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Abstract In this paper we have examined the stability of
triangular libration points in the restricted problem of three
bodies when the bigger primary is an oblate spheroid. Here
we followed the time limit and computational process of
Tuckness (Celest. Mech. Dyn. Mech. 61, 1–19, 1995) on the
stability criteria given by McKenzie and Szebehely (Celest.
Mech. 23, 223–229, 1981). In this study it was found that
in comparison to other studies the value of the critical mass
μc has been reduced due to oblateness of the bigger pri-
mary, i.e. the range of stability of the equilateral triangular
libration points reduced with the increase of the oblateness
parameter I and hence the order of commensurability was
increased.

Keywords Restricted three body problem · Libration
points · Critical mass · Oblateness · Stability · Poincare’s
surface of section · Commensurability

1 Introduction

It is well established that the libration points in the Re-
stricted three-body problem are infinitesimally stable or lin-
early stable for the values of the mass ratio μ < μc =
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0.038521 . . . , the critical mass. Leontovich (1962) estab-
lished the non-linear stability of the triangular libration
points and proved that the triangular libration points L4 and
L5 are stable for all values of μ < μc except for a set of
measure zero, where μc is the Rouths critical mass of the
Restricted three-body problem.

Breakwell and Pringle (1965) discussed the motion of the
third body around L4 in the Earth-Moon system using Von
Zeipel’s method with an additional effect of the Sun’s grav-
itation. Also he did a detailed study of the stability of the
triangular libration points.

Deprit and Palmore (1966), Deprit and Deprit-Bartho-
lome (1967), Deprit et al. (1967), Markeev (1969) all dis-
cussed stability of triangular libration points with different
methods and also established the order of commensurabil-
ity of the long periodic and short periodic orbits. Alfriend
(1970) and Nayfeh (1971) justified the work of Markeev
(1969) that L4 is an unstable equilibrium point where the
long periods and short periods of motion around L4 have
commensurability 2 to 1.

Henrard (1970) established that the family of long peri-
odic orbits at L4 does not evolve in a continuous manner
with the mass ratio. Discontinuity appears not only at the
mass ratios for which the long period of the equilibrium is a
multiple of the short periods, but also at mass ratios when the
global analysis of the family detects singular bifurcation or-
bits. Markeev (1973) and Sokol’skii (1975) studied the sta-
bility of the Lagrange solutions for the critical mass μc.

McKenzie and Szebehely (1981) introduced a new idea to
test the stability of the equilateral triangular libration point
L4. They defined the maximum velocity and maximum dis-
placement envelopes within which the third body remains
for a long time starting from the suitable initial conditions
so that the third body may not cross the x-axis. The condi-
tions of not crossing the x-axis were introduced as the stabil-
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ity criteria for the third body. By using all the stability cri-
teria of McKenzie and Szebehely (1981), Tuckness (1995)
excellently, investigated numerically the sensitivities of the
third body around L4 when it is given positional and velocity
deviations away from L4 with a suitable initial conditions.
He used Poincare’s surface of sections to compare the pe-
riodic, quasi-periodic and stochastic regions to the trajecto-
ries with the definitions of stability given by McKenzie and
Szebehely (1981). Moreover he also investigated the value
of μ (the mass ratio) ranging from zero to linear critical
mass 0.038521 . . . . Using the stability criteria he determined
some values of μ which are more stable than the others.

Here we extend the study of Tuckness (1995) for ana-
lyzing the effect of oblateness of the bigger primary on the
stability of L4. All the other conditions and criteria will re-
main the same as those chosen by McKenzie and Szebehely
(1981) and Tuckness (1995).

2 The equations of motion of the third body

The equations of motion of the third body moving in the
gravitational field of the two primaries, are

ẍ − 2nẏ = ∂Ω
∂x

ÿ + 2nẋ = ∂Ω
∂y

}
; (1)

where

Ω = n2

2

[
(1 − μ)r2

1 + μr2
2

] + F ; (2)

with

r2
1 = (x − μ)2 + y2 & r2

2 = (x − μ + 1)2 + y2; (3)

n2 = 1 + 3

2
I ; (4)

n is the mean angular velocity of the primaries about their
centre of mass; I = A1 − A3 = oblateness parameter (0 <

I �1); A1 = a2

5R2 = the moment of inertia of the oblate body

about the equatorial radius; A3 = c2

5R2 = the moment of in-

ertia of the oblate body about the polar radius; and

F = 1 − μ

r1
+ μ

r2
+ 3I

2r3
1

= force function. (5)

