�∶‖I‖�
I
, SS.�∶‖I‖�

I
, S�.�∶‖I‖�

I
) ∈ {S.�∶ John, SS.�∶ John, S�.�∶ John} . true

Now I will show that adjunctive joins are non-transitive. Let us take example (46) 
of non-transitive iteration of modifiers and consider a mapping f1 which assigns val-
ues for attributes of ‘Confirmed’, ‘Hired’ and ‘Defensive coordinator’ relations as in 
Table 19.

Let ‘t’ stand for ‘Teryl Austin’ and let compute the values of the following sen-
tences 1-3: 

1.	 C
�

H
�

D

(t)    ‘Teryl Austin was confirmed as hired as defensive coordinator’.

2.	 C
�

H
(t)   ‘Teryl Austin was confirmed as hired’.

3.	 C
�

D
(t)    ‘Teryl Austin was confirmed as defensive coordinator’.

Let us start from 2: 

2.	 ⊧I,𝜌 C
�

H
(t) iff (Definition 7) CH.�∶‖I‖�t ∈ [[C

�

H
]] iff (Definition 4)

	   CH.�∶‖I‖�t ∈ F�CH.� iff CH.�∶‖I‖�t ∈ {CH.�∶ Teryl} . true

Now let us compute 1: 

1.	 ⊧I,𝜌 C
�

H
�

D

(t) iff (Definition 7) CHD.�∶‖I‖�t ∈ [[C
�

H
�

D

]] iff (Definition 4)

	   CHD.�∶‖I‖�t ∈ F�CHD.� iff CHD.�∶‖I‖�t ∈ {CHD.�∶ Teryl} . true

Finally, let us compute 3: 

3.	 ⊧I,𝜌 C
�

D
(t) iff (Definition 7) CD.�∶‖I‖�t ∈ [[C

�

D
]] iff (Definition 4)

	   CD.�∶‖I‖�t ∈ F�CD.� iff CD.�∶‖I‖�t ∈ � . false
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The falsity of 3 exemplifies that the iteration of modifiers in the semantics presented 
is non-transitive: from the truth of 1, it does not follow that 3 is true as well. Note 
that ‘confirmed as hired’ is not the same predicate as ‘hired as confirmed’, that is, 
[[C

�

H
]] ≠ [[H

�

C
]] (so the presented account deals with examples such as 41 and 41′).

Finally, I want to comment on the semantics of simpliciter mentioned in Sect. 2. 
Intuitively, from the sentence you get after applying Drop, you cannot conclude that 
something is done simpliciter. For example, from ‘She likes him as a quarterback’ 
it follows that ‘She likes him [in some way]’ but not that ‘She likes him simpliciter’ 
(or ‘She simply’ likes him’). As I said earlier, a relation in RMD is understood as a 
set of mappings from a relation scheme to the union of attribute domains. It is pos-
sible that in such a set we will find a subset of mappings such that for all attributes 
added by modifiers, the mappings return value null. My hypothesis is that simplic-
iter is an operator on the extension of a predicate which returns such subset. I pro-
pose defining it as follows:

Simpliciter, � Let R be a relation with attributes X. 
[[�R]] = {fi|X ∈ [[R]] ∶ fi(R.�) is undefined for all R.� ∉ X}.

Under this interpretation, ‘She simply likes him’ is true iff she likes him without 
any qualification.

7 � Conclusions

I propose understanding a predicate as a recursive structure, with its basic cases 
(reflecting three kinds of natural-language predicates) and two inductive steps 
(reflecting two ways of constructing compound predicates, either ‘go along’ with 
a predicate and expand its arity with a preposition or ‘go orthogonally’ and concat-
enate predicates in adjunctive join). Semantically, the extension of a predicate is a 
realization of it’s relation scheme, where a relation scheme is understood as a set of 
theta-roles connected with a predicate which provide a truth-conditionally relevant 
information about objects’ ways of participation in the relation named by the predi-
cate. Compound predicates are no exception; their extension is a relation, that is, 
a set of mappings from the attributes of the relation’s scheme to relative domains. 
Due to the forced functional dependency (thanks to which relation H has a lossless 
join property) every such a relation can be obtained in a recursive compositional 
way by joining columns for respective attributes. However, despite the possibility of 
semantic recursion, compound predicates are semantically primitive in a deep sense 
as they denote a relationship between relation-components (so such a recursion is 
rather technical and without philosophical relevance).

