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Abstract
Over the course of more than two millennia the philosophical school of Mı̄mām. sā has
thoroughly analyzed normative statements. In this paper we approach a formalization
of the deontic system which is applied but never explicitly discussed in Mı̄mām. sā
to resolve conflicts between deontic statements by giving preference to the more
specific ones. We first extend with prohibitions and recommendations the non-normal
deontic logic extracted in Ciabattoni et al. (in: TABLEAUX 2015, volume 9323 of
LNCS, Springer, 2015) from Mı̄mām. sā texts, obtaining a multimodal dyadic version
of the deontic logic MD. Sequent calculus is then used to close a set of prima-facie
injunctions under a restricted form ofmonotonicity, using specificity to avoid conflicts.
We establish decidability and complexity results, and investigate the potential use of
the resulting system for Mı̄mām. sā philosophy and, more generally, for the formal
interpretation of normative statements.
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1 Introduction

The Mı̄mām. sā is a philosophical school which originated in ancient India in the last
centuries BCE and whose main focus was the exegesis of the prescriptive portions of
the Vedas—the Sacred Texts of (what is now called) Hinduism. Together with Nyāya
and Buddhist epistemology, Mı̄mām. sā is one of the fundamental schools of Indian
philosophy, and the only one centered on deontic concepts. In order to read the Vedas
not as a religious text, but as a set of precepts, and to explain “what has to be done”
in presence of seemingly1 conflicting obligations, Mı̄mām. sā authors have thoroughly
discussed and analyzed normative statements. They have proposed a rich body of
deontic, hermeneutical and linguistic principles of interpretation, called nyāyas, which
are so modern, rational, scientific, and systematic (Bathia 2010) that they are still
applied in Indian jurisprudence, e.g. Katju (2006). Although not well known to the
logic community, the resulting theories are rightly considered early deontic logic
(Huisjes 1981).

Among the deontic nyāyas, some can be transformed into properties (Hilbert
axioms) for the operators corresponding to the deontic concepts in Mı̄mām. sā; this
method led to the introduction of the non-normal dyadic deontic logic bMDL (basic
Mı̄mām. sā deontic logic), which was used in Ciabattoni et al. (2015) to formally ana-
lyze a famous controversial passage in the Vedas. However, in the construction of
bMDL only nyāyas concerning the obligation operator were considered. Here we
extend bMDL with new operators for prohibitions and recommendations (or weak
obligations); we call the resulting logic MD+. We extracted the properties for these
operators from additional nyāyas that were translated from Sanskrit and interpreted
only recently. Similar to the situation in Talmudic logic as investigated in Abraham
et al. (2011), the Mı̄mām. sā deontic operators are not interdefinable. Intuitively, the
most evident difference between them is in the achievable results: obeying Vedic
obligations yields good karma which leads to eternal happiness; in contrast, follow-
ing Vedic recommendations yields only specific immediate results; finally, following
Vedic prohibitions only prevents the accumulation of negative karma, see, e.g., Fres-
chi (2012, 2017). However, the main difference between the two deontic concepts
of prescription (vidhi in Sanskrit) and prohibition (niṡedha) is not properly dependent
on the results of complying with commands or disregarding them. The conveyed idea
(buddhi) at the base of the concept of obligation is “activation” or “being impelled to
act”, while, in case of prohibition, it is “inhibition” or “being prevented from taking an
action”, hence prescription and prohibition represent two genuinely different notions
of duty, one irreducible to the other

Although specifically targeted at formalizing Mı̄mām. sā reasoning, these operators
can be applied in different contexts. For instance, in line with the argument for using
deontic notions in the formalization of legal texts given in Jones and Sergot (1992),
Royakkers (1998), obligations and prohibitions could be used for comparing moral
and legal duties (see also Example 4 in Sect. 6), and the distinction between obliga-
tions and recommendations could be adapted for representing the difference between

1 Since theVedas are assumed not to be contradictory,Mı̄mām. sā authors invested all their efforts in creating
a consistent deontic system.
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prescriptions to fulfil duties within mandatory terms and within indicative terms, in
some legal frameworks.

Not all the nyāyas can be converted into Hilbert axioms though. Some of these
offer indeed more general interpretative principles to resolve apparent contradictions
in the Vedas; prominent examples of such nyāyas are gunapradhāna (also known
as sāmānya-viśes. a) and vikalpa, which are investigated in this paper. The vikalpa
principle states that when there is a real conflict between obligations, any of the
conflicting injunctions may be adopted as option: this principle is known in deontic
logic as disjunctive response (Goble 2013) and is similar to the phenomenon of float-
ing conclusions in nonmonotonic reasoning (Makinson and Schlechta 1991, see also
Remark 7). Introduced by Śabara (3rd–5th c. CE), the gunapradhāna principle states
that more specific rules override more generic ones; it is widely used, e.g., in Artificial
Intelligence, where it is known as specificity principle, and in Law as the principle
“Lex specialis derogat legi generali”. These principles are also used to capture defea-
sible reasoning in the context of non-monotonic logics (see e.g. Delgrande and Schaub
1997; Nute 2003; Hage 2003; Straßer and Antonelli 2016).

Different methods and systems have been introduced in the literature to deal with
deontic conflict resolutions using specificity. Although some are close to ours [e.g.
Horty’s syntactic approach in Horty (2012)], none of the various proposals can be used
“out of the box” for representing Mı̄mām. sā reasoning. Indeed they are either based on
logics different from MD+ (e.g. Straßer and Arieli 2019), or are implemented within
general frameworks that do not allow us to distinguish between Vedic commands
and human deductions [e.g. the argumentation-based approach in Prakken and Sartor
(1999), and Deontic Default logic in Horty (1993, 2012), see Remark 3], use explicit
priorities among rules—which are not present in Mı̄mām. sā–[e.g., Defeasible Deon-
tic logic in Governatori and Rotolo (2004) and Input/Output logic in Makinson and
van der Torre (2000)], or a different way to apply specificity [e.g. Horty’s approach
(Horty 2012), see Example 2]. Due to its relevance to legal reasoning, a number of
these approaches to conflict resolution have been applied in that area, and often imple-
mentations are available. Good recent overviews and comparisons are given, e.g., in
Batsakis et al. (2018) and Calegari et al. (2019).

The aim of this article is to extend the basic deontic logic MD+ for obligations,
prohibitions and recommendations with reasoning from deontic assumptions using
specificity and vikalpa. We further explore the usefulness of the resulting system for
the evaluation of different competing formalisations in Mı̄mām. sā and beyond.

To this end we introduce a sequent-based approach to deal inMD+ with specificity
and vikalpa as well as a system implementation. This work is a significantly extended
version of the conference paper Ciabattoni et al. (2018), which only concerned obli-
gations, and did not discuss potential applications.

Resolving conflicts using specificity, our calculus derives enforceable and appli-
cable commands from the explicit prescriptions contained in the Vedas (śrauta in
Sanskrit) and from a finite set of propositional facts.

The calculus presented here is also shown to satisfy vikalpa (disjunctive response).
As, e.g., in Goble (2013), and van der Torre (1994), here we interpret the notion of a
conditional obligation being more specific than another one as the conditions of the
former implying those of the latter. Our calculus is built on the sequent calculus for
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the �-free fragment of bMDL from Ciabattoni et al. (2015), which turns out to be
the dyadic version of the non-normal deontic logic MD considered, e.g., in Chellas
(1980) (cf. Proposition 1 and Freschi et al. 2019), extended with new rules for recom-
mendations and prohibitions. Additional rules to derive all possible prescriptions are
defined using limited (downwards) monotonicity on the conditions of the (non-nested)
prescriptions in the Vedas (prima-facie deontic statements) “up to conflicting deontic
statements” relative to the given set of facts. These rules offer the technical advantage
that the consequences of a set of prima-facie deontic statements can be constructed iter-
atively instead of by a fixed-point construction, as, e.g., in Horty (2012). Importantly,
since the prima-facie injunctions are assumed to constitute a closed set, the additional
rules contain statements expressing the underivability of a formula; these statements
do not compromise the decidability of the system and do not affect its complexity,
which remains PSPACE, i.e., as for deciding theoremhood in intuitionistic or many
standard modal logics. The central technical result ensuring these properties is the cut
elimination theorem (Theorem 2). Similar underivability statements are present, e.g.,
in the sequent calculi for non-monotonic (non-modal) logics of Bonatti and Olivetti
(2002), but in contrast to that work here we do not need to develop a full-fledged cal-
culus for these statements. Other sequent-based calculi capturing non-monotonicity in
the context of normative reasoning have been developed and applied in deontic logics
(e.g. Governatori and Rotolo 2006) and in argument-based systems (e.g. Straßer and
Arieli 2019).

The design of our system is motivated by the particular interpretation given bymost
of Mı̄mām. sā authors and made explicit by the later author Medhātithi (9–10th c. CE),
that more specific śrauta precepts provide exceptions to more general ones and that
the latter apply to all circumstances but those indicated in the exceptions (or implied
by them). Apart from the nonmonotonic inferences from prima-facie to actual deontic
statements, all derivations use the monotonic system MD+. Keeping the inferences
of the logic at this level deductive (i.e., monotone) is inspired by the effort of Indian
philosophers—in particular the Mı̄mām. sā author Kumārila—to keep their arguments
not defeasible “as much as possible”, see Taber (2004).

Applications of our system to Mı̄mām. sā philosophy, and, more generally, to the
formal interpretation of normative statements, e.g., in legal representation, are also
provided. Prima-facie (śrauta) injunctions and statements about factual conditions can
indeed give rise to many interpretations, each of which corresponds to a group of
prima-facie commands and global assumptions about facts. For instance, in Sanskrit
the same word is used both for “obligations” and “recommendations”, and the correct
meaning has to be inferred by scholars of Indian philosophy. Our system can be used
to derive a set of consequences for each of these groups. Using these consequences
to compare the different interpretations, it is then possible to choose the most suitable
one. In the case of Mı̄mām. sā philosophy, one criterium which was heavily used in
this comparison is to minimize applications of the vikalpa principle between prima-
facie deontic statements; this is due to the fact that Mı̄mām. sā authors considered
applications of vikalpa to be “the last resort” and hence to be avoided as much as
possible. In our system this criterium can be evaluated by checking how many of the
prima-facie deontic statements are actually derivable. This check can be performed
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with the help of our Prolog implementation of the system, available at http://subsell.
logic.at/bprover/deonticProver/version1.2/.

The rest of the paper is organized as follows: Sect. 2 recalls the base logic bMDL.
The simplified set of sequent calculus rules, from Ciabattoni et al. (2018), to reason
about obligations in presence of specificity is given in Sect. 3. The base logic is
extended with prohibitions and recommendations in Sect. 4, and the complete set of
rules for reasoning using specificity is introduced in Sect. 5. Consistency, decidability
and complexity results for the system are presented in Sect. 5.1, while its potential use
for Mı̄mām. sā philosophy and beyond is described in Sect. 6. The technical proof of
cut elimination is contained in the “Appendix”.

2 The base logic: bMDL

Basic Mı̄mām. sā Deontic Logic bMDL was introduced in Ciabattoni et al. (2015) as a
first step towardsmapping the structural elements of theMı̄mām. sā deontic systemonto
a formal framework. The idea was to define a logical system following a bottom-up
approach of extracting deontic principles from theMı̄mām. sā texts. The logic resulting
from the analysis of circa 50 such principles extends the alethic system S4 with the
following axiom schemata for the deontic operator O(A/B), which intuitively reads
as “A is obligatory under the condition B”:

1. (�(A → B) ∧ O(A/C)) → O(B/C).
2. �(B → ¬A) → ¬(O(A/C) ∧ O(B/C)).
3. (�((B → C) ∧ (C → B)) ∧ O(A/B)) → O(A/C).

Axioms (1)-(3) arise by rewriting some of the Mı̄mām. sā deontic interpretative prin-
ciples (nyāyas) as logic formulae, while the choice of modal logic S4 over S5 was
suggested by some statements found in the texts as well as technical convenience, in
particular the existence of cut-free sequent calculi. See Ciabattoni et al. (2017, 2015)
for more details.

Note that deontic statements in Mı̄mām. sā can also be analysed on a more detailed
level in the context of specific sacrifices, taking into account the nature of the latter.
Since here we are interested in the general properties of Mı̄mām. sā reasoning, we do
not consider this distinction and refer the reader to Freschi et al. (2019) for details.