3 Location of libration points

For location of libration points the Jacobi’s integral (or Ja-
cobi’s manifold) is

ẋ2 + ẏ2 − 2Ω(x,y) + C = 0,

where C is called Jacobi’s constant.
Libration points are the singularities of the manifold,

F(x, y, ẋ, ẏ) = ẋ2 + ẏ2 − 2Ω(x,y) + C = 0. (6)

Following Szebehely (1967), Bhatnagar and Chawla (1977)
the equilateral triangular libration points are given as

L4,5 ≡
(

μ − 1

2
− 3I

2(1 − μ)
,±

√
3

2

[
1 + 1 + 2μ

3(1 − μ)
I

])
.

4 Mathematical formulation for critical mass

Let (a, b) be the coordinates of the triangular libration point
L4. Let ξ, η be the small variations in a & b respectively due
to oblateness of the bigger primary, then (a + ξ, b + η) is a
point in the vicinity of (a, b). Thus the variational equations
of motion of the third body are given by

ξ̈ − 2nη̇ = ξΩ◦
xx + ηΩ◦

xy

η̈ + 2nξ̇ = ξΩ◦
xy + ηΩ◦

yy

}
, (7)

where

Ω◦
xx = ∂2Ω

∂x2
(a, b), Ω◦

xy = ∂2Ω

∂x∂y
(a, b),

Ω◦
yy = ∂2Ω

∂y2
(a, b)

and

a = μ − 1

2
, b = ±

√
3

2
.

Let ξ = Peλt&η = Qeλt be two particular solutions of
the Eqs. (7), then the characteristic equation for the triangu-
lar libration points is

∧2 + P ∧ +Q = 0, (8)

where λ2 = ∧,

P = 4n2 − Ω◦
xx − Ω◦

yy = 1 − 15

2
I, (9)

Q = Ω◦
xxΩ

◦
yy − Ω◦2

xy

= μ

4

[
27(1 − μ) − 9(11μ − 17)I

]
. (10)

Let ∧1 and ∧2 be the roots of the Eq. (8), then

∧2

∧1
= P + √

P 2 − 4Q

P − √
P 2 − 4Q

= k2 (say) (11)

⇒ k2P 2 − Q
(
k2 + 1

)2 = 0. (12)
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i.e.

9
(
k2 + 1

)2
(3 + 11I )μ2 − 9

(
k2 + 1

)2
(3 + 17I )μ

+ 4k2(1 − 15I ) = 0. (13)

Equation (13) is a quadratic equation in μ so the roots of this
equation will give the critical value of the mass parameter μ.
If μc is the critical value of μ then

μc = 1

2

[
3 + 17I

3 + 11I

−
√(

3 + 17I

3 + 11I

)2

− 16k2(1 − 15I )

9(k2 + 1)2(3 + 11I )

]
. (14)

If I = 0, μc = 1
2 [1 −

√
1 − 16k2

27(k2+1)2 ] (McKenzie and Sze-

behely 1981 and Tuckness 1995).

4.1 Numerical integration

The numerical integration in this work were carried out us-
ing the classical fourth order Runge-Kutta method with au-
tomatic step-size control. The specified accuracy was at least
eight or more significant decimal digits and double preci-
sion arithmetic was used in all computations. Tests were
performed with different levels of accuracy and the speci-
fied accuracy was found to be sufficient for this study.

The Jacobian constant was calculated in order to ob-
serve the validity of the trajectory generations throughout
the numerical integration. This constant of integration was
checked to make sure that it remained constant to at least
eight decimal places.

For numerical integration, we introduce x = x1, y =
x2, ẋ = x3, ẏ = x4 and reduce the two second order differ-
ential equations of motion given in (1) to the four first order
differential equations as:

dx1
dt

= x3,

dx2
dt

= x4,

dx3
dt

= 2nx4 + ∂Ω
∂x1

,

dx4
dt

= −2nx4 + ∂Ω
∂x2

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(15)

with r2
1 = (x1 − μ)2 + x2

2&r2
2 = (x1 − μ + 1)2 + x2

2 .