If we represent theta-roles as attribute names of a relation, we preserve all of 
the conditions which theta-roles obey (except that which follow from the assumed 
homomorphism from events to objects). First of all, attributes have a semantic 
interpretation and constitute a part of a relation scheme (in the same way as theta-
roles constitute a part of a theta-grid). They are truth-conditionally relevant and 
their meaning is semantically basic, expressing the natural roles individuals play in 
a relation (independence condition). Every argument of a relation has an attribute 
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(completeness condition). The uniqueness condition is implied by a standard require-
ment of relational algebra that all attribute names in a particular relation must be dis-
tinct. Distinctness is achieved by using ‘ ′ ’ convention (which became necessary in 
the case of self-joined relations). However, as follows from examples 15 and 19 with 
prepositional iteration, uniqueness condition is not preserved in natural language 
which makes this requirement rather technical. Note that because an extension of 
a relation is a set of mappings from attributes to relative domains, it is possible that 
the extension contains several tuples which differ from each other only in a value for 
a particular attribute. Consequently, in cases where several objects fulfill the same 
thematic role (for example in the situation mentioned in note 4 in which two objects 
have been simultaneously touched) there be several tuples in a relation with different 
objects as values for the same attribute. Therefore, if we want to represent formally 
a situation of exactly one act of touching with two objects touched (that is, to count 
over acts), we cannot count elements of relation (tuples), because they are ‘thinner’ 
than needed and do not represent such acts (so probably ‘nested’ relations instead of 
‘flat’ should be considered, cf. Atzeni and De Antonellis (1993): 21).

What do we obtain as a reward for such a treatment of theta-roles? We receive 
a semantics which accommodates internal and external modifiers, non-transitive 

Table 15   Relation F 
S.� S.� U.� U.� S.� S.� SU.�

f1 Jones Hallelujah Jones mike bar YMCA Jones
f2 Brown Hallelujah Jones pen YT Jones −
f3 Smith Yesterday Brown mike YT Smith −
f4 Jones Hallelujah Brown pen − − −

Table 16   Extensions of predicates

a  [[S]]∗, [[U]]∗ stand for relations identical to [[S]], [[U]] except attribute S.� in all tuples t ∈ [[S]] is renamed 
on SU.� and attribute U.� in all tuples t ∈ [[U]] is renamed on SU.� . See Statements in Appendix. For a 
proof that relations listed in the middle and rightmost columns of Table 16 converge (if we restrict rela-
tions in the rightmost column to all attributes of their relation schemes except id), see Lemmas 1.2, 1.3 in 
Appendix

Natural-language relations Predicates of L with relation schemes Extensions of predicates

Sing S(S.�, S.�) H|
id,S.�,S.�

Use U(U.�,U.�) H|
id,U.�,U.�

Sing using S
�

U
(SU.�, S.�,U.�) [[S]]∗ ⋈ H|

id,SU.� ⋈ [[U]]∗a

Sing in S⋅IN(S.�, S.�, S.�) [[S]] ⋈ H|
id,S.�

Sing for S⋅FOR(S.�, S.�, S.�) [[S]] ⋈ H|
id,S.�

Sing using for S
�

U
⋅FOR(SU.�, S.�,U.�, S.�) [[S

�

U
]] ⋈ H|

id,S.�

Sing using in S
�

U
⋅IN(SU.�, S.�,U.�, S.�) [[S

�

U
]] ⋈ H|

id,S.�

Sing in for S⋅IN⋅FOR(S.�, S.�, S.�, S.�) [[S⋅IN]] ⋈ H|
id,S.�

Sing using in for S
�

U
⋅IN⋅FOR(SU.�, S.�,U.�, S.�, S.�) [[S

�

U
⋅IN]] ⋈ H|

id,S.�
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iteration of modifiers, self-joins, blocked reordering in case PPs modify different 
nodes (‘sweater’ example  15) and provides a compositional analysis of complex 
predication. The representation of theta-roles as attribute names of a relation allows 
us to use achievements of relational database theory for explanation semantic phe-
nomena of natural language (e.g. I have used the theory of functional dependencies 
to explain why two pieces of information can/cannot be joined together (Non-Entail-
ment)). As I have argued, a relational FOL is intuitive, close to a FOL and can be 
seen as ‘a bridge language’ between a FOL and query languages. The expressions 
of a relational FOL can (potentially) be translated to relational algebra expressions 
or SQL, which would allow us to operate with these three languages on the same 
relational model.38Further elaboration of ways natural-language expressions are be 
represented in RMD may allow going back to ‘property-based’ semantics in which 
properties named by predicates are properties of individuals, and not of events.