Remark 1 bMDL is weaker than most known deontic logics, e.g., the logics considered
in von Wright (1964), von Wright (1965), Hansson (1969), van Fraassen (1972),
Prakken and Sergot (1997), Goble (2019); in particular it has neither any deontic
aggregation principles like O(A/C) ∧ O(B/C) → O(A ∧ B/C) nor any form of
factual or deontic detachment, i.e.,O(A/B)∧ B → O(A) andO(A/B)∧O(B/C) →
O(A/C) respectively. In part this is due to our bottom-up methodology: so far indeed
we have not found any mention of corresponding principles in the texts. However, the
absence of (factual) detachment principles is also in line with the statement by one of
the main authors of Mı̄mām. sā, Prabhākara, that “A prescription regards what has to
be done. But it does not say that it has to be done” (Brhatı̄ I, 7th c. CE). We read this
as stating that a prescription states what is obligatory under certain conditions, but not
that this is unconditionally obligatory if these conditions hold.
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Fig. 1 The modal part of a Hilbert-style system for dyadic MD

Fig. 2 The sequent calculus GMD for dyadic MD

Fig. 3 The modal part of the sequent calculus GbMDL for bMDL from Ciabattoni et al. (2015)

Here for simplicity we only consider the box-free fragment of bMDL. Formally, the
set of formulae is given by the grammar A ::= p | ⊥ | A → A | O(A/A). We treat
the remaining propositional connectives ∧,∨,¬ as defined by {⊥,→} in the usual
way, i.e., ¬A :≡ A → ⊥ as well as A ∨ B :≡ ¬A → B and A ∧ B :≡ ¬(¬A ∨¬B).
We will show in Proposition 1 below that the box-free fragment of bMDL coincides
with the dyadic version of the logic MD (see Chellas 1980) axiomatized as in Fig. 1

In this paper we will consider an extension of a sequent calculus for this logic.
Here, a sequent is a tuple of multisets2 of formulae, written as Γ ⇒ Δ. The rules
of the base sequent calculus GMD are given in Fig. 2, those of the calculus GbMDL
for bMDL from Ciabattoni et al. (2015) in Fig. 3, where Γ � denotes Γ in which all
formulae not of the form�A are deleted. As usual, a derivation is a finite labelled tree
where every node is labelled with a sequent such that the labels of a node follow from
the labels of its children using the rules of the calculus. In particular, the leaves are
labelled with conclusions of the zero-premise rules init or ⊥L , see also Troelstra and
Schwichtenberg (2000). For G one of GMD,GbMDL we write �G Γ ⇒ Δ if there is a
derivation of Γ ⇒ Δ in G. The following proposition gives a proof-theoretic proof
of the equivalence of the box-free fragment of bMDL and MD. For the original proof
using semantical methods, see Freschi et al. (2019).

Proposition 1 If Γ ⇒ Δ does not contain �, then �GMD Γ ⇒ Δ iff �GbMDL Γ ⇒ Δ.
Hence the box-free fragment of bMDL is MD.

Proof One direction of the equivalence follows from changing the rules of GbMDL into
the corresponding rules of GMD possibly followed by the weakening rules WL ,WR .

2 Note that since we have contraction on both sides of the sequent we could alternatively consider sequents
as tuples of sets instead of multisets. To make the role of contraction explicit and to facilitate a less error-
prone cut elimination proof, we chose to use multisets.
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The other direction follows since a derivation in GMD is a derivation in GbMDL with the
addition of the structural rules of weakening and contraction ConL ,ConR , which are
admissible in GbMDL (Ciabattoni et al. 2015, Lemma 1). Completeness and soundness
of GMD for MD follow from general methods (e.g. in Lellmann and Pattinson 2013)
for constructing sequent calculi from axioms and proving cut elimination. 	

Remark 2 Following Ciabattoni et al. (2018), in this paper we employ amechanism for
handling propositional facts that differs from that in Ciabattoni et al. (2015): whereas
thereweencoded such assumptions as boxed formulae in the conclusionof a derivation,
here we treat them as leaves in a derivation. E.g., for deriving that the conditional
obligation to not performviolence implies the conditional obligation to not kill from the
assumption that killing implies violence, using the mechanism from Ciabattoni et al.
(2015) we would try to derive the sequent �(kill → violence),O(¬violence/C) ⇒
O(¬kill/C) using only inital sequents at the leaves of the derivation. Here, instead we
will try to derive the sequentO(¬violence/C) ⇒ O(¬kill/C), where the non-logical
axiom or ground sequent kill ⇒ violence may occur at a leaf of the derivation (see
Definition 1 below for the formal details). This has the welcome consequence that we
can avoid the alethic modality � including any question about its axiomatisation, in
line with the view that Mı̄mām. sā authors did not distinguish between necessity and
epistemic certainty.

3 Reasoning withmore specific obligations in Mı̄mām. sā

Here we continue the proof-theoretic approach initiated in Ciabattoni et al. (2015) to
reproduce Mı̄mām. sā reasoning in a formal framework.

Before considering the full language, we first illustrate the main ideas behind the
sequent calculus approach to deal with specificity/gunapradhāna in the simplified
context of Ciabattoni et al. (2018), i.e. using the (dyadic version of the) logicMDwith
the obligation operator only.

Specificity is used inMı̄mām. sā to resolve apparent contradictions whichmay occur
in the set of Vedic (śrauta) prescriptions or can be derived via the facts. For example,
consider the śrauta injunctions: (a) You ought not to study the Vedas if you are a Śūdra
(i.e., a member of the lower class), (b) Not studying the Vedas implies not performing
the Agnihotra sacrifice, and (c) You ought to perform the Agnihotra if you are a chariot
maker. The additional fact (d) A chariot maker is a Śūdra, (apparently) leads to the
conflicting obligations that you ought to study the Vedas if you are a chariot maker
and that at the same time you ought not to do so, as extensively discussed by the
Mı̄mām. sā author Jaimini (2nd c. BCE). The following example illustrates the way
Mı̄mām. sā authors reason to solve such kinds of conflicting obligations. Moreover it
shows that inferences which aim to mimic Mı̄mām. sā reasoning do not satisfy some of
the principles identified as key properties of non-monotonic logics in Gabbay (1985).

Remark 3 A central feature of our calculus is the distinction between prima facie and
derived obligations, needed for differentiating Vedic commands from human deduc-
tions. This distinction is instead missing in Deontic Default logic (Horty 2012), that
also does not satisfy the Vikalpa principle.
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From now on we will denote prima-facie obligations or deontic assumptions (śrauta
obligations) with Opf(A/B) to distinguish them from derived obligations (written
O(A/B)). Formally, the language of deontic assumptions is obtained from the lan-
guage of MD by replacing the operator O with its prima-facie variant Opf.

Example 1 We formalize the above statements concerning the Agnihotra sacrifice
as follows : (a) Opf(¬ved/sdr), (b) agn → ved, (c) Opf(agn/chmk), and (d)
chmk → sdr, where ved denotes the act of studying the Vedas, agn the perfor-
mance of the Agnihotra sacrifice, sdr the fact of being a Śūdra, and chmk being a
chariot maker. Using the monotonicity of the deontic operator in its first argument,
from (b) and (c) we derive the obligation (e) O(ved/chmk) (“You ought to study
the Vedas if you are a chariot maker”). On the other hand, if it were possible to use
indiscriminately monotonicity in the second argument of the deontic operator, from
(a) and (d) we would derive (f) O(¬ved/chmk) (“You ought not to study the Vedas
if you are a chariot maker”), obtaining a conflict between (e) and (f).

By applying the specificity principle, we “limit” the monotonicity in the second
argument of the operator; hence, following the above example, the derivation of (f) is
blocked by the presence of the prima-facie obligation (c).

The derivations from prima-facie injunctions are non-monotonic, as adding more
premisses can change the derived result. However, they do not satisfy for exam-
ple cautious monotonicity (if Γ � ϕ and Γ � ψ , then Γ , ϕ � ψ), one
of the crucial properties of non-monotonic logics. Indeed given the prima-facie
injunctions Opf(ved/�) and Opf(¬ved/sdr), both O(ved/tch) (“You ought to
study the Vedas if you are a teacher”) and O(¬ved/tch ∧ sdr) are derivable,
but, if one of these conclusions is considered as a premiss, the result changes, i.e.
{Opf(ved/�),Opf(¬ved/sdr),Opf(ved/tch)} � O(¬ved/tch ∧ sdr).

We extend below the sequent calculus GMD for the logic MD with special rules

OOpf(C/D)

L ,OOpf(C/D)

R to derive conditional obligations of the form O(A/B) from
prima-facie obligations (i.e. śrauta prescriptions) written asOpf(C/D), adopting lim-
ited forms of monotonicity. (Sect. 3.1). The extension to the full language will be
considered in Sect. 4.

3.1 Sequent calculus for specificity/gunapradhāna

In order to extend the sequent calculus for MD to capture the specificity principle,
loosely following Goble (2013), p. 281, we interpret the notion of specificity as entail-
ment in the presence of (global) propositional assumptions. I.e., given a set F of
propositional facts about the world we say that proposition A is at least as specific as
proposition B, if F entails A → B. Given this interpretation, the specificity principle
can be understood as limiting monotonicity of the operatorO in the second argument
in the following sense. Given a list L of non-nested prima-facie obligations, and a
proposition B, we should be licensed to infer the actual obligation O(A/B) if

(A) there is an injunctionOpf(A/D) in L which is applicable i.e. we can infer using
F that B → D, and there is no Opf(X/Y ) in L such that B is at least as specific
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as Y , Y is at least as specific as D, and the formulae A and X are inconsistent,
i.e. we can infer ¬(A ∧ X).

However, while this implements the notion that more specific śrauta obligations over-
rule less specific conflicting ones, this only resolves conflicts between propositions
Opf(G/H) and Opf(I/J ) in L for which the conditions are comparable in the sense
that either H implies J or J implies H . Hence, to make the resulting theory consistent
withMD, following the Mı̄mām. sā reasoning in Example 1 we add a further condition
stating that

(B) there is no obligation Opf(X/Y ) ∈ L such that B is at least as specific as Y , the
enjoined A and X are inconsistent, and which is not overruled by a more specific
obligation Opf(E/F) from L.

At this point, in order to make this intuition formally precise we need to take a
fundamental design decision: given that our logic MD includes monotonicity in the
first argument, whenever we can derive an obligationO(A/B), we should also be able
to derive the obligation O(A ∨ C/B) as well. Given a list of prima-facie obligations,
the question then essentially is whether we first eliminate all the conflicts from this list,
and then saturate under monotonicity in the first argument (as, e.g., in the suggested
procedure of removing conflicts from NDSICs in Libal and Pascucci 2019), or we
first consider all the consequences of the original list under monotonicity, and then
eliminate all the obligations which would yield a conflict. We clarify this with the
following example.

Example 2 Consider the list containing exactly the two prima-facie obligations
Opf(A ∧ B/C) and Opf(¬A/C). Since A ∧ B and ¬A are inconsistent, the approach
of ruling out conflicting obligations first and then saturating under monotonicity in the
first argumentwould yield an empty set of obligations. In the second approach, instead,
we first saturate under monotonicity, giving, e.g., the obligationO((A ∧ B)∨¬A/C),
and only then rule out conflicts. Since (A ∧ B) ∨ ¬A is contradicting neither A ∧ B
nor ¬A, we thus would keep the obligation O((A ∧ B) ∨ ¬A/C). Also, if we added
the prima facie obligation Opf(¬A/C ∧ D) we would get both O(B/C ∧ D) and
O(¬A/C ∧ D), in contrast with the first approach which would first eliminate the
assumption Opf(A ∧ B/C) and hence would not yield O(B/C ∧ D).

While both approaches have their uses, in this work we choose to follow the second
one, because of two main reasons. It allows us to preserve the power of deontic
assumptions (Śrauta obligations) as much as possible, by suspending only the part of
an obligation which is in conflict with another one. Moreover, it naturally implements
the Mı̄mām. sā principle of vikalpa. Such a principle corresponds to the disjunctive
response: given two incompatible prima-facie obligationsOpf(A/B) andOpf(C/D),
in a situation where both apply, i.e., where B ∧ D holds, one may choose which one to
follow, corresponding to the obligationO(A∨C/B ∧ D). We nowmake this formally
precise.

In the remainder of this paper we assume that F is a finite set of sequents containing
only propositional variables, which is closed under cuts, i.e., whenever Γ ⇒ Δ, p
and p,Σ ⇒ Π are in F, then so is Γ ,Σ ⇒ Δ,Π , and closed under contractions,
i.e., whenever Γ , p, p ⇒ Δ or Γ ⇒ p, p,Δ are in F, then so are Γ , p ⇒ Δ and
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Fig. 4 A graphical representation of the conditions for O(A/B) being derivable. Areas can be taken as
formulaewith containment representing entailment, i.e.,more specific formulae are contained in less specific
ones

Γ ⇒ p,Δ respectively. We call F the set of (propositional) facts. Note that, since
every propositional formula is equivalent to a formula in conjunctive normal form and
sequents containing only propositional variables correspond to clauses of a formula in
conjunctive normal form, using this definition we can stipulate arbitrary propositional
formulae as facts. We further assume a finite set L of non-nested deontic assumptions,
i.e., a finite set L of formulae of the form Opf(A/B) where A and B do not contain
the O-operator. We call these formulae prima-facie obligations.