4.2 Time limit for numerical integration

The study of the time limit was first undertaken by McKen-
zie and Szebehely (1981). The value of μ used in their study
was μ = 0.01214 (Earth-Moon system). The selection of
the time interval tf for the numerical integration was de-
termined by examining the effect of tf on the maximum
distance that the third body was started from L4 along two

Fig. 1 Conditions for the time limit study

given lines before its motion crossed the x-axis. As seen in
Fig. 1, the first line points 120

◦
away from L4 and the ori-

gin of the coordinate system. The second line is inclined
at 300◦ with respect to the x-axis, pointing toward the ori-
gin of the coordinate system. The dimensionless values of
tf they chose to study were: tf = 120, 240, 360, 480, 600,
720, 840, 960, corresponding to 564, 1128, 1692, 2256,
2820, 3384, 3948, and 4512 days for the Earth-Moon sys-
tem. From Fig. 2, it can be seen that, as the time of inte-
gration increases, the maximum distance the third body may
be displaced initially from L4 for librational motion to take
place decreases. Also in Fig. 2 the maximum values of the
initial velocity as a function of integration time is shown. Af-
ter the first large change in the distance between 120 and 240
time units, the effect of the final time of integration appears
to change the initial velocity by only small amounts. Since
accuracy of the numerical integration becomes more ques-
tionable with an increase in the time of integration hence a
reasonable value of tf = 600 is taken.

By using Runge-Kutta method, further investigations
were carried out by Tuckness (1995) with two other val-
ues of μ = 0.0027 and μ = 0.025, for θ = 10◦, 20◦, 30◦,
40◦, . . . ,360◦. The values of μ = 0.0027 and μ = 0.025
were chosen because of the nature of maximum displace-
ment and maximum velocity envelopes take place, whereas
in our case, for the same values of θ and the same time
limit (as in Tuckness), the two values of μ were reduced to
μ = 0.0026 and μ = 0.024 due to the oblateness parameters
I = 0.01. For I = 0.1 the corresponding value of μ is given
by μ = 0.024 for maximum velocity and displacement and
two values of μ = 0.012 and μ = 0.021 were investigated
for nearly non-librational motion around L4. In short, the
area of the maximum velocity and maximum displacement
envelope for μ = 0.0026 is a maximum and a minimum for
μ = 0.024. As McKenzie and Szebehely (1981) and Tuck-
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Fig. 2 Results of time limit
study

ness (1995) four different values of tf were investigated,
tf = 100, 600, 1000, and 2000 dimensionless time units for
both the maximum velocities and maximum displacements.

For both μ = 0.0026 and μ = 0.024 all values of tf
greater than 100 gave maximum displacement results within
0.001 dimensionless units of each other. For both μ =
0.0026 and μ = 0.024, all values of tf greater than 100 re-
sulted in the maximum velocities being within 0.01 dimen-
sionless velocity units. Also, as the values of tf increased,
the differences in the magnitude of the maximum displace-
ments and velocities decreased. At 1000 dimensionless time
units only negligible differences existed on the order of
0.0001 for the maximum displacements and 0.001 for the
maximum velocities. Therefore the same results are found
for any value of tf ≥ 1000. The value of tf = 100 did not
allow enough time for the third body to librate around to the
x-axis. This allowed much larger velocity and positional de-
viations. Therefore, from the studies undertaken by McKen-
zie and Szebehely (1981), Tuckness (1995) and from our in-
vestigations tf = 1000, dimensionless time units would be
an acceptable integration time duration for μ = 0.0026 and
μ = 0.024.

4.3 Comparison of maximum velocity and maximum
displacement envelopes using Poincare’s surface of
sections

In this section the maximum velocity and maximum dis-
placement envelopes boundary values were investigated us-
ing time limits for numerical integration given by Tuckness
(1995) and Poincare’s surface of sections. For this we need
Hamilton’s equations of motion to be defined as follows:

Let at any time t , (x1, x2) be the position of the third body
with momenta p1 and p2, then

p1 = ẋ1 − nx2 & p2 = ẋ2 + nx1. (16)

Now the time rate of change of phase variables are:

ẋ1 = p1 + nx2, ẋ2 = p2 − nx1. (17)

Thus

ṗ1 = p2 + ∂F
∂x1

ṗ2 = −p1 + ∂F
∂x2

}
. (18)

The Hamiltonian is given by

H = n2

2

[
p2

1 + p2
2

] + (x2p1 − x1p2) − F,

where F is given in (5). (19)