Finally, I would like to highlight something which is philosophically thought pro-
voking. I treat variables in this paper as denoting individual domain elements. How-
ever, one may use other of the two equivalent versions of relational calculus called 
tuple relational calculus, whose variables denote tuples (Atzeni and De Antonellis 
(1993): 74). If we let variables denote mappings f ∈ F that in turn assign individu-
als as its value to each relational attribute, then the theory proposed here becomes 
one of bound variables theories. As it was proven by Dekker (Dekker 2004), under 
a few assumptions situations are isomorphic to assignment functions. The resem-
blance between assignment functions in tuple relational calculus and situations is 
much closer than isomorphism. Here is an observation. The column id in H is a set 

Table 17   Universal relation H 
for Make for for example

Id Agent Object Beneficiary Beneficiary
2 any other attribute

1 Bill sweater Mary Miles −

Table 18   Values of a mapping 
f
1
 for attributes of ‘See’

Id S.� S.� S
′
.� S

′
.� SS.� any other attribute

1 John John John John John −

38  Codd (1972) has shown that relational calculus (a predicate calculus adapted to the relational model, 
cf. Abiteboul et al. (1996): 64) is essentially equivalent to relational algebra.
Let me provide a practical example and explain how to calculate extensions of compound predicates 
written as expressions of a relational algebra. Using notation �R.�←S.�(S) instead of �R.�∕S.�(S) , one can use 
an online relational algebra calculator (created by J. Kessler and available here: https://​dbis-​uibk.​github.​
io/​relax/​calc/​local/​uibk/​local/0) and calculate extensions of compound predicates. The translation rules to 
relational algebra queries are as follows (assuming relation H as in Definition 9 in Appendix, Rn is a rela-
tion scheme of R, Sm is a relation scheme of S and R.� is a relational attribute added by a preposition P):
If R is atomic:    [[R]] ⇝ Πid,Rn (H);
If R = R⋅P :    [[R⋅P]] ⇝ Πid,Rn (H) ⋈ Πid,R.� (H);
If R = R

�

S
 : [[R �

S
]] ⇝ �RS.�←R.�(Πid,Rn (H)) ⋈ �RS.�←S.� (Πid, Sm (H)) ⋈ Πid,RS.� (H).

https://dbis-uibk.github.io/relax/calc/local/uibk/local/0
https://dbis-uibk.github.io/relax/calc/local/uibk/local/0
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of numbers. Because for each row an assigned number is unique, we can rewrite this 
dependency as a function �j.fj (a function which for each index j returns a tuple of 
F). Let us assume for a moment, that each attribute is a partial function from the set 
of numbers into a domain assigned to the attribute (e.g. �j.agent(j), �j.instr(j) , etc.). 
Understood in such a way, attributes satisfy the following requirements for events 
and theta-functions: attributes-as-functions are partial, they are functions (a situa-
tion that different objects fulfill the same role in a tuple with the same number is 
excluded, it is possible to distinguish one object from another in a tuple by their role, 
two tuples are the same iff attributes-as-functions return the same values). What will 
be the truth-conditions for a sentence such as ‘John is singing ‘Hallelujah’ in a bar 
with a mike for YMCA’? - Well, the sentence is true iff there exists an index j in id 
column of H and the value for agent function for j is John and the value for object 
function is ‘Hallelujah’ and the value for location function is a bar etc. The only 
divergence from the truth-conditions provided by the Neo-Davidsonian semantics 
(in this particular case) is that we do not need to use events and may employ indexes 
instead.

Appendix

A relational FOL L

Definition 1  (Alphabet of L ) A first-order relational language L = (A,W) is appro-
priate for representing compound predicates iff A satisfies the following conditions: 

1.	 the set of constants in A is nonempty;
2.	 A contains the following symbols:

–	 a symbol = (called equality);
–	 a set of unary predicates (called types) of the form � = {�, �, �, �, �, �} , where 

�, �, �, �, �, � are interpreted as, respectively, agent, object, goal, location, instru-
ment, beneficiary;

–	 a set of symbols ℙ = {IN, WITH, FOR} which correspond to prepositions;
–	 a set of symbols S defined as follows:

Table 19   Values of f
1
 for attributes of ‘hired as defensive coordinator’ example

id C.� H.� D.� CH.� HC.� HD.� CHD.� CD.� other

1 Teryl Teryl Teryl Teryl − Teryl Teryl − −
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–	 (ℙ ∪ IV ∪ TV ∪ DV ∪ Γ) ⊆ S , where IV, TV, DV are infinite sets of symbols 
for intransitive, transitive and ditransitive verbs, respectively; Γ = {L,U,D} , 
where L, U, D are interpreted as, respectively, to be located in, to be used as a 
tool and to be destined for;

–	 if R ∈ S and P ∈ ℙ then RP ∈ S;
–	 if R, S ∈ S and � ∈ �  , then R �

S
∈ S.