Remark 4 The facts expressed by the sequnts in F are assumed to be true state-
ments about the world: we do not consider the reliability of information conveyed
by such statements. Indeed, in contrast with Nute (1997), we do not distinguish actual
obligations—in force under conditions that are actually verified—from apparent obli-
gations, which are in force given all we know about morally relevant circumstances,
that is under conditions that are not necessarily verified, but only believed to be true.

To capture the intuition for the specificity principle given above in a well-behaved
sequent system, we first need to make the notion of implication used there formally
precise. In particular, we would like to define a notion of inference � from the facts in
F depending on the set L, such that we can derive a sequent ⇒ O(A/B) if and only
if both of the following hold, corresponding to the conditions (A) and (B) above:

– there is Opf(C/D) ∈ L such that F � B ⇒ D and F � C ⇒ A and for all
Opf(X/Y ) ∈ L we have: ( F � B ⇒ Y or F � Y ⇒ D or F � X , A ⇒)

– for all Opf(X/Y ) ∈ L we have: F � B ⇒ Y or F � X , A ⇒ or there is a
Opf(E/F) ∈ L such that: (F � B ⇒ F and F � F ⇒ Y and F � E ⇒ A).

To ensure that these conditions hold, we will simply turn them into premisses of the
corresponding sequent rules. At first this might seem rather problematic, because we
use underivability (�) to define derivability (�). However, we will show below that
the resulting notion of derivability is well-defined, using the technical tool of the cut
elimination result.

Graphically, these two conditions can be visualised as in Fig. 4.
The first condition requires that the derivable obligation O(A/B) is implied (via

upwardmonotonicity on the first argument and downwardmonotonicity on the second
argument) by a less specific deontic assumption Opf(C/D) ∈ L and that there is
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no Opf(X/Y ) ∈ L conflicting with O(A/B) which is more general than that and
more specific than Opf(C/D). This condition includes the choice mentioned above.
Indeed, it requires that any Opf(X/Y ) ∈ L, which is more specific than Opf(C/D)

and more general than O(A/B), does not conflict with O(A/B), instead of requiring
that it does not conflict with Opf(C/D). This means that the specificity principle is
applied for resolving conflicts only after saturating the set of deontic assumptions
under monotonicity.

The second condition models the fact that the conflicting prima-facie obligation
Opf(X/Y ) is overruled by the more specific prima-facie obligation Opf(E/F) by
stating that F � E ⇒ A, i.e., that what is enjoined by Opf(E/F) implies A. While
this implies that E and X are inconsistent, one may wonder whether it is a too strong
condition. In fact, as a consequence of our fundamental design decision to first saturate
the set of prima-facie obligations under monotonicity, and then ruling out conflicts,
the obvious alternative of only demanding X and E to be inconsistent would lead to
conflicting obligations rather quickly. Conceptually, this is due to the fact that themore
specificobligationOpf(E/F)only suspends the part of the obligationOpf(X/Y )which
is in conflict with E , but does not cancel the obligation completely. So in particular,
if this part is unrelated to A, then the part ofOpf(X/Y ) which conflicts withO(A/B)

will remain unsuspended, and hence we should not be able to derive the latter. For
example, given the list L = {Opf(¬p/s),Opf(p ∧ q/s),Opf(¬q ∧ r/t),Opf(¬r/t)},
we would end up with the problematic situation of deriving both O(q/s ∧ t), using
Opf(p ∧ q/s) as the main obligation, and O(¬q/s ∧ t), using Opf(¬q ∧ r/t) as the
main obligation. The stronger condition used above prevents this situation.

To turn these considerations into sequent rules (the rules OOpf(C/D)

L ,OOpf(C/D)

R in
Definition 1 below), we convert every (meta-)conjunction and universal quantifier in
this characterization into different premises, while (meta-)disjunctions and existential
quantifiers yield a split into different rules. To write the rules in an economic way, we
use the following notation.

Notation 1 IfP is a set of premisses, and S = {S1, . . . ,Sn} is a set of sets of premisses
we write

P ∪ [S]
C for the set of rules

{P ∪ S1

C
, . . . ,

P ∪ Sn

C

}

e.g., we write

{X ⇒ Y } ∪ [{{Σ ⇒ Π}, {Ω ⇒ Θ, Ai | Ai ∈ F}}]
Γ ⇒ Δ

for the set containing the two rules

{X ⇒ Y } ∪ {Σ ⇒ Π}
Γ ⇒ Δ

and
{X ⇒ Y } ∪ {Ω ⇒ Θ, Ai | Ai ∈ F}

Γ ⇒ Δ
.

Note that we use set-theoretic notation for the sets of premisses, e.g., the rule above
left has the two premisses X ⇒ Y and Σ ⇒ Π and the conclusion C .
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Since the rules now also will mention underivability, we further need to add a
judgment for this to some of the sequents, written as (F,L) �GMDcut, with the intended
meaning that the sequent is not derivable from the facts F and the prima-facie deontic
statements L in the system GMDcut, in the sense defined below (Definition 2). Thus

we will obtain a set of rules OOpf(C/D)

R introducing a formula of the form O(A/B)

on the right hand side of the sequent. For technical reasons we will also add rules

OOpf(C/D)

L introducing such a formula on the left hand side—these essentially follow
from absorbing inferences using the axiom (D) into the previous rule. We will show
below, in the discussion of the full system, that their addition indeed is merely a
technical convenience (see Lemma 1).

Remark 5 The formulae we want to infer might have nested deontic operators, setting
the system apart from, e.g., the known systems of Input/Output logic (Makinson and
van der Torre 2000). Indeed, they should capture key prescriptions like “under the
condition of having to perform sacrifice α under the conditions β, you ought to do γ ”.
However, to ensure decidability of the system we do not permit nested obligations in
the deontic assumptions.

Definition 1 Let L = {Opf(A1/B1), . . . ,Opf(An/Bn)} be a finite set of non-nested
prima-facie obligation formulae and let F be a set of propositional sequents. The rules
of gaL (for global assumptions from L) are given in Fig. 5. A proto-derivation with
conclusionΓ ⇒ Δ in the systemGMD from assumptions (F,L) is a finite labelled tree,
where each internal node is labelled with a sequent, each leaf is labelled with an initial
sequent, a sequent from F, or an underivability statement (F,L) �GMDcut Σ ⇒ Π ,
such that the label of every internal node is obtained from the labels of its children
using the rules of GMD or gaL. The notion of a proto-derivation in the system GMDcut
is defined analogously, but also permitting applications of the cut rule

Γ ⇒ Δ, A A,Σ ⇒ Π

Γ ,Σ ⇒ Δ,Π
cut

.

The depth of a proto-derivation is the depth of the underlying tree, i.e., the maximal
length of a branch in the tree plus one.

For future reference we divide the premisses of the rules in Fig. 5 into different
blocks in the following way: the first two premisses, i.e., {B ⇒ D} and {C ⇒ A}
together form the standard block, stating that the prima-facie obligation Opf(C/D)

potentially can be used to derive the conclusion O(A/B). The following block

⎧⎨
⎩

⎡
⎣

{
(F,L) �GMDcut B ⇒ Y

}
{
(F,L) �GMDcut Y ⇒ D

}
{
(F,L) �GMDcut X , A ⇒ }

⎤
⎦ | Opf(X/Y ) ∈ L

⎫⎬
⎭

is called the not-excepted block, and states that the prima-facie obligation Opf(C/D)

is not overruled by another one which is at least as specific. The remaining premisses
together form the no-active-conflict block, which states that there is no other conflicting
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Fig. 5 The rules of gaL with Opf(C/D) ∈ L

prima-facie obligationwhich is not overruled by amore specific one. For every formula
Opf(X/Y ) the choices are divided into the no-conflict block, stating that there is no
conflict between the prima-facie obligation Opf(X/Y ) and the desired conclusion
O(A/B), and consisting of the underivability statements

(F,L) �GMDcut B ⇒ Y and (F,L) �GMDcut X , A ⇒,

and the override block, consisting of the remaining possible premisses

{{B ⇒ F} ∪ {F ⇒ Y } ∪ {E, A ⇒ } | Opf(E, F) ∈ L
}

and stating that the prima-facie obligation Opf(X/Y ) is overruled by another one

which is at least as specific. The terminology for the rule OOpf(C/D)

L is analogous.

Definition 2 A proto-derivation in GMD (in GMDcut) from (F,L) is valid if for each of
the underivability statements (F,L) �GMDcut Σ ⇒ Π , occurring as one of the leafs of
that derivation, there is no valid proto-derivation of Σ ⇒ Π in GMDcut from (F,L).
In case there is such a valid proto-derivation we also write (F,L) �GMD Γ ⇒ Δ and
(F,L) �GMDcut Γ ⇒ Δ respectively.

Note that underivability statements are always evaluated in the system with the
cut rule. Since the definition of a valid proto-derivation involves the notion of a valid
proto-derivation itself, it is not immediately clear that this notion is well-defined. We
will show in the discussion of the full system below (Corollary 1) that this is indeed
the case. In particular, this along with the decidability result follows from the crucial
cut elimination theorem, stating the redundancy of the cut rule:
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Fig. 6 The ruleOOpf(C/D)

R from Example 3

Proposition 2 (Ciabattoni et al. 2018) For every F,L and sequent Γ ⇒ Δ we have

(F,L) �GMDcut Γ ⇒ Δ if and only if (F,L) �GMD Γ ⇒ Δ .

Since this proposition is a special case of the more general result for the full system
in Theorem 2 below we omit the proof.

Example 3 Consider the prima-facie obligations given by L = {Opf(agn/�),

Opf(¬agn/sdr)} (with agn, sdr and tch as in Example 1) and the set F = ∅
of facts. Taking the formula Opf(agn/�) as the formula Opf(C/D) in the general
scheme of Fig. 5, we obtain the rules in Fig. 6.

In particular, the sequent ⇒ O(agn/tch) would be derivable using, e.g., an
instance of the rule

B ⇒ � agn ⇒ A (F,L) �GMDcut agn, A ⇒ (F,L) �GMDcut B ⇒ sdr

B ⇒ � � ⇒ � agn ⇒ A (F,L) �GMDcut B ⇒ sdr

⇒ O(A/B)

Similarly, taking the formula Opf(C/D) to be Opf(¬agn/sdr) we obtain, e.g.

B ⇒ sdr ¬agn ⇒ A (F,L) �GMDcut � ⇒ sdr (F,L) �GMDcut ¬agn, A ⇒
B ⇒ sdr sdr ⇒ � ¬agn ⇒ A B ⇒ sdr sdr ⇒ sdr ¬agn ⇒ A

⇒ O(A/B)

which serves to derive the sequent ⇒ O(¬agn/tch∧sdr). Finally, using gaL with
Opf(¬agn/sdr) for the formula Opf(C/D) yields a derivation of O(agn/tch ∧
sdr) ⇒ and thus ⇒ ¬O(agn/tch∧sdr). Note that even for just two prima-facie
obligations we obtain many (often redundant) rules.
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4 Extending bMDLwith new deontic operators

The preliminary analysis ofMı̄mām. sā reasoning purely in terms of obligations is rather
simplistic, since it considers other deontic concepts such as prohibitions as defined
notions. It turned out, indeed, that obligations and prohibitions are treated markedly
different3 in Mı̄mām. sā : on a “meta-logical” level, obeying a Vedic obligation gives
positive results and disrespecting it implies just the lack of these results; conversely,
the observance of a Vedic prohibition gives no result and the violation of it leads to
a sanction (the accumulation of negative karma). Hence it is not enough to model
prohibitions as negative obligations.

In addition the difference between prescriptions and prohibitions is not only on the
results of obeying or disrespecting them; one of the most important differences is the
idea at the base of those twodeontic concepts, i.e. “activation” in case of injunctions and
“inhibition” for prohibitions. To confirm such a distinction, let us consider the debate
inMı̄mām. sā commentaries on the injunction not to eat kalajañja (probably a variety of
garlic). If the command represents a prohibition, it means that, independently from the
agents’ desires and motivations, the agents have the duty not to consume this product:
in principle, even eating it by accident would constitute a violation. On the other hand,
if the command is a negative obligation, the agents have the duty to choose to refrain
from eating kalañja; hence, theoretically, if the agents decide to eat that vegetable,
they are not compliant with the obligation, even if an external contingency prevents
them from realizing their intentions. For these reasons, prescriptions and prohibitions
should be considered as genuine deontic concepts: they cannot be deprived of their
deontic content and reduced to instructions for obtaining desirable results or avoiding
sanctions. Such an interpretation—that could be formally represented by a Kanger-
Andersonian reduction—would be closer to the instrumental reading of commands
given by the late author Man.d. ana Miśra (c. 8th century CE), which was in between
the Mı̄mām. sā and the Vedanta schools of Indian philosophy.