A solution of the Hamiltonian equations of motion (18) can
be represented as a trajectory in a four dimensional phase
space. Because of the existence of the integral of motion Eq.
(19), the trajectory lies in a three-dimensional subspace (H )
which is equal to a constant of the phase space. The succes-
sive intersection of this three-dimensional trajectory with a
two dimensional surface is called Poincare’s surface of sec-
tion. The successive intersections of the 3-D trajectory with

the surface y =
√

3
2 [1 + 1+2μ

3(1−μ)
I ] was taken for Poincare’s

surface of section in (x, ẋ) or (x1,p1) plane, the results can
be represented in a much more compact manner. There is no
serious loss of information, because the most interesting tra-
jectories of the projection are reflected in the corresponding
properties of the set of points.

In case of Tuckness (1995) the phase space can be di-
vided into three regions. One region contains primarily
stochastic trajectories. It is connected to a second region
containing large embedded islands. A third region consists
of primarily regular trajectories and is isolated from the first
two regions. From the Fig. 3 the phase space can be di-
vided into three regions. One region contains stochastic tra-
jectories not connected with the second region because of
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Fig. 3 Surface of Poincare section for μ = 0.001, θ = 108◦

rare embedded islands due to oblateness parameter I . The
third region contains primarily regular trajectories which
are isolated from the first two regions. The maximum ve-
locity and maximum displacement were investigated using
the Poincare’s surface of sections method for various val-
ues of μ. Initial velocities and positions from the maxi-
mum velocity and maximum displacement envelopes were
numerically integrated using Hamilton’s equations of mo-
tion from (16) to (19) and their intersection with the surface
y =

√
3

2 [1 + 1+2μ
3(1−μ)

I ] were plotted. The equations of motion

were integrated for 500 to 2000 orbits (or intersection) using
the same Runge-Kutta integrator explained above and only
the orbits for y > 0 were plotted.

The velocity VL4 = 0.444 is the value of maximum ve-
locity envelope in the 108◦ direction which was found us-
ing the stability criteria under consideration. Figure 3 is the
Poincare’s surface of section investigated for μ = 0.001,
θ = 108◦. Velocities greater than VL4 = 0.444 result in un-
stable motion according to the boundary envelopes estab-
lished in the study. Velocities less than 0.444 are contained
within the surfaces of boundary envelops depicted in Fig. 3.
Also areas of apparent quasi-periodic solutions can be in-
vestigated from the Fig. 3 but it is too difficult to show.

Figure 4 depicts the Poincare surfaces of section investi-
gated for μ = 0.001, θ = 0◦ and maximum initial displace-
ment allowed. In the enlarged view the chaotic regions had
been reduced in comparison of Tuckness due to oblatness I .

4.4 Determination of stability of the third body using the
maximum velocity and displacement envelopes

As seen earlier in this study, the sizes of the maximum ve-
locity and maximum displacement envelopes vary accord-
ing to the value of μ, I , the final time limit tf and the

Fig. 4 Surface of Poincare section for μ = 0.001, θ = 0◦

boundary chosen. Since the final time limit tf = 1000 (as
in Tuckness) is used in this study and the boundary is the
x-axis (as in McKenzie et al.) so these two variables remain
fixed. Therefore the size of the maximum velocity and max-
imum displacement envelopes varies according to μ & I .
As seen from the previous section, when with the increase
of I (oblateness) μ decreases, the maximum velocity and
maximum displacement envelopes become more narrow.

The maximum velocity and displacement envelopes con-
sisting of initial velocities and displacements respectively
away from L4, where according to previous definition, sta-
ble librational motions result. One could also say that arriv-
ing at L4 with the velocity and direction of the maximum
velocity allowed would give the same results. Therefore, the
maximum velocity envelope above would be thought of as
maximum velocity arrival error envelopes, which could be
thought of as the maximum displacement arrival error enve-
lope. One could also think of the value of μ, which allowed
the most arrival velocity error at L4, as being the most stable
value of μ for arriving at velocity errors. Again, the same is
true for the maximum displacement envelope.