	    Symbols of S are called relation symbols;
–	 ar: S → S

∗ is a function to the free monoid on S which prescribes an arity for 
each relation symbol as follows:

–	 P for P ∈ IV ∪ ℙ;
–	 ⟨P,P⟩ for P ∈ TV ∪ Γ;
–	 ⟨P,P,P⟩ for P ∈ DV;
–	 ⟨ar(R),P⟩ for RP ∈ S;
–	 ⟨ar(R), n−1ar(S)⟩ for R �

S
∈ S , where n−1ar(S) is a n-1 sequence resulted from 

n-sequence ar(S);

–	 X is the set of all finite sequences of members of S × �  set. ar∗ : ar(S) → X is a 
function which for each element of ar(S) returns an element from X as follows:

–	 (P, � ) for P ∈ IV;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P ∈ TV;
–	 ⟨(P, �), (P, �), (P, �)⟩ for ⟨P,P,P⟩ if P ∈ DV;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P = L;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P = U;
–	 ⟨(P, �), (P, �)⟩ for ⟨P,P⟩ if P = D;
–	 ⟨ar∗(ar(R)), (R, �)⟩ for ⟨ar(R),P⟩ , where

–	 (R, �) = (R, �) , if P = IN;
–	 (R, �) = (R, �) , if P = WITH;
–	 (R, �) = (R, �) , if P = FOR.

	    In case (R, �) is already in ar∗(ar(R)) , we denote it (R, �∗);
–	 ⟨ar∗� (ar(R)), ar∗(2,…,n−1ar(S))⟩ for ⟨ar(R), n−1ar(S)⟩ , where ar∗� (ar(R)) denotes 

a sequence identical to ar∗(ar(R)) except (R �

S
, �) belongs to this new sequence 

instead of (R, �) . In case R = S we denote all (S, �) ∈ ar∗(2,…,n−1ar(S)) as 
(S�, �).

Definition 2  A value of ar∗(ar(P)) , written as P(�1,… , �n) or (P.𝔡⦒),… , (P.𝔡n) , 
where �i ∈ �  , is called a relation scheme and each (P.�i) in the relation scheme is 
called a relational attribute.

Definition 3  Predicates RP,R
�

S
 are called compound predicates, predicates other 

than RP,R
�

S
 are called atomic predicates.



S1032	 Axiomathes (2022) 32 (Suppl 3):S993–S1039

1 3

Notational convention: we write R⋅P instead of RP . We write R[ �
S
][

�

Q
] instead of 

R
�

S

�

Q
 . We write indexes instead of * in attributes as follows: for R.�∗ we write R.�2 , 

for R.�∗∗ we write R.�3 , etc. We write (RS.�) instead of (R �

S
.�).

The terms of A are variables and constants of A . Because we allow neither prep-
ositions nor types be standalone predicates in L the definition of a formula is modi-
fied accordingly. A set W of well-formed formulae (WFFs) is the smallest set which 
satisfies the conditions: 

1.	 if P is an n-ary predicate of A other than that of ℙ and that of �  and t1,… , tn are 
terms of A , then W includes P(t1,… , tn) . ( P(t1,… , tn) is called an atomic for-
mula, or, if t1,… , tn are constants, a ground atomic formula);

2.	 if � and � are in W and x is a variable, then the following are also in W : (� ∧ �) , 
(� ∨ �) , (� → �) , (� ↔ �) , (¬�) , ∃x(�) , ∀x(�).

Axioms In L , we have: 

	 I.	 all the standard axioms for propositional calculus,
	 II.	 all the standard axioms for first-order logic.

Semantics for L

Definition 4  (Interpretation for L ) An interpretation I for a relational first-order lan-
guage L = (A,W) is a quintuple I = (D, dom,K,F, [[ ]]) , where: 

1.	 D ≠ ∅ is a set called the domain of I and equal exactly to the range of variables 
of A;

2.	 dom is a mapping from �  onto non-empty subsets of D (not necessary distinct, 
we will write D� for a value of dom for � ∈ �);

3.	 K is a mapping from constants of A onto D, such that for each constant c, 
K(c) ∈ D;

4.	 F is a set of partial mappings which for each element (R, �) ∈ S × �  return a 
value from D� ; f (R, �) = f (R�, �) for any f and (R, �) ; f (R �

S
, �) = f (R, �) if 

f (R, �) = f (S, �) and f is defined for f (R �

S
, �);

5.	 [[ ]] is a function from predicate symbols (predicates) of A onto restrictions of 
F (that is onto "actual relations"). Let P.n abbreviate (P.�1),… , (P.�n) . For each 
predicate symbol P, [[P]] = F|P.n , where P.n=ar∗(ar(P)).

[[P]] is called the extension of a symbol P in the interpretation I.
Definition 5  (Environment (valuation function) for variables) Given an interpreta-
tion I = (D, dom,K,F, [[ ]]) of L = (A,W) , let � be a mapping from the variables 
of A into D. For each variable x ∈ Var(A) , �(x) ∈ D.

� is called an environment for the variables of A.
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Definition 6  (Valuation of terms) Given an interpretation I = (D, dom,K,F, [[ ]]) 
of L = (A,W) and an environment � , define the valuation of terms ‖ ⋅ ‖�

I
 a mapping 

from the set of terms of L onto D, such that:

‖c‖�
I
= K(c) , for every constant c ∈ A , and

‖x‖�
I
= �(x) , for every variable x ∈ Var(A).