In this section we continue and refine the analysis of Mı̄mām. sā reasoning in Cia-
battoni et al. (2015) by extending the �-free fragment of the logic bMDL with new
operators for prohibitions and recommendations. We call the resulting logicMD+. As
for the obligation operatorO, axioms and rules for the newoperators are extracted from
the Mı̄mām. sā nyāyas, that have been in the meanwhile4 found in the texts, translated
from Sanskrit, interpreted and abstracted.

Prohibitions are modeled in MD+ using the operator F(A/B), to be read as “A
is forbidden under the conditions B”. As in the case of obligations, prohibitions are
better expressed by a dyadic operator. They can apply unconditionally to the person
throughout her life (purus. ārtha), as in the Vedic command “one should not perform
violence on any living being”, or be relative to a particular ritual context (kratvartha),
as for the example “one should not utter the ‘ye yajāmahe’ mantra during the after-
sacrifices” discussed in Jaimini’s Pūrva Mı̄māmsā Sūtra (henceforth PMS).

3 A similar phenomenon happens in Talmudic logic, were distinct operators are needed (Abraham et al.
2011).
4 This is an ongoing project, which is carried out together with Sanskritists.
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A first natural property for prohibitions is expressed by the axiom DF

¬(F(A/B) ∧ F(¬A/B))

motivated by the consideration that, because of the “meaningfulness of Vedic com-
mands” (in PMS 1.2.23) stating that no injunction can be meaningless or inapplicable,
there is always a way to obey all needed commands and avoid sanctions; this would
be impossible having the prohibition of an action and its negation under the same
conditions. The downward monotonicity rule (MonF )

C → A B ↔ D
F(A/B) → F(C/D)

is justified by argumentations as the one in Medhātithi’s Manubhās.ya, where the
prohibition to commit suicide (F(suicide/�)) is derived from themore comprehensive
prohibition to commit violence (F(violence/�)), since there it is explicitly assumed
that suicide → kill and kill → violence.

Finally, the axiom DOF

¬(O(A/B) ∧ F(A/B))

arises again from the nyāya about meaningfulness of commands, and from what is
known as “ought implies can principle”, extracted from the discussion on the concept
of adhikāra in Jaimini’s texts. According to this principle, a person who is prescribed
to perform an action is assumed to have not only physical and economical capacities,
but also the “practical” possibility to complete the action without undesirable conse-
quences, like damages or sanctions. Therefore, performing a prescribed act can never
lead to a sanction, hence it is impossible that the same act is prohibited.

Recommendations Besides the distinction between obligations and prohibitions, a
more refined analysis should take into account the different notions of prescriptions
used by Mı̄mām. sā authors. Traditionally, rituals prescribed by the Vedas are distin-
guished into fixed (nitya), occasional (naimittika), and elective (kāmya); fixed ritual
actions should be performed, in order to obtain the positive result of good karma, regu-
larly throughout the whole life, occasional ones have similar properties, but should be
carried out in special occasions, like the birth of a child, whilst the third kind includes
rituals to be executed only in order to obtain a specific result. It has been noticed
(Freschi et al. 2019) that, while the characteristics of the operatorO in bMDL are well
suited to describe fixed and occasional prescriptions, the elective rituals represent rec-
ommendations or instruction for achieving a result in a “Vedic” way, more than proper
obligations.We call these weaker obligations recommendations and express themwith
the operatorR(./.). We modelR(./.) using the dyadic version of the modal logicMP,
see, e.g., Chellas (1980), in line with the analysis in Freschi et al. (2019) where also
the axioms forR(./.) are motivated. Note that it might be possible for something to be
obligatory and recommended at the same time, as, e.g., in the case of the Agnihotra
sacrifice. Indeed, the sequence of actions constituting the Agnihotra ritual represents
the content both of a fixed sacrifice (corresponding to obligations) and of an elective
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Fig. 7 The Hilbert-style axiomatisations for prohibitions and weak obligations in MD+

one (corresponding to recommendations). In other words, if the agents perform such
a ritual perfectly, according to the stricter rules governing elective sacrifices, they are
compliant both with the recommendation (hence obtaining the desired result) and with
the obligation (fulfilling their duties).

The axiom

¬R(⊥/A)

guarantees that there are no self-contradictory recommendations, which represents a
minimal condition for any Vedic instruction. Notice that it is weaker than DO and
DF , as, in contrast with obligations and prohibitions, it is possible to have two rec-
ommended rituals for getting the same result which cannot be performed at the same
time. In those cases (e.g., in the case of the prescriptions of kāriri sacrifice and twelve-
nights sacrifice for obtaining the rain, see, e.g., Freschi et al. 2019) Mı̄mām. sā authors
assume that one of the two sacrifices is enough to get the intended result, but both
recommendations remain in force.

The rule

A → C B ↔ D
R(A/B) → R(C/D)

is justified by the following abstraction of the nyāyas in the Tantrarahasya IV.4.3.3
(see Freschi 2012):

if the accomplishment of X presupposes the accomplishment of Y, the obligation
to perform X prescribes also Y.

Already mentioned in Ciabattoni et al. (2015) regarding obligations, this principle is
suitable also for recommendations because, as noticed in Freschi et al. (2019), it is
more about how Mı̄mām. sā authors consider the relations among facts than about a
specific kind of prescription.

The axioms and rules of all the operators in a Hilbert-style system are given in
Fig. 7, and the corresponding sequent rules, obtained using the method in Lellmann
and Pattinson (2013), are given in Fig. 8. Note that the resulting sequent calculus
admits cut-elimination by construction and hence the resulting logic is consistent.

Permissions MD+ does not include an explicit operator for permissions: they are
instead treated exclusively as explicit exceptions to obligations or to prohibitions, and
hence considered only on the prima-facie level. This formalization is motivated by
Mı̄mām. sā authors’ interpretation, which assumes that “there cannot be a prescription
prescribing a person to do something she is already inclined to do” (novelty nyāya in
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Fig. 8 The sequent rules of GMD+ for the logic with prohibitions and recommendations

Fig. 9 The global assumption rules for recommendations, based on the prima-facie recommendation
Rpf(C/D) ∈ L

Jaimini’s PMS 1.2.19). Hence permissions, having the same linguistic form as pre-
scriptions but conveying something that is naturally desired by anyone, are interpreted
as exceptions to more general commands. For instance, the statement (in Śabara on
PMS 10.7.28) “the five five-nailed animals can be eaten” is interpreted, at the prima-
facie level, as the prohibition to eat meat plus the permission to eat five species of
five-nailed animals (i.e., some species of wild rodents, wild boars, lizards, hares, and
turtles).

5 Defeasible reasoning in Mı̄mām. sā

We introduce a sequent calculus to reason in presence of specificity in the extended
logic. In order to incorporate into our framework prohibitions, permissions as excep-
tions to prescriptions or prohibitions, and recommendations, we extend the list of
deontic assumptions or prima-facie (śrauta) prescriptions to also include prima-
facie prohibitions, prima-facie obligation-permissions (exceptions to obligations),
prima-facie prohibition-permissions (exceptions to prohibitions) and prima-facie rec-
ommendations, denoted by the operators Fpf(./.), PO

pf (./.), PF
pf (./.) and Rpf(./.)

respectively. Hence, the list L of prima-facie deontic statements now contains
finitely many (non-nested) formulae of these forms. In particular, if L only contains
prima-facie obligation formulae, we recover the simplified situation of Sect. 3. The
construction of the global assumption rules then follows the same principle as before,
incorporating specificity.

For the recommendations we need to make sure that we do not deriveR(A/B)with
A equivalent to ⊥. In particular, following Freschi et al. (2019) we use the Mı̄mām. sā
reasoning that the Vedas do not recommend anything which is self-contradictory, to
rule out prima-facie recommendations R(A/D) where it follows from the facts that
A implies ⊥. Hence we only need one global assumption rule of the form given in
Fig. 9.

Remark 6 Due to the presence in MD+ of axiom DOF , the cases for the obligations
and prohibitions are somewhat more complex than cases involving recommendations,
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Mı̄mām. sā deontic reasoning using specificity: a proof… 369

as prima-facie obligations and prohibitions can overrule each others according to the
specificity principle.

For the sake of an economical presentation we employ Notation 1 from Sect. 3.1.
The rationale for the construction of the rules then is as follows:

– Due to DO (resp. DF ), more specific conflicting obligations (resp. prohibitions)
overrule less specific obligations (resp. prohibitions).

– Due to the interaction rule DOF , more specific conflicting obligations overrule
less specific prohibitions and vice versa.

– Due to the interpretation of permissions as explicit exceptions to obligations or
prohibitions, more specific obligation-permissions overrule less specific obliga-
tions, but have no relevance for prohibitions, and analogously for prohibition-
permissions.

Right rules Following this, for obligations we obtain the following characterisation.
An obligation O(A/B) follows from a set L of śrauta deontic statements if there is a
śrauta obligation Opf(C/D) in L such that:

– The assumption is applicable, because the condition B is at least as specific as D,
i.e., (F,L) � B ⇒ D.

– A is entailed by C , i.e., (F,L) � C ⇒ A.
– There is no more specific conflicting śrauta obligation or obligation-permission
(PO

pf ), i.e., for everyOpf(X/Y ) ∈ L or PO
pf (X/Y ) ∈ L we have ((F,L) � B ⇒ Y

or (F,L) � Y ⇒ D or (F,L) � X , A ⇒ ).
– There is nomore specific conflicting śrauta prohibition, i.e., for everyFpf(X/Y ) ∈
L we have ((F,L) � B ⇒ Y or (F,L) � Y ⇒ D or (F,L) � A ⇒ X ).

– Every conflicting śrauta obligation is overruled by a more specific obligation, pro-
hibition, or obligation-permission (PO

pf ) i.e., for every śrauta obligationOpf(X/Y )

with (F,L) � B ⇒ Y and (F,L) � X , A ⇒ there is a śrauta obligation
Opf(E/F) with ((F,L) � B ⇒ F and (F,L) � F ⇒ Y and (F,L) � E ⇒ A)
or there is a śrauta prohibition Fpf(E/F) with ((F,L) � B ⇒ F and (F,L) �
F ⇒ Y and (F,L) � ⇒ A, E) or there is a śrauta permission PO

pf (E/F) with
((F,L) � B ⇒ F and (F,L) � F ⇒ Y and (F,L) � E ⇒ A).

– Every conflicting śrauta prohibition is overruled by a more specific obligation,
prohibition or prohibition-permission, i.e., for every śrauta prohibition Fpf(X/Y )

with (F,L) � B ⇒ Y and (F,L) � A ⇒ X there is a śrauta obligationOpf(E/F)

with ((F,L) � B ⇒ F and (F,L) � F ⇒ Y and (F,L) � E ⇒ A) or there is
a śrauta prohibition Fpf(E/F) with ((F,L) � B ⇒ F and (F,L) � F ⇒ Y and
(F,L) � ⇒ A, E) or there is a śrauta permission PF

pf (E/F) with ((F,L) � B ⇒
F and (F,L) � F ⇒ Y and (F,L) � E ⇒ A).

– Every conflicting śrauta obligation-permission is overruled by a more specific
obligation, i.e., for every śrauta obligation-permission PO

pf (X/Y ) with (F,L) �
B ⇒ Y and (F,L) � A, X ⇒ there is a śrauta obligation Opf(E/F) with
((F,L) � B ⇒ F and (F,L) � F ⇒ Y and (F,L) � E ⇒ A).

The notion of being conflicting here is different, depending on the two conflicting
statements. In particular, two obligations Opf(A/B) and Opf(C/D) are conflicting if
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Fig. 10 The assumption right rule for obligations in presence of prohibitions and permissions

what is obligatory, i.e., A and C , cannot be true at the same time. This is equivalent
to stating that we can derive ¬(A ∧ C), or equivalently the sequent A, C ⇒ from the
facts. In contrast, an obligation Opf(A/B) conflicts with a prohibition Fpf(C/D) if
following the obligation would necessarily violate the prohibition, or in other words
if the implication A → C follows from the facts, i.e., the sequent A ⇒ C is derivable
from the facts. Two prohibitions Fpf(A/B) and Fpf(C/D) then conflict if it is not
possible to follow both. This means that the formula A ∨C resp. the sequent ⇒ A, C
follows from the facts. Finally, a prohibition-permission PF

pf (A/B) conflicts with a
prohibitionFpf(C/D) if the permitted A implies the forbidden C , i.e., if A → C resp.
the sequent A ⇒ C is derivable.