The value of μ and I which allows the total amount
of displacement error (all the displacement vectors of the
maximum displacement envelope summed up) will have a
maximum displacement envelope with the greatest enclosed
area. Tuckness (1995) calculated the area of the displace-
ment envelopes by considering the formula πab, where a

and b are semi-major axis and semi-minor axis respectively.
Also he considered the maximum displacement envelopes
as the symmetric and uniform ellipse but the displacement
envelopes are neither symmetric nor uniform. So we calcu-
lated the displacement envelope and velocity envelope by
considering the formula 1

2

∫
r2dθ with the limits of θ , the

initial point of envelope to the final point of envelope.
Because the estimated area of the envelopes is a mea-

sure of stability, a comparison can be made on how sta-
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Fig. 5 Maximum displacement envelopes for μ = 0.1214, I = 0,
10−2 (Earth-Moon system)

Fig. 6 Maximum velocity envelopes for μ = 0.1214, I = 0,10−2

(Earth-Moon system)

bility varies according to the values of μ & I . According
to Figs. 7 and 8, μ = 0.0026 gives the maximum area for
both the velocity and displacement envelopes for I = 10−2

and μ = 0.024 gives the maximum velocity and displace-
ment envelopes for I = 10−1. It was also found in Figs. 7
and 8 that μ = 0.024 approximately has nearly zero area in
both the maximum velocity and displacement envelopes for
I = 10−2 while μ = 0.012 and μ = 0.023 both represent
nearly zero displacement and velocity for I = 10−1. This
helps to reinforce the ideas in the previous section that mo-

Fig. 7 Area of maximum velocity envelopes versus μ

Fig. 8 Area of maximum displacement envelopes versus μ

tion of the third body for values of μ = 0.024 and 0.023
approximately are non-librational or unstable for I = 10−2,
I = 10−1 respectively. In other words, for μ = 0.024 and
0.023 approximately, very little velocity or displacement
away from L4 will allow the third body to stay around L4

instead, it will cross the x-axis.
These appear to be distinct minimums which depict

that librational motion is difficult to achieve. The min-
imums marked on Figs. 7 and 8 show a distinct rela-
tion to the values of μ and I which are related to the
critical values; namely for three to one commensurabil-
ity μc = 0.0135160160, 0.0135156540, 0.0135065589,
0.0134260594 and for two to one commensurability the
critical masses are μc = 0.02429389714, 0.0242921132,
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Table 1 Order of commensurability

k μc

I = 0 I = 10−4 I = 10−3 I = 10−2

1 0.0385208965 0.0385179015 0.0384911034 0.038237821

2 0.0242938971 0.0242921132 0.0242761497 0.024125161

3 0.0135160160 0.0135150654 0.0135065589 0.013426059

4 0.0082703726 0.0082698031 0.0082647060 0.008216459

5 0.0055092029 0.0055088277 0.0055054696 0.005473679

6 0.0039110842 0.0039108196 0.0039084507 0.003886024

7 0.0029121845 0.0029119882 0.0029102314 0.002893598

8 0.0022491965 0.0022490453 0.0022476920 0.002234897

9 0.0017878483 0.0017877284 0.0017866547 0.001776489

10 0.0014544057 0.0014543083 0.0014534360 0.001445177

Fig. 9 Graph of critical mass versus I

0.0242761497, 0.024125161 corresponding to I = 0, 10−4,
10−3, 10−2 respectively.

Following Pedersen (1933), Deprit and Deprit-Bartholo-
me (1967) and Deprit et al. (1967) the ratio of the long pe-
riod and short period orbits,

T1

T2
= s2

s1
= an integer = k2 (say), (20)

s1 = 1

1 + k2
&s2 = k2s1. (21)

The expression for k2 as in (11) and value of μc as in (14)
show that the frequency of occurrence of the critical values
of the mass parameter increases as μ approaches zero.

Fig. 10 Plotting of critical values versus commensurability

From Eq. (11) we can calculate the values of μ for dif-
ferent values of I and that achieves an integer ratio between
s1 and s2 (Table 1).

The k values of one to seven are depicted in Figs. 7 and 8
which indicate an exponentially decreasing curve as a func-
tion of μ and I . From this observation it may be possible
to arrive at an analytical expression that is the function of
μ and I which governs the stability around the triangular
libration point for the specific values of μ and I .

The curves that depict the areas of maximum velocity
and displacement envelopes in Figs. 7 and 8 appear to have
the same mathematical characteristic differing only in am-
plitude.
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5 Conclusion

From Figs. 5 & 6 and graphs 7, 8, 9 & 10 we conclude that
the range of stability reduces with the increase of oblateness
parameter I . In other words we can say that with increase
of I , the order of commensurability k increased. Ultimately
the long period and short period will be changed due to I .
The discussion can also be corroborated by the Table 1.
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