Definition 7  (Satisfaction) 

1.	 ⊧I,𝜌 P(t1,… , tn) iff ((P.�1)∶‖t1‖
�

I
,… , (P.�n)∶‖tn‖

�

I
) ∈ [[P]] , where P.n=ar∗(ar(P))

.
2.	 ⊧I,𝜌 𝛼 ∧ 𝛽 iff ⊧I,𝜌 𝛼 and ⊧I,𝜌 𝛽.
3.	 ⊧I,𝜌 𝛼 ∨ 𝛽 iff ⊧I,𝜌 𝛼 or ⊧I,𝜌 𝛽.
4.	 ⊧I,𝜌 ¬𝛼 iff ̸⊧I,𝜌 𝛼.
5.	 ⊧I,𝜌 𝛼 → 𝛽 iff ⊧I,𝜌 ¬𝛼 ∨ 𝛽.
6.	 ⊧I,𝜌 𝛼 ↔ 𝛽 iff ⊧I,𝜌 (𝛼 → 𝛽) and ⊧I,𝜌 (𝛽 → 𝛼).
7.	 ⊧I,𝜌 ∀x(𝛼) iff for all d ∈ D ⊧I,𝜌[x→d] 𝛼 where �[x → d] denotes an environment 

identical to � except that this new environment maps the variable x to the domain 
element d.

8.	 ⊧I,𝜌 ∃x(𝛼) iff ⊧I,𝜌 ¬∀x¬(𝛼).
9.	 ⊧I 𝛼 iff ⊧I,𝜌 𝛼 for all environments � (“� is true in the interpretation I”).
	   Analogously, we say that � is false in the interpretation I iff for no environment 

� it is the case that ⊧I,𝜌 𝛼.

We say that I is a model for a set S of formulae iff for all � ∈ S , � is true in I.
The following formulae A-F are tautologies of L (see Statements for proofs):

Reordering

A.	 R⋅P1⋅P2(t1,… tn, tn+1, tn+2) ↔ R⋅P2⋅P1(t1,… tn, tn+2, tn+1)

B.	 R[ �i
S
][

�j

Q
](t

1
,… , ti,… , tj,… , tn, s2,… , sm, u2,… , ul)

↔ R[
�j

Q
][

�i

S
](t

1
,… , tj,… , ti,… , tn, u2,… , ul, s2,… , um)

Drop

	 III.	 R⋅P(t1,… tn, tn+1) → R(t1,… tn)

	 IV.	 R
�i

S
(t1,… , ti,… , tn, s2,… , sm) → R(t1,… , ti,… , tn)

	 V.	 R⋅P1⋅P2(t1,… tn, tn+1, tn+2) → (R⋅P1(t1,… , tn, tn+1) ∧ R⋅P2(t1,… , tn, tn+2))

	 VI.	 R
�

S
(t1,… , tn, s2,… , sm) → (R(t1,… , tn) ∧ S(ti, s2,… , sm))
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Non-entailment

G.	 [[R⋅P1⋅P2]] ⊆ [[R⋅P1]] ⋈ [[R⋅P2]]

H.	 [[R �i

S
]] ⊆ [[R]] ⋈ 𝜌R.�i∕S.�[[S]]

Statements

Definition 8  (Natural join) Let X,  Y,  Z be sets of attributes and let R1(YX) and 
R2(XZ) be two relations such that YX ∩ XZ = X . Natural join is a binary operator 
on relations R1 , R2 (written as R1 ⋈ R2 ) which produces a relation on XYZ attributes 
consisting of all the tuples (on XYZ) resulting from concatenation of tuples in R1 
with tuples in R2 that have identical values for the attributes X:

R
1
⋈ R

2
= {t over XYZ | there exists t

1
∈ R

1
, t
2
∈ R

2
such that t[XY]

= t
1
[XY]and t[XZ] = t

2
[XZ]} . (Atzeni and De Antonellis (1993): 15)

Definition 9  (Relation H) Let G ∶ F → ℕ be an injective function which prescribes 
a natural number to each element of F. Let X be a set of all relational attributes of 
F. Let id be a distinguished attribute. H(id, X) is a set of partial mappings such that 
H|X = F and for every i ∈ Πid(H) ∶ i = G(fi).

Take H(id, X) and R.� ∈ X . Let Y = idX − R.�.
Statement 1 H|id,Y ⋈ H|id,R.� = H(id,X) (i.e. H(id, X) has a lossless decomposi-

tion with respect to id, Y  and id,R.�).

Proof  By definition of H all values in column id of H are unique. Due to that there 
are the following functional dependencies over attributes idX of H: id → id R.� and 
id → id Y  . id Yid R.� = idX and idY ∩ id R.� = id . By Theorem  4.3 ((Atzeni and 
De Antonellis 1993): 143) H(id,  X) has a lossless decomposition with respect to 
id Y , id R.� , that is, H(id,X) = H|id,Y ⋈ H|id,R.� . 	�  ◻

Lemma 1.1 follows from Statement 1 by induction:

Lemma 1.1  H|id,R.�1 ⋈ H|id,R.�2 ⋈ ⋯ ⋈ H|id,R.�n (H) = H(id,X).