Incorporating this rationale into the construction of the assumption right rule for

obligations leads to the rules OOpf(C/D)

R for every formula Opf(C/D) ∈ L shown in
Fig. 10.
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Similarly, using the above rationale to construct the assumption right rule for pro-

hibitions yields the rule FFpf(C/D)

R given in Fig. 11.
Left rules In order to obtain a cut-free system again we need to absorb cuts between

the principal formulae of these two rules and the remaining rules into the rule set.
In particular, saturating the rule set under cuts between the assumption right rule for
obligations and the rule DO and the interaction rule DOF respectively yields the rules

OOpf(C/D)

L and FOpf(C/D)

L shown in Figs. 12 and 13. Using these rules it is possible
to derive an obligation and prohibition respectively on the left, from a prima-facie
obligation Opf(C/D) ∈ L. Similarly, cuts between the assumption right rule for
prohibitions and the rule DF and the interaction rule DOF respectively yield the rules

FFpf(C/D)

L andOFpf(C/D)

L shown in Figs. 14 and 15, respectively. Note that in the case
where L contains only prima-facie obligation formulae we obtain exactly the rules of
gaL in Fig. 5 of the previous section.

Again, for each of these rules we divide the premisses into the standard block
consisting of the first two premisses, the not-excepted block, consisting of the under-
ivability statements stating that there is no conflicting and at least as specific prima
facie deontic statement, and the no-active-conflict block, consisting of the last three
sets of premisses and stating that every conflicting prima-facie deontic statement is
overruled by a more specific one. For every prima-facie deontic statement, the corre-
sponding possible premisses in the no-active-conflict block again are divided into the
no-conflict block consisting of the underivability premisses, and the override block,
consisting of the premisses stating that the deontic statement is overridden.

Similarly to the simplified case without prohibitions and permissions, we use the
following notation.

Definition 3 We write (F,L) �GMD+cut Γ ⇒ Δ if there is a valid proto-derivation of
Γ ⇒ Δ from F in the system GMD+ extended with the following global assumption
rules for L:

gaL :=
{
op1op2(C/D)

s | op1 ∈ {O,F}, op2 ∈ {Opf,Fpf},
op2(C/D) ∈ L, s ∈ {L, R}

}
.

The following lemma shows that the rules OOpf(C/D)

L ,FOpf(C/D)

L ,FFpf(C/D)

L and

OFpf(C/D)

L in the presence of the cut rule can be seen as a mere technical convenience,
because they do not change the set of derivable sequents. However, in order to be able
to perform automated reasoning in our system, we also would like to eliminate the cut
rule itself, and the resulting system would not be complete without these rules.

Lemma 1 (Redundancy of the left rules) If there is a valid proto-derivation of Γ ⇒ Δ

in GMD+cut from (F,L), then there is a valid proto-derivation of Γ ⇒ Δ from (F,L)

in the system without the rules in Figs. 12, 13, 14 and 15.

Proof We show how to replace every application of one of these rules by cuts and an

application ofOOpf(C/D)

R and FFpf(C/D)

R respectively. So consider first an application

of the rule OOpf(C/D)

L as in Fig. 12. From every premiss of the form Γ , A ⇒ Δ and
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Fig. 11 The assumption right rule for prohibitions

Σ ⇒ A,Π using weakening and the implication rules we obtain the corresponding
premiss Γ ⇒ A → ⊥,Δ and Σ, A → ⊥ ⇒ Π , respectively. Further, from every
underivability statement (F,L) �GMD+cut Γ ⇒ A,Δ we obtain the corresponding
statement (F,L) �GMD+cut Γ , A → ⊥ ⇒ Δ, since if for the latter there were a valid
proto-derivation, we could extend it to one of the former via:

Γ , A ⇒ A,⊥,Δ

Γ ⇒ A, A → ⊥,Δ
→R

Γ , A ⇒ Δ

Γ ⇒ A,Δ
cut

Analogously, from every underivability statement (F,L) �GMD+cut Σ, A ⇒ Π we
obtain the corresponding statement (F,L) �GMD+cut Σ ⇒ A → ⊥,Π . Hence we

have all the premisses necessary to apply the rule OOpf(C/D)

R with conclusion ⇒
O(A → ⊥/B). From this we obtain the conclusion of the original application of the
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Fig. 12 The assumption left rule for obligations in presence of prohibitions and permissions

rule OOpf(C/D)

L using cut on the conclusion of the rule DO as follows:

⇒ O(A → ⊥/B)

A → ⊥, A ⇒ B ⇒ B
O(A/B),O(A → ⊥/B) ⇒ DO

O(A/B) ⇒

The premisses are clearly derivable.

In a similar way we obtain the conclusion of an application of FOpf(C/D)

L from an

application ofOOpf(C/D)

R and a cut with the conclusion of the ruleDOF . The reasoning
for the remaining rules is analogous. 	


The central technical result about the system stating elimination of the cut rule then
follows a reasonably standard pattern of a cut elimination proof, but slightly adjusted
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Fig. 13 The derived left rule for prohibitions in presence of prohibitions and permissions

to also accommodate for the underivability statements. The proof is detailed in the
“Appendix”. In the following we write (F,L) �GMD+ for the cut-free system, i.e., the
calculus (F,L) �GMD+cut with the cut rule removed. Note that again in the cut-free
calculus GMD+ the non-derivability statements range over the system with the cut rule.

Theorem 2 (Cut elimination) If (F,L) �GMD+cut Γ ⇒ Δ, then (F,L) �GMD+ Γ ⇒ Δ.

Proof See the “Appendix”. 	

From the cut elimination theorem we then obtain equivalence of the systems with

and without the cut rule:

Proposition 3 For every F,L we have

(F,L) �GMD+cut Γ ⇒ Δ if and only if (F,L) �GMD+ Γ ⇒ Δ .
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Fig. 14 The assumption left rule for prohibitions

Proof The “only if” direction is the statement of the cut elimination theorem. The
proof for the “if” direction is straightforward, since every rule in GMD is also a rule in
GMDcut, and since the underivability statements range over the same system for valid
proto-derivations in both systems. 	


5.1 Consequences of cut elimination

The Cut Elimination Theorem has a number of important consequences, in particular
the fact that the notion of a valid proto-derivation is well-defined, consistency of the
system, and a decidability and complexity result. The latter shows that despite the
somewhat complicated shape of the assumption rules, reasoning in the calculus does
not have a higher complexity than reasoning in standard modal logics such as K or in
intuitionistic logic.

The fact that valid proto-derivations are well-defined can be seen by considering
the following alternative stratified definition.
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Fig. 15 The new assumption left rule for obligations

Definition 4 A proto-derivation of rank n in GMD+ (in GMD+cut) from (F,L) with
conclusion Γ ⇒ Δ is a proto-derivation in GMD+ (in GMD+cut) from (F,L) with
conclusion Γ ⇒ Δ such that

– every formula occurring in the proto-derivation has modal nesting depth at most n
– every formula occurring in an underivability statement in the proto-derivation has
modal nesting depth at most n − 1.

If n is a natural number, then a proto-derivation is n-valid if it is of rank n and for
every k < n, for none of the underivability statements occurring in it there is a k-valid
proto-derivation in GMD+cut from (F,L).

Since themodal nesting depth of the formulae in the underivability statements in the
rules of gaL is stricly lower than that of the formulae in the conclusion, the question
whether a proto-derivation is n-valid only depends on k-validity for k < n. Hence this
definition is inductive and not circular. Using the Cut Elimination Theorem we obtain
that it is equivalent to unrestricted validity of proto-derivations as follows.
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Theorem 3 For every sequent Γ ⇒ Δ with modal nesting depth at most n there is a
valid proto-derivation in GMD+cut from (F,L) with conclusion Γ ⇒ Δ if and only if
there is a n-valid proto-derivation in GMD+cut from (F,L) with conclusion Γ ⇒ Δ.

Proof By induction on n.
So suppose the statement holds for every k < n. If there is a valid proto-derivation

of Γ ⇒ Δ from (F,L) in GMD+cutwith conclusion Γ ⇒ Δ, then by Cut Elimination
(Theorem 2) there is a valid proto-derivation of Γ ⇒ Δ from (F,L) in GMD+. Since
none of the rules of GMD+ or gaL increases the modal nesting depth from conclu-
sion to premiss(es), the maximal modal nesting depth of formulae occurring in this
proto-derivation is n. Further, since the modal nesting depth of the formulae in the
underivability statements in the rules gaL is strictly smaller than that of the conclu-
sion, every formula occurring in an underivability statement in this proto-derivation
hasmodal nesting depth atmost n−1.Hence the proto-derivation is of rank n. Since the
modal nesting depth of the formulae in the underivability statements is at most n − 1,
by induction hypothesis we obtain that for these there is no k valid proto-derivation
for any k ≤ n − 1.

Hence the proto-derivation is n-valid. Conversely, if we have a n-valid proto-
derivation, then again by induction hypothesis we obtain that for none of the
underivability statements occurring in it there is a valid proto-derivation. Since a
proto-derivation of rank n in particular is a proto-derivation, we obtain a valid proto-
derivation for the same conclusion. 	


Well-definedness of the notion of a valid proto-derivation then follows immediately
from the previous theorem together with the fact that n-validity is well-defined:

Corollary 1 (Well-definedness) The notion of a valid proto-derivation is well-defined.
	


As a second consequence of Cut Elimination we obtain that the rules gaL are
compatible with the logicMD+ as given in Figs. 1 and 7 in the sense that they do not
yield any conflicting obligations or prohibitions:

Theorem 4 (Consistency) For any L and F not containing the empty sequent, the
consequences of L under F are consistent over MD+, i.e., (F,L) �GMD+cut ⇒ ⊥.
Hence in particular

– there are no A, B with (F,L) �GMD+cut ⇒ O(A/B) ∧ O(¬A/B);
– there are no A, B with (F,L) �GMD+cut ⇒ F(A/B) ∧ F(¬A/B);
– there are no A, B with (F,L) �GMD+cut ⇒ O(A/B) ∧ F(A/B);
– there is no B with (F,L) �GMD+cut ⇒ R(⊥/B).

Proof By inspection it is clear that all the rules in the calculus GMD+gaL have the sub-
formula property relative toL in the sense that every formula occurring in a premise of
a rule, including the underivability statements, is a subformula of a formula occurring
in its conclusion or in L. Since the empty sequent is not in F, and apart fromWR there
is no rule introducing ⊥ on the right hand side of a sequent, we cannot derive ⇒ ⊥.
The second statement follows from this using derivability ofO(A/B)∧O(¬A/B) ⇒
and the analogous sequents for the statements involving F and R together with the
cut rule. 	


123



378 B. Lellmann et al.

Fig. 16 The system G3MD+ without the assumption rules

The third major consequence of the Cut Elimination Theorem is that it permits
the restriction of proof search to proto-derivations in the system without the cut rule.
Using the (extended) subformula property of the rules of the cut-free system this yields
a decision procedure for the logic. To make this precise, the derivability problem is
given by the following:

Mı̄mām. sā derivability using specificity
Input: Finite lists F,L of propositional facts and prima-facie

deontic statements, and a sequent Γ ⇒ Δ

Question: Do we have (F,L) �GMD+cut Γ ⇒ Δ?

We will show a decidability and complexity result via a natural implementation of
backwards proof search on an alternating Turing machine (see Chandra et al. 1981
for details). As usual, for this we first eliminate the structural rules from the system.

Definition 5 The system G3MD+ is the system in Fig. 16, obtained from GMD+ by
restricting initial sequents to atomic formulae, dropping theweakening and contraction
rules, and absorbing weakening into the conclusion of the logical rules. Similarly, for
a list L of prima-facie deontic statements, the rules ga∗

L are the rules from gaL

with weakening absorbed into the conclusion (only!). E.g., the rule OOpf(C/D)

R

∗
has

exactly the same premisses as the rule OOpf(C/D)

R from Fig. 10, but the conclusion
Γ ⇒ O(A/B),Δ. A valid proto-derivation in G3MD+ from (F,L) is defined as for
GMD+ with the exception that leaves may also be labelled with sequents Γ ,Σ ⇒
Π,Δ, where Σ ⇒ Π ∈ F and Γ ⇒ Δ is an arbitrary sequent. In particular, the
underivability statements also range over GMD+cut.

The following properties of the calculus are shown by standard methods.

Lemma 2 (Generalised initial sequents) The generalised initial sequent rule

Γ , A ⇒ A,Δ

is admissible in G3MD+.