Let U = ar∗(ar(R)) and let U,R.� = ar∗(ar(R⋅P)) . Lemma 1.2 follows from 
Lemma 1.1:

Lemma 1.2  [[R⋅P]] = (H|id,U ⋈ H|id,R.�)|U,R.�.

Let R be any relation and A, B be attributes such that B is an attribute of R.

Definition 10  (Rename) Rename is an unary operator on a relation R (written as 
�A∕B(R) ) which produces from R a new relation R∗ identical to R except that B attrib-
ute in all tuples t ∈ R is renamed to A: �A∕B(R) = {t[A∕B] ∶ t ∈ R}.



S1035

1 3

Axiomathes (2022) 32 (Suppl 3):S993–S1039	

Let U = ar∗(ar(R)),V = ar∗(ar(S)) . By Definition 4 [[R]] = H|U , [[S]] = H|V . Let 
U′ be a set identical to U except (RS.�) belongs to U′ instead of (R, �) . Let V ′ be a set 
identical to V except (RS.�) belongs to V ′ instead of (S, �) . U� ∪ V � = ar∗(ar(R

�

S
)) . 

Lemma 1.3 follows from Lemma 1.1:

Lemma 1.3  [[R �

S
]] = (�RS.�∕R.�(H|id,U) ⋈ H|id,RS.� ⋈ �RS.�∕S.�(H|id,V ))|U�V �.

Observation Let R.� stand for the attribute added by a preposition P to a rela-
tion scheme of a predicate R. Letting id attribute be included to a relation scheme 
of a predicate, the extension of a predicate symbol Q can be defined recursively as 
follows:

Statement [A] ⊧I,𝜌 R⋅P1⋅P2(t1,… tn, tn+1, tn+2) ↔ R⋅P2⋅P1(t1,… tn, tn+2, tn+1).

Proof  ⊧I,𝜌 R⋅P1⋅P2(tn, tn+1, tn+2) iff (Definition  7) 
((R.n)∶‖t

n
‖�
I
, (R.�

n+1)∶‖tn+1‖
�

I
, (R.�

n+2)∶‖tn+2‖
�

I
) ∈ [[R⋅P

1
⋅P

2
]] iff (Defini-

tion  4) ((R.n)∶‖tn‖
�

I
, (R.�n+1)∶‖tn+1‖

�

I
, (R.�n+2)∶‖tn+2‖

�

I
) ∈ F�R.n,R.�n+1,R.�n+2 iff 

((R.n)∶‖tn‖
�

I
, (R.�n+2)∶‖tn+2‖

�

I
, (R.�n+1)∶‖tn+1‖

�

I
) ∈ F�R.n,R.�n+2,R.�n+1 iff (Definition 4) 

((R.n)∶‖tn‖
�

I
, (R.�n+2)∶‖tn+2‖

�

I
, (R.�n+1)∶‖tn+1‖

�

I
) ∈ [[R⋅P2⋅P1]] iff (Definition  7) 

⊧I,𝜌 R⋅P2⋅P1(t1,… tn, tn+2, tn+1) . 	 � ◻

Statement [B] 
⊧I,𝜌 R[

�i

S
][

�j

Q
](t

1
,… , ti ,… , tj ,… , tn , s2,… , sm , u2,… , ul) ↔ R[

�j

Q
][

�i

S
](t

1
,… , tj ,… , ti ,… , tn , u2,… , ul , s2,… , um)

.

Proof  ⊧I,𝜌 R[
�i

S
][

�j

Q
](t1,… , ti,… , tj,… , tn, s2,… , sm, u2,… , ul) iff (Definition 7)

((R.�
1
)∶‖t

1
‖�
I
,… , (RS.�i)∶‖ti‖

�

I
… , (RQ.�j)∶‖tj‖

�

I
… , (R.�n)∶‖tn‖

�

I
, (S.m)∶‖sm‖

�

I
, (Q.l)∶‖u

l
‖�
I
) ∈ [[R[

�i

S
][

�j

Q
]]] iff 

(Definition  4)((R.�1)∶‖t1‖
�

I
,… , (RS.�i)∶‖ti‖

�

I
… , (RQ.�j)∶‖tj‖

�

I
 

… , (R.�n)∶‖tn‖
�

I
, (S.m)∶‖sm‖

�

I
, (Q.l)∶‖u

l
‖�
I
) ∈ F�

R.�1,…,RS.�i,…,RQ.�j,…,R.�n,S.m,Q.l
 iff

((R.�1)∶‖t1‖
�

I
,… , (RS.�j)∶‖tj‖

�

I
… , (RQ.�i)∶‖ti‖

�

I
… , (R.�n)∶‖tn‖

�

I
, (Q.l)∶‖u

l
‖�
I
, (S.m)∶‖sm‖

�

I
)