Proof By induction on the complexity of the formula A, using the rulesMonO,MonF ,
MonR in case the outermost connective is one of O,F ,R. 	
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Lemma 3 (Invertibility of the propositional rules) The rules →∗
R and →∗

L are depth-
preserving invertible in G3MD+, i.e., whenever there is a valid proto-derivation of their
conclusion in G3MD+ with depth n from (F,L), then for each of the premisses there is
a valid proto-derivation with depth n from (F,L) as well.

Proof By induction on the depth of the valid proto-derivation. 	

Lemma 4 (Admissibility of weakening and contraction) The weakening and the
contraction rules are depth-preserving admissible, i.e., whenever there are valid proto-
derivations in G3MD+ of the premisses of these rules with depth n from (F,L), then
there are valid proto-derivations of their conclusions with the same depth from (F,L)

as well.

Proof By induction on the depth of the valid proto-derivation, using Lemma 3 in case
the contracted formula is a principal formula in a propositional rule. 	

Lemma 5 Let F,L be finite lists of propositional facts and prima-facie deontic state-
ments, respectively, and let Γ ⇒ Δ be a sequent. Then (F,L) �GMD+ Γ ⇒ Δ if and
only if (F,L) �G3MD+ Γ ⇒ Δ.

Proof Since the underivability statement range over the same system, we only need
to show how to convert proto-derivations from one system to the other. For the “only
if” direction, we replace applications of the weakening and contraction rules with
invocations of Lemma 4, and simulate the generalised intitial sequents of GMD+ using
Lemma 2. For the “if” direction, we make the absorbed weakening explicit using the
rulesWL ,WR . 	


Using the previous lemma, to solve the Mı̄mām. sā derivability problem, it is then
enough to perform backwards proof search in the system G3MD+ with the rules ga∗

L.
Recall that for the assumption rules from Figs. 10, 11, 12, 13, 14 and 15 we divide the
schematic premisses into blocks: the standard block contains the first two premisses;
the not-excepted block contains the schematic premisses of the sets in the second and
third line, i.e., all those underivability statements stating that the prima-facie deontic
statement is not overriddenby amore specific one; theno-active-conflict block contains
the schematic premisses of the remaining sets. The premisses of the no-active-conflict
blocks for each formula from L are further divided into the conflict block consisting
of the first two premisses in the [.] construct and the override block consisting of the
remaining ones (which again depend on additional formulae from L).

Theorem 5 (Decidability and complexity) The Mı̄mām. sā derivability problem using
specificity is decidable in polynomial space.

Proof The implementation of the decision procedure on an alternating Turingmachine
is shown as Algorithm 1. Intuitively, the algorithm makes existential guesses for the
last applied rule, thenmakes universal choices to verify that every premiss is derivable.

Claim 1 Algorithm 1 terminates in polynomial time.
Suppose that n is the size of the input, i.e., the sum of the number of symbols in F,L
and Γ ⇒ Δ. Let the complexity of a sequent be the number of occurrences of propo-
sitional or modal connectives in it. Every application of a propositional rule removes
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Algorithm 1: Decision procedure for the Mı̄mām. sā derivability problem
Input: a tuple (F,L) of finite sets of propositional facts and prima-facie deontic statements and a

sequent Γ ⇒ Δ

Output: Is (F,L) �GMD+cut Γ ⇒ Δ?

1 if ⊥ ∈ Γ or Γ ∩ Δ �= ∅ then
2 halt and accept;
3 if there is Σ ⇒ Π ∈ F with Σ ⊆ Γ and Π ⊆ Δ then
4 halt and accept;
5 existentially guess a rule scheme R (propositional, modal or assumption) from G3MD+ or ga∗

L and a
matching (tuple of) principal formula(e) from Γ ⇒ Δ;

6 else if R is a propositional rule scheme then
7 universally choose one of its premisses Σ ⇒ Π ;
8 check recursively whether (F,L) �G3MD+cut Σ ⇒ Π , output the answer and halt;

9 else if R is a modal rule scheme then
10 universally choose one of its premisses Σ ⇒ Π ;
11 check recursively whether (F,L) �G3MD+cut Σ ⇒ Π , output the answer and halt;

12 else
/* Then R is an assumption schema */

13 universally choose a block B of premisses;
14 if B is the standard block then
15 Universally choose a premiss Σ ⇒ Π in B;
16 Recursively check whether (F,L) �G3MD+cut Σ ⇒ Π , output the answer and halt;

17 else if B is the non-excepted block then
18 universally choose a formula from L and existentially guess a premiss

(F,L) �G3MD+cut Σ ⇒ Π from the block of premisses for this formula;

19 Recursively check whether (F,L) �G3MD+cut Σ ⇒ Π , flip the answer and halt;

20 else
/* Then B is the no-active-conflict block */

21 Universally choose a formula from L and existentially guess a block C of premisses for this
formula;

22 if C is the conflict block then
23 existentially guess a premiss (F,L) �G3MD+cut Σ ⇒ Π from C;
24 Recursively check whether (F,L) �G3MD+cut Σ ⇒ Π , flip the answer and halt;

25 else
/* Then C is the override block */

26 existentially guess a formula from L and universally choose a premiss Σ ⇒ Π from the
corresponding set of premisses;

27 Recursively check whether (F,L) �G3MD+cut Σ ⇒ Π , output the answer and halt;

28 end
29 end
30 end
31 halt and reject;

a propositional connective by replacing a propositional formula with its immediate
subformulae, and hence reduces the complexity of the sequents. Hence the number
of such applications is bounded by the number of subformulae of the conclusion, F
or L, and thus bounded by n. Moreover, from the shape of the modal and assumption
rules together with the fact that the assumptions in L do not contain nested modal
operators it follows that each of the recursive calls in lines 11, 16, 19, 24 and 27 is on
a sequent of strictly lower maximal nesting depth of the modal operators. Hence the
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maximal modal nesting depth of a sequent is bounded by the size n of the input as
well, and the maximal number of formulae in a sequent is thus bounded by 2n. Due to
the fact that there are only finitely many different rule schemes, all the existential and
universal choices can be encoded by a suitable combination of a rule scheme, principal
formula(e), or sequents of size bounded by 2n, consisting only of subformulae of the
conclusion. This yields witnesses of size polynomial in n for each of the nondeter-
ministic steps. Moreover, since each recursive call either reduces the complexity or
decreases the maximal modal nesting depth, a run of the algorithm makes at most
O(n2) recursive calls, after which it either accepts with lines 2 or 4 or rejects with
line 31. Thus, the algorithm terminates after at most O(n2) steps.

Claim 2 Algorithm 1 accepts an input (F,L), Γ ⇒ Δ if and only if
(F,L) �GMD+cut Γ ⇒ Δ.
We show the claim by induction on the maximal modal nesting depth of Γ ⇒ Δ.
If (F,L) �GMD+cut Γ ⇒ Δ, then there is a valid proto-derivation for Γ ⇒ Δ in
GMD+cut. Hence by Cut Elimination (Theorem 2) and Lemma 5 there is a valid proto-
derivation for Γ ⇒ Δ in G3MD+. By induction hypothesis we know that the algorithm
rejects all the underivability statements occurring in this proto-derivation. Hence the
existential and universal choices corresponding to the rules of the proto-derivation
together with recursive calls of the algorithm witness that the algorithm accepts the
input. Conversely, from an accepting run of the algorithm we obtain first a cut-free
proto-derivation of Γ ⇒ Δ in G3MD+ by applying the rules corresponding to the
existential choices of the algorithm. Then by induction hypothesis we obtain that none
of the underivability statements occurring in this proto-derivation are derivable in
GMD+cut from (F,L), and hence the proto-derivation is valid. Now Lemma 5 yields
a valid proto-derivation in GMD+ and hence in GMD+cut.

The two claims together show that Algorithm 1 decides the Mı̄mām. sā derivability
problem in alternating polynomial time, which is equivalent to polynomial space
(Chandra et al. 1981). 	


AProlog implementation of the decision procedure is available under http://subsell.
logic.at/bprover/deonticProver/version1.2/.

6 Applications: deciding between different interpretations

Possible applications of the introduced system are provided by the problem of val-
idating the interpretation or formalisation of a normative text, and in particular the
related problem of deciding between different interpretations or formalisations. Both
of these problems are of course common to many areas also outside of Indian Philoso-
phy, including Legal Representation, see, e.g., Bartolini et al. (2018), Libal and Steen
(2020). The main setting here is the following. Suppose that we are given a natural
language text, e.g., a passage of aMı̄mām. sā text or a specific law or regulation, that we
would like to formalize. Because of the ambiguity inherent in natural language as well
as, e.g., certain difficulties of interpretation specific to Sanskrit we are almost guar-
anteed to obtain not a single formalisation, but a number of different competing ones.
Hence we are faced with the task of deciding which of these is the most appropriate.

123

http://subsell.logic.at/bprover/deonticProver/version1.2/
http://subsell.logic.at/bprover/deonticProver/version1.2/


382 B. Lellmann et al.

Fig. 17 The procedure for deciding between different interpretations

One way of doing so is to consider the consequences of the different interpretations
under an assumed system of background reasoning, in our case the logicMD+, and to
compare them with respect to certain criteria. We will see a specific possible criterium
used by Mı̄mām. sā authors below, but in general such criteria would involve a basic
sanity check in the form of consistency, or checking whether certain statements, which
intuitively should hold, are derivable (compare, e.g., the quality assurance procedures
in Libal and Steen 2020). Whenever the principles of the assumed background rea-
soning match the guiding principles of our systemMD+, the decision procedure given
above can be used to check the consequences of the different interpretations, and hence
aid in comparing them. The general procedure is illustrated in Fig. 17. In view of the
fact that in this article our main application is to Mı̄mām. sā reasoning, in the figure
the stage containing the different competing first formalisations is labelled the śrauta
level, but it is worth noting again that the procedure itself in principle can be applied
to any collection of normative statements, including regulations and laws, as long as
the formal language and the assumed system of background reasoning match the ones
considered here.

Example 4 Suppose we encounter the following statements:

1. One should refrain from smoking in the presence of a baby.
2. Smoking in a bar incurs a sanction.
3. One may smoke if there is sufficient ventilation.

Further suppose that we have already established that the first of these should be read
as an obligation, e.g., in a moral sense, whereas due to the mention of a sanction
the second one should be read as a prohibition in the legal sense. The corresponding
formalisation would be given by:

1. Opf(¬smoke/baby)

2. Fpf(smoke/bar)
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For the third statement, however, it is not clear whether the “may” constitutes an
exception to the moral kind of obligation of the first statement or to the legal kind of
prohibition of the second. I.e., in the formal language ofMD+we could formalise this
statement either as PO

pf (smoke/vent) or as PF
pf (smoke/vent).

A possible way to decide between these two interpretations is to consider the con-
sequences together with the formalisations of the first two statements. In particular,
under the interpretation as PO

pf (smoke/vent) and assuming our system of back-
ground reasoning, we obtain thatO(¬smoke/baby∧bar∧vent) is not derivable,
whereas F(smoke/baby ∧ bar ∧ vent) is, i.e., while it still incurs a legal sanc-
tion, from a moral point of view one need not refrain from smoking in the presence
of a baby in a well-ventilated bar. In contrast, under the alternative interpretation as
PF
pf (smoke/vent) we would deriveO(¬smoke/baby∧bar∧vent), but would

not derive F(smoke/baby ∧ bar ∧ vent). I.e., in the same situation smoking
would not be illegal, but still morally objectionable. Checking these two possible sets
of consequences either against our moral intuitions or against information on the legal
aspects of smoking would provide us with a method for deciding which of the two
possible interpretations of the permission statement would be more plausible.

Similarly to the previous example, we can also use the general procedure of Fig. 17
to decide about assumptions on the level of facts as follows.

Example 5 Suppose that we have a text stipulating that unjustified violence incurs
certain sanctions, i.e., is explicitly forbidden. Hence Fpf(violence/�).

Further, suppose thatwe are interested in the status of suicide.Adding the seemingly
plausible fact that suicide is unjustified violence, i.e.,suicide → violence to the
factual assumptions would, in absence of any other prima-facie deontic statements,
yield derivability of the formula F(suicide/�). Thus, if we find evidence that
(attempted) suicide is not forbidden, possibly because it does not incur any sanctions,
we should conclude that the authors do not consider suicide to be a form of unjustified
violence, and hence remove the corresponding factual assumption.

Note that in a certain sense the factual assumptions hence could also be used in
a coarse (and perhaps oversimplified) representation of constitutive norms, see, e.g.,
Boella and van der Torre (2004).