∈ F|
R.�1,…,RQ.�j,…,RS.�i,…,R.�n,Q.l,S.m

 iff (Definition  4) 

((R.�1)∶‖t1‖
�

I
,… , (RS.�j)∶‖tj‖

�

I
… ,

(RQ.�i)∶‖ti‖
�

I
… , (R.�n)∶‖tn‖

�

I
, (Q.l)∶‖u

l
‖�
I
, (S.m)∶‖sm‖

�

I
) ∈ [[R[

�j

Q
][

�i

S
]]] iff 

(Definition 7)
⊧I,𝜌 R[

�j

Q
][

�i

S
](t1,… , tj,… , ti,… , tn, u2,… , ul, s2,… , um).

	�  ◻

Statement [C] ⊧I,𝜌 R⋅P(t1,… tn, tn+1) → R(t1,… tn).

[[Q]] =

⎧
⎪
⎨
⎪
⎩

H�id,Q.n, where Q.n = ar∗(ar(Q)) if Q is atomic;

[[R]] ⋈ H�id,R.�, if Q = R⋅P;

�RS.�∕R.�[[R]] ⋈ H�id,RS.� ⋈ �RS.�∕S.�[[S]] if Q = R
�

S
.
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Proof  ⊧I,𝜌 R⋅P(t1,… tn, tn+1) → R(t1,… tn) iff (Defini-
tion 7) ((R.n)∶‖tn‖

�

I
, (R.�n+1)∶‖tn+1‖

�

I
) ∈ [[R⋅P]] iff (Definition 4) 

((R.n)∶‖tn‖
�

I
, (R.�n+1)∶‖tn+1‖

�

I
) ∈ F�R.n,R.�n+1 iff ((R.n)∶‖tn‖

�

I
) ∈ F�R.n iff (Defini-

tion 4) ((R.n)∶‖tn‖
�

I
) ∈ [[R]] iff (Definition 7)

⊧I,𝜌 R(t1,… tn). 	 � ◻

Statement [D] ⊧I,𝜌 R
�i

S
(t1,… , ti,… , tn, s2,… , sm) → R(t1,… , ti,… , tn).

Proof  ⊧I,𝜌 R
�i

S
(t1,… , ti,… , tn, s2,… , sm) → R(t1,… , ti,… , tn) iff (Definition 7)

((R.�1)∶‖t1‖
�

I
,… , (RS.�i)∶‖ti‖

�

I
,… , (R.�n)∶‖tn‖

�

I
, (S.m)∶‖sm‖

�

I
) ∈ [[R

�i

S
]] iff 

(Definition 4)
((R.�1)∶‖t1‖

�

I
,… , (RS.�i)∶‖ti‖

�

I
,… , (R.�n)∶‖tn‖

�

I
, (S.m)∶‖sm‖

�

I
) ∈ F�R.�1,…,RS.�i ,…,R.�n ,S.m

iff ((R.�
1
)∶‖t

1
‖�
I
,… , (R.�

i
)∶‖t

i
‖�
I
,… , (R.�

n
)∶‖t

n
‖�
I
, (S.m)∶‖s

m
‖�
I
) ∈ F�

R.�1,…,R.�i ,…,R.�n ,S.m
 iff 

((R.�1)∶‖t1‖
�

I
,… , (R.�i)∶‖ti‖

�

I
,… , (R.�n)∶‖tn‖

�

I
) ∈ F�R.�1,…,R.�i,…,R.�n

 iff 
(Definition 4)

((R.n)∶‖tn‖
�

I
) ∈ [[R]] iff (Definition 7) ⊧I,𝜌 R(t1,… tn). 	�  ◻

Statement [E] 
⊧I,𝜌 R⋅P1⋅P2(t1,… tn, tn+1, tn+2) → (R⋅P1(t1,… , tn, tn+1) ∧ R⋅P2(t1,… , tn, tn+2)).

Proof  ⊧I,𝜌 R⋅P1⋅P2(t1,… tn, tn+1, tn+2) iff (Statement [C]) 
⊧I,𝜌 R⋅P1(t1,… tn, tn+1) . ⊧I,𝜌 R⋅P1⋅P2(t1,… tn, tn+1, tn+2) iff (Statement [A]) 
⊧I,𝜌 R⋅P2⋅P1(t1,… tn, tn+2, tn+1) iff (Statement [C]) ⊧I,𝜌 R⋅P2(t1,… tn, tn+2) . 
⊧I,𝜌 R⋅P1(t1,… tn, tn+1) and ⊧I,𝜌 R⋅P2(t1,… tn, tn+2) iff (Definition 7) 
⊧I,𝜌 R⋅P1(t1,… , tn, tn+1) ∧ R⋅P2(t1,… , tn, tn+2). 	�  ◻

Statement [F] 
⊧I,𝜌 R

�i

S
(t1,… , ti,… , tn, s2,… , sm) → (R(t1,… , ti,… , tn) ∧ S(ti, s2,… , sm)).