6.1 The evaluation criterium of vikalpa

Coming back to Mı̄mām. sā reasoning, it is interesting to note that the outlined proce-
dure seems to be the method employed, in an informal manner, by various Mı̄mām. sā
authors to decide between different interpretations of deontic statements found in the
Vedas. One particular decision criterium employed in this context is that of minimising
instances of the so-called vikalpa principle. This principle was already stated explicitly
in the founding text of the Mı̄mām. sā school, the Pūrva Mı̄mām. sā Sūtra of Jaimini,
with the following English translation (and reformulation).

If a prescription enjoins X and a prohibition forbids one to perform the same act
X under the same conditions, and no other interpretation is possible, the act X
should be considered optional.
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The problem with such optional acts lies in the fact that for the Mı̄mām. sā authors
if the act is optional, the deontic statement prescribing or prohibiting it would be
superfluous in the sense of not being applicable. However, from their point of view
the Vedas would not give superfluous information. Hence they see vikalpa as a very
last resort, and strive to develop an interpretation of the Vedas which makes use of this
device as little as possible.

In our formal framework thediscussion around thevikalpaprinciple has twoaspects.
The first one is that we should be able to derive it in our system. Abstracting from
the particular action X in the quote above, and concentrating on obligations only, this
means that, for a set L = {Opf(a/b),Opf(c/d)} and facts F = {a, c ⇒ } establishing
that a and c are not jointly possible, neither of the formulaeO(a/b ∧ d) andO(c/b ∧
d) should be derivable, because it should be considered optional whether a or c is
performed. However, while it is optional which of the two is performed, it is still
obligatory to perform one of them, hence the formula O(a ∨ c/b ∧ d) should be
derivable.

Remark 7 It is worth noting that more than two millennia after its formulation by Jai-
mini this principle was also formulated in modern deontic logic and in nonmonotonic
reasoning: In the former, it is known, e.g., under the name of disjunctive response,
where from the two conflicting assumptionsO(a/c) andO(b/c) we are able to derive
at least the obligation of the disjunction O(a ∨ b/c), see Goble (2013); in the area of
nonmonotonic reasoning it roughly corresponds to the phenomenon of floating con-
clusions for skeptical semantics, where in our example neither of the contents a and
b of the two conflicting assumptions would be in all the extensions, but the formula
a ∨ b is, see Makinson and Schlechta (1991).

Generalising the above example to sets of obligations, and adding that all the enjoined
acts should be possible by themselves and that the result should not be blocked by
any obligation, prohibition, or permission outside the set, we can derive the vikalpa
principle in our system:

Theorem 6 Let X = {Opf(A1/B1), . . . ,Opf(An/Bn)} ⊆ L be a set such that

– (F,L) �GMD+cut Ai ⇒ for every i ≤ n.
– (F,L) �GMD+cut

∨
i≤n Ai , C ⇒ for every Opf(C/D) ∈ L � X with

(F,L) �GMD+cut
∧

i≤n Bi ⇒ D.
– (F,L) �GMD+cut

∨
i≤n Ai ⇒ C for everyFpf(C/D) ∈ L� X with (F,L) �GMD+cut∧

i≤n Bi ⇒ D.

– (F,L) �GMD+cut
∨

i≤n Ai , C ⇒ for every PO
pf (C/D) ∈ L � X with

(F,L) �GMD+cut
∧

i≤n Bi ⇒ D.

Then (F,L) �GMD+cut ⇒ O(
∨

i≤n Ai/
∧

i≤n Bi ).

Proof We show that we have all the premises to apply the rule OOpf(A1/B1)

R .
From the propositional rules we obtain (F,L) �GMD+cut A1 ⇒ ∨

i≤n Ai and
(F,L) �GMD+cut

∧
i≤n Bi ⇒ B1. Moreover, for every j ≤ n we obtain

(F,L) �GMD+cut A j ,
∨

i≤n Ai ⇒ , since otherwise in particular we would have
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(F,L) �GMD+cut A j , A j ⇒ , and hence (F,L) �GMD+cut A j ⇒ . Furthermore, by
assumption, for everyOpf(C/D) ∈ L�X we have either (F,L) �GMD+cut

∧
i≤n Bi ⇒

D or (F,L) �GMD+cut C,
∨

i≤n Ai ⇒ . The analogous statement holds for every prima-

facie deontic statement of the form Fpf(C/D) or PO
pf (C/D). Now applying the rule

OOpf(A1/B1)

R yields ⇒ O(
∨

i≤n Ai/
∧

i≤n Bi ). 	

It should be noted that for the statement of the theorem it is not relevant whether

the Ai from the set X are jointly possible or not, only that their disjunction
∨

i≤m Ai

is not blocked by any C from outside that set. In particular, it also applies to the case
where the Ai are not jointly possible. Thus, our system as described indeed satisfies
the disjunctive response resp. vikalpa. The corresponding statement for prohibitions

is shown completely analogously, using the rule FFpf(A1/B1)

R instead of OOpf(A1/B1)

R :

Theorem 7 Let X = {Fpf(A1/B1), . . . ,Fpf(An/Bn)} ⊆ L be a set such that

– (F,L) �GMD+cut ⇒ Ai for every i ≤ n.
– (F,L) �GMD+cut C ⇒ ∧

i≤n Ai for everyOpf(C/D) ∈ L�X with (F,L) �GMD+cut∧
i≤n Bi ⇒ D.

– (F,L) �GMD+cut ⇒ ∧
i≤n Ai , C for everyFpf(C/D) ∈ L�X with (F,L) �GMD+cut∧

i≤n Bi ⇒ D.

– (F,L) �GMD+cut C ⇒ ∧
i≤n Ai for everyPF

pf (C/D) ∈ L�X with (F,L) �GMD+cut∧
i≤n Bi ⇒ D.

Then (F,L) �GMD+cut ⇒ O(
∧

i≤n Ai/
∧

i≤n Bi ).

The previous theorems show that in our system we can use the fundamental prin-
ciple of vikalpa to obtain derived deontic statements from conflicting prima-facie
statements. But how can we evaluate different interpretations with respect to minimis-
ing the number of applications of this principle? At this point it is important to note
that what should be minimised is not the number of applications of the vikalpa prin-
ciple to different derived formulae, but to prima-facie deontic statements, since only
superfluousness of the latter is problematic. The general idea then is that a prima-facie
deontic statement Opf(a/b) or Fpf(a/b) is involved in an application of the vikalpa
principle with another prima-facie deontic statement in a context given by (L,F)

exactly when the corresponding formula O(a/b) or F(a/b) is not derivable from
(L,F). Hence given such a context we can use the decision procedure of Algorithm 1
to identify exactly those prima-facie deontic statements involved in applications of the
problematic principle. Apart from providing us with the number of possibly problem-
atic prima-facie formulae, this method has the additional benefit that it explicitly gives
these problematic formulae, hence yielding clues as to which parts of the interpretation
could be changed in order to avoid applications of the vikalpa principle. Note that this
amounts to a form of inconsistency checking using the formalisation of a text similar
to that used in Libal and Norotná (2020) for finding and correcting inconsistencies
in legal texts This general idea for identifying applications of the vikalpa principle is
made formally precise in the following two propositions.

Proposition 4 Let Opf(A/B) ∈ L. Then (F,L) �GMD+cut ⇒ O(A/B) holds if and
only if at least one of the following holds:
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– There is a Opf(C/D) ∈ L with (F,L) �GMD+cut A, C ⇒ and (F,L) �GMD+cut ⇒
B ↔ D; or

– There is a PO
pf (C/D) ∈ L with (F,L) �GMD+cut A, C ⇒ and (F,L) �GMD+cut ⇒

B ↔ D; or
– There is a Fpf(C/D) ∈ L with (F,L) �GMD+cut A ⇒ C and (F,L) �GMD+cut ⇒

B ↔ D.

Proof Using cut elimination and a close inspection of the rules, the only way in which
the sequent ⇒ O(A/B) could be derived is via an instance of the assumption rule

OOpf(E/F)

R for some Opf(E/B) ∈ L. From this the “if” part follows directly, since in
case one of the three conditions hold, not all of the underivability statements in the
not-excepted block hold. For the “only if” direction, suppose that (F,L) �GMD+cut ⇒
O(A/B) holds. Then in particular, the sequent ⇒ O(A/B) is not derivable via the

specific rule OOpf(A/B)

R . Since the premisses of this rule in the standard block are

B ⇒ B and A ⇒ A

which are initial sequents, some of the premisses in the not-excepted block or in
the no-active-conflict block must not hold. However, since the formula Opf(A/B) is
in L and overrules any conflicting formula from L (since both B ⇒ B and B ⇒ Y are
derivable for any conflicting obligationOpf(X/Y ), prohibitionF(X/Y ), or permission
PO(X/Y ) for which B ⇒ Y is derivable), all of the premisses in the no-active-conflict
block do hold. Hence some of the premisses in the not-excepted block hold, which
means that there is a formula Opf(X/Y ), Fpf(X/Y ) or PO

pf (X/Y ) from L satisfying
the conditions given in the statement of the proposition. 	


The analogous proposition for prohibitions is proved in the same way:

Proposition 5 Let Fpf(A/B) ∈ L. Then (F,L) �GMD+cut ⇒ F(A/B) holds if and
only if at least one of the following holds:

– There is a Fpf(C/D) ∈ L with (F,L) �GMD+cut ⇒ A, C and (F,L) �GMD+cut ⇒
B ↔ D; or

– There is a PF
pf (C/D) ∈ L with (F,L) �GMD+cut C ⇒ A and (F,L) �GMD+cut ⇒

B ↔ D; or
– There is a Opf(C/D) ∈ L with (F,L) �GMD+cut C ⇒ A and (F,L) �GMD+cut ⇒

B ↔ D.

	

Using these propositions we can now formally evaluate an interpretation given by a

list L of prima-facie deontic statements and a set F of propositional facts with respect
to the criterion of minimising the number of instances of vikalpa among the prima-
facie deontic statements as follows: For every prima-facie statement Opf(A/B) ∈
L and for every Fpf(C/D) ∈ L check whether (F,L) �GMD+cut ⇒ O(A/B) and
(F,L) �GMD+cut ⇒ F(C/D) respectively, and return all those formulae for which
this holds.
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The implementation available under http://subsell.logic.at/bprover/deonticProver/
version1.2/ includes this check together with the possibility of automatically generat-
ing alternative formalisations by systematically reinterpreting the deontic operators,
e.g., by rewriting prohibitions as negative obligations.

The following Mı̄mām. sā example arises from the consideration that recommen-
dations and obligations are expressed by the same Sanskrit word: vidhi. Therefore
in absence of further discriminating elements the classification of a command could
be based on the principle of avoiding vikalpa as much as possible, as shown in the
following example.

Example 6 Consider the following simplified interpretation of part of the debate about
the Satı̄ sacrifice5, discussed in depth in Brick (2010):

(i) “When a woman’s husband has died, she should perform the Satı̄ sacrifice by
ascending the funeral pyre after him.” Opf(satı/widow).

(ii) “Every rite which is violence itself is forbidden, therefore the Satı̄ sacrifice for
widows is forbidden” Fpf(satı/widow).

None of these injunctions is derivable in the logic, therefore, under this interpretation,
the Satı̄ sacrifice should be considered optional. However some Mı̄mām. sā authors
propose to interpret the injunction (i) as the recommendation Rpf(satı/widow),
conditioned by a general woman’s desire of positive karma for her husband and herself.
This explanation should be preferred as not giving rise to cases of vikalpa: the sacrifice
remains forbidden, but a woman can chose to perform it for obtaining a desired result;
i.e., both F(satı/widow) and R(satı/widow) are derivable in the logic.

Another example of how the mechanism can be used for choosing between con-
flicting interpretations is given by the discussion about permissions: even if they do
not appear as operators in MD+, reading a prima-facie permission as an exception
to a prohibition (PF

pf ) or to an obligation (PO
pf ) affects the derivability of the other

prescriptions.

Example 7 Consider the following situation which abstracts part of the discussion in
Kumārila’s Tantravārttika on 1.3.3-4:

(i) “During a particular sacrifice it is forbidden to eat” Fpf(eat/sacr).
(ii) “In the second part of this sacrifice it is also obligatory (rewarded with good

karma) not to eat” Opf(¬eat/sacr_IIpart).
(ii) “In the second part of this sacrifice it is also permitted to eat”.

If the permission is considered as an exception to the obligation and formalized as
PO
pf (eat/sacr_IIpart), then it blocks thederivationofO(¬eat/sacr_IIpart)

in the logic. Hence, to ensure that the maximum number of śrauta injunctions are
derivable in the logic (i.e. the instances of vikalpa are minimized) the permission
should be interpreted as an exception to the first prohibition—since, intuitively,
sacr_IIpart → sacr—and formalized as PF

pf (eat/sacr_IIpart). Under
this interpretation, eating is forbidden only in the other parts of the sacrifice
(Fpf(eat/sacr) is derivable and Fpf(eat/sacr_IIpart) is not), but it remains
obligatory not to eat in the second part (O(¬eat/sacr_IIpart) is derivable).