Proof  ⊧I,𝜌 R
�i

S
(t1,… , ti,… , tn, s2,… , sm) iff (Statement [D]) 

⊧I,𝜌 R(t1,… , ti,… , tn) . ⊧I,𝜌 R
�i

S
(t1,… , ti,… , tn, s2,… , sm) iff (Definition  7) 

((R.�
1
)∶‖t

1
‖�
I
,… , (RS.�

i
)∶‖t

i
‖�
I
,… , (R.�

n
)∶‖t

n
‖�
I
, (S.�

2
)∶‖s

2
‖�
I
,… , (S.�

m
)∶‖s

m
‖�
I
) ∈ [[R

�
i

S
]] iff 

(Definition 4)
((R.�

1
)∶‖t

1
‖�
I
,… , (RS.�

i
)∶‖t

i
‖�
I
,… , (R.�

n
)∶‖t

n
‖�
I
, (S.�

2
)∶‖s

2
‖�
I
,… , (S.�

m
)∶‖s

m
‖�
I
) ∈ 

∈ F|R.�1,…,RS.�i,…,R.�n,S.�2,…,S.�m
 iff ((R.�1)∶‖t1‖

�

I
,… , (S.�)∶‖ti‖

�

I
,… , (R.�n)∶‖tn‖

�

I
, 

(S.�2)∶‖s2‖
�

I
,… , (S.�m)∶‖sm‖

�

I
) ∈ F�R.�1,…,S.�,…,R.�n ,S.�2,…,S.�m

 iff
((S.�)∶‖ti‖

�

I
, (S.�2)∶‖s2‖

�

I
,… , (S.�m)∶‖sm‖

�

I
) ∈ F�S.�,S.�2,…,S.�m

 iff (Definition 4)
((S.�∶‖ti‖

�

I
), (S.m)∶‖sm‖

�

I
) ∈ [[S]] iff (Definition 7) ⊧I,𝜌 S(ti, s2,… , sm).

⊧I,𝜌 R(t1,… , ti,… , tn) and ⊧I,𝜌 S(ti, s2,… , sm) iff (Definition 7)
⊧I,𝜌 R(t1,… , ti,… , tn) ∧ S(ti, s2,… , sm)). 	�  ◻

Statement [G] [[R⋅P1⋅P2]] ⊆ [[R⋅P1]] ⋈ [[R⋅P2]].
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Proof  By Definition  4 [[R⋅P1⋅P2]] = F|Rn,R.�n+1,R.�n+2 . 
t[Rn,R.�n+1,R.�n+2] ∈∈ F|Rn,R.�n+1,R.�n+2 iff t[Rn,R.�n+1] ∈ F|Rn,R.�n+1 
and t[Rn,R.�n+2] ∈ F|Rn,R.�n+2 iff (Definition  8) 
t[Rn,R.�n+1,R.�n+2] ∈ F|Rn,R.�n+1 ⋈ F|Rn,R.�n+2 iff (Definition 4)

t[Rn,R.�n+1,R.�n+2] ∈ [[R⋅P1]] ⋈ [[R⋅P2]]. 	�  ◻

Statement [H] [[R �i

S
]] ⊆ [[R]] ⋈ 𝜌R.�i∕S.�[[S]].

Proof  By Definition 4[[R �i

S
]] = F|R.�1,…,RS.�i,…,R.�n,S.�2,…,S.�m

.
t[R.�1,… ,RS.�i,… ,R.�n, S.�2,… , S.�m] ∈ F|R.�1,…,RS.�i,…,R.�n,S.�2,…,S.�m

 iff
t[R.�1,… ,RS.�i,… ,R.�n] ∈ F|R.�1,…,RS.�i,…,R.�n

 and 
t[RS.�i, S.�2,… , S.�m] ∈∈ F|RS.�i,S.�2,…,S.�m

 iff (Definition  8) 
t[R.�1,… ,RS.�i,… ,R.�n, S.�2,… , S.�m] ∈

∈ F|R.�1,…,RS.�i,…,R.�n
⋈ F|RS.�i,S.�2,…,S.�m

 iff (Defini-
tion 4,  10) t[R.�1,… ,R.�i,… ,R.�n, S.�2,… , S.�m] ∈ 
F|R.�1,…,R.�i,…,R.�n

⋈ �R.�i∕S.�(F|S.�,S.�2,…,S.�m
) iff

t[R.�1,… ,R.�i,… ,R.�n, S.�2,… , S.�m] ∈ [[R]] ⋈ �R.�i∕S.�[[S]]. 	�  ◻
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