5 Satı̄ is an old custom where a widow immolates herself on her husband’s funeral pyre.
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7 Conclusion

Focusing on the specificity principle, we have explored connections between the
Mı̄mām. sā school of Indian philosophy and symbolic deontic logic. We have first
extended the basic logic of Mı̄mām. sā in Ciabattoni et al. (2015) with new operators
for prohibitions and recommendations whose properties have been extracted from the
Mı̄mām. sā texts. The paper’s main result is a sequent-based system to reason in this
logic using specificity/gunapradhāna; some of its properties have been investigated
and its potential use as a tool for Mı̄mām. sā philosophy as well as to aid formalisation
tasks, e.g., in Legal Representation, have been explored.

Future research directions include the extension of the system to deal with further
Mı̄mām. sā rules (nyāyas) to avoid contradictions; we are planning to work on those
just discovered in Kumārila’s Tantravārttika on 3.3.14 (balābala-adhikaran. a) which
comprise a prioritisation of rules based on an existing hierarchy of sources (e.g. a
Vedic prescription defeats a contradictory prescription in the ‘traditional texts based
on the Vedas’), and on the criteria of invalidating as few injunctions as possible.

From the technical side, we plan to investigate the system’s semantics, to abstract
and generalize it to work for base deontic logics other thanMD+ and to further explore
its use in other fields, in particular Legal Representation and Reasoning, in detail.

Apart from the technical content, this paper illustrates some of the vast potential for
cross-fertilisation between Mı̄mām. sā and deontic logic. This enterprise is the subject
of ongoing work in collaboration with Sanskritists and experts of Indian philosophy.
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A Appendix

Theorem 8 (Cut elimination) If (F,L) �GMD+cut Γ ⇒ Δ, then (F,L) �GMD+ Γ ⇒ Δ.

Proof We show how to eliminate topmost applications of the multicut rule

Γ ⇒ Δ, An Am,Σ ⇒ Π

Γ ,Σ ⇒ Δ,Π
mcut

froma proto-derivation, preserving validity (here An is themultiset containing n copies
of A). Since cut is a case of mcut and mcut is derivable using ConL ,ConR and cut,
this suffices. The proof is by double induction on the complexity of the cut formula
A and the sum of the depths of the derivations of the two premises of the application
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Mı̄mām. sā deontic reasoning using specificity: a proof… 389

of mcut (see Troelstra and Schwichtenberg (2000), Sect. 4.1.9 for the classical case
without underivability statements).

If the complexity of the cut formula is 0, then it is a propositional variable, and
hence not principal in a modal or propositional rule or a rule from gaL. Thus, as usual,
we permutemcut into the premises of the last applied rules using the inner induction
on the depths of the derivations, until it is absorbed by an application of weakening,
or reaches the leaves of the proto-derivation. In this case the premises of the multicut
are initial sequents or elements of F. If at least one of these is an initial sequent, the
multicut is eliminated as usual, if both sequents are elements of F we use that F is
closed under contraction and cuts and replace the multicut with the corresponding
element of F.

So assume that the complexity of the cut formula is n + 1. Again, using the
inner induction on the depth of the proto-derivation we permute the multicut into
the premise(s) of the last applied rules, until it is in an initial sequent or it is princi-
pal in the last rules of the derivations of both premises of the multicut. In case the
cut formula is propositional we use the standard transformation, see Troelstra and
Schwichtenberg (2000).

The only interesting case iswhere the cut formula is a deontic formula and neither of
the two premisses of the multicut is an initial sequent. If the last applied rules both are
among PO, PF , PR, DO, DF , DOF ,MonO,MonF ,MonR, then the transformation is
essentially as for the system GMD, see Lellmann and Pattinson (2013) for the general
transformations. E.g., if the last applied rules were MonO and DO, the multicut has
the following form:

C ⇒ A D ⇒ B B ⇒ D
O(C/D) ⇒ O(A/B)

MonO
A, E ⇒ B ⇒ F F ⇒ B
O(A/B),O(E/F) ⇒ DO

O(C/D),O(E/F) ⇒ mcut

Using the induction hypothesis on the complexity of the cut formula we obtain valid
proto-derivations of the conclusions of

C ⇒ A A, E ⇒
C, E ⇒ mcut D ⇒ B B ⇒ F

D ⇒ F
mcut F ⇒ B B ⇒ D

F ⇒ D
mcut

Now an application of the rule DO yields the sequent Γ ,O(C/D),Σ,O(E/F) ⇒
Δ,Π . In case both principal formulae of the application of DO are cut formulae, we
proceed similarly, only using the rule PO in the last step. The other cases of the modal
rules are similar.

In themost interesting cases at least one of the premises of the cut was derived using
a rule from gaL. For each operator op ∈ {O,F ,R} there are three major groups of

cases: (i) opop
′(C/D)

R or opop
′(C/D)

L versus a rule not from gaL where the multicut

has non-empty conclusion; (ii) opop
′(C/D)

R or opop
′(C/D)

L versus a rule not from gaL
where the multicut has an empty conclusion; or (iii) opop

′(C/D)
R versus opop

′(G/H)
L .

We consider all the different cases for op = O. The cases for the operators F and R
are analogous, and much simpler in the case of R.
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Case (i) The prime example of this case is the case where the two last applied rules

wereOOpf(C/D)

R andMonO. Then the two derivations end in an instance of a rule from
{B ⇒ D} ∪ {C ⇒ A}

∪

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}

∪
{{

(F,L) �GMD+cut Y ⇒ D
}}

∪
{{

(F,L) �GMD+cut X , A ⇒
}}

⎤
⎥⎥⎥⎦ | Opf(X/Y ) ∈ L or PO

pf (X/Y ) ∈ L

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}

∪
{{

(F,L) �GMD+cut Y ⇒ D
}}

∪
{{

(F,L) �GMD+cut A ⇒ X
}}

⎤
⎥⎥⎥⎦ | Fpf(X/Y ) ∈ L

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) �GMD+cut X , A ⇒
}}

∪
{

{B ⇒ F} ∪ {F ⇒ Y }
∪ {E ⇒ A} | Opf(E/F) ∈ L

or PO
pf (E/F) ∈ L

}

∪
{ {B ⇒ F} ∪ {F ⇒ Y }

∪ {⇒ E, A} | Fpf(E/F) ∈ L

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

| Opf(X/Y ) ∈ L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}
,

∪
{{

(F,L) �GMD+cut A ⇒ X
}}

∪
{

{B ⇒ F} ∪ {F ⇒ Y }
∪ {E ⇒ A} | Opf(E/F) ∈ L

or PF
pf (E/F) ∈ L

}

∪
{ {B ⇒ F} ∪ {F ⇒ Y }

∪ {⇒ A, E} | Fpf(E/F) ∈ L

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

| Fpf(X/Y ) ∈ L

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

{{(F,L) �GMD+cut B ⇒ Y }}
{{(F,L) �GMD+cut X , A ⇒}}{ {B ⇒ F} ∪ {F ⇒ Y }

∪{E ⇒ A} | Opf(E/F) ∈ L

}

⎤
⎥⎥⎦ | PO

pf (X/Y ) ∈ L

⎫⎪⎪⎬
⎪⎪⎭

⇒ O(A/B)
OOpf(C/D)

R (1)

and

A ⇒ G B ⇒ H H ⇒ B
O(A/B) ⇒ O(G/H)

MonO

respectively. By induction hypothesis on the complexity of the cut formula we obtain
valid proto-derivations of H ⇒ D and C ⇒ G, as well as the sequents H ⇒
F and F ⇒ Y and E ⇒ G whenever the corresponding sequents occur in the

application ofOOpf(C/D)

R . Further, for every underivability statement (F,L) �GMD+cut
B ⇒ Y together with derivability of B ⇒ H we obtain the underivability statement
(F,L) �GMD+cut H ⇒ Y by contradiction: assuming there is a valid proto-derivation
of H ⇒ Y in GMDgaLcut from F we could apply cut to this and B ⇒ H to obtain
F �GMDgaLcut B ⇒ Y , in contradiction to (F,L) �GMD+cut B ⇒ Y . Similarly, for
every underivability statement (F,L) �GMD+cut X , A ⇒ using derivability of A ⇒ G
we obtain the underivability statement (F,L) �GMD+cut X , G ⇒ ; analogously for the
underivability statements (F,L) �GMD+cut A ⇒ X using derivability of A ⇒ G we
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get (F,L) �GMD+cut G ⇒ X . Hencewe can apply the ruleOOpf(C/D)

R to obtain a proto-
derivation of ⇒ O(G/H). By the reasoning above, all the underivability statements
hold, hence the proto-derivation is valid.

The cases where the two last applied rules were OOpf(C/D)

R and DO with only one

of the principal formulae a cut formula or MonO and OOpf(C/D)

L are similar, in each

case finishing with an application of OOpf(C/D)

L .

Similarly, in the case where the last applied rules were OOpf(C/D)

R and DOF
we reason as above, but finishing with an application of FO(C/D)

L .

The case where the last applied rules were MonO and OFpf(C/D)

L is also similar,

finishing with an application of OFpf(C/D)

L .

Case (ii) The prime example for this case is when the last rules wereOOpf(C/D)

R and
PO. We claim that this case actually cannot occur. For otherwise the derivations end
in an instance of (1) and

A ⇒
O(A/B) ⇒ PO

.

However, then for X := C and Y := D we have valid proto-derivations for all three of
B ⇒ Y and Y ⇒ D and X , A ⇒ . The first one is the first premise of the application

ofOOpf(C/D)

R , the second one is easily derivable since Y = D, and the last one follows
from the premise of PO usingWL . But then the proto-derivation of ⇒ O(A/B) cannot
have been valid since for some of the underivability statements in the not-excepted

block of the premisses of the rule OOpf(C/D)

R there is a valid proto-derivation.

The case where the last rules wereOOpf(C/D)

R and DO with both principal formulae
of the latter cut formulae is analogous to the previous case.

Case (iii) Assume that both last applied rules are from gaL. The prime example of

this is where the last rules were OOpf(C/D)

R and OOpf(G/H)

L . Again, we claim that this
cannot happen. For suppose it did, then the derivations would end in (1) and

123



392 B. Lellmann et al.

{B ⇒ H} ∪ {G, A ⇒ }

∪
⎧
⎨
⎩

⎡
⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}
∪ {{

(F,L) �GMD+cut Y ⇒ H
}}

∪ {{
(F,L) �GMD+cut X ⇒ A

}}

⎤
⎦ | Opf(X/Y ) ∈ L or PO

pf (X/Y ) ∈ L

⎫
⎬
⎭

∪
⎧
⎨
⎩

⎡
⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}
∪ {{

(F,L) �GMD+cut Y ⇒ H
}}

∪ {{
(F,L) �GMD+cut ⇒ A, X

}}

⎤
⎦ | Fpf(X/Y ) ∈ L

⎫
⎬
⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}
,

∪ {{
(F,L) �GMD+cut X ⇒ A

}}

∪
{ {B ⇒ F} ∪ {F ⇒ Y }

∪ {A, E ⇒ } | Opf(E/F) ∈ L

or PO
pf (E/F) ∈ L

}

∪
{ {B ⇒ F} ∪ {F ⇒ Y }

∪ {A ⇒ E} | Fpf(E/F) ∈ L

}

⎤
⎥⎥⎥⎥⎥⎥⎦

| Opf(X/Y ) ∈ L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

{{
(F,L) �GMD+cut B ⇒ Y

}}
,

∪ {{
(F,L) �GMD+cut ⇒ A, X

}}

∪
{ {B ⇒ F} ∪ {F ⇒ Y }

∪ {A, E ⇒ } | Opf(E/F) ∈ L

or PF
pf (E/F) ∈ L

}

∪
{ {B ⇒ F} ∪ {F ⇒ Y }

∪ {A ⇒ E} | Fpf(E/F) ∈ L

}

⎤
⎥⎥⎥⎥⎥⎥⎦

| F(X/Y ) ∈ L

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

∪

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

{{(F,L) �GMD+cut B ⇒ Y }}
{{(F,L) �GMD+cut X ⇒ A}}{ {B ⇒ F} ∪ {F ⇒ Y }

∪{E, A ⇒} | Opf(E/F) ∈ L

}

⎤
⎥⎥⎦ | PO

pf (X/Y ) ∈ L

⎫⎪⎪⎬
⎪⎪⎭

O(A/B) ⇒ OOpf(G/H)

L

But then in particular the no-active conflict block of the application of the rule

OOpf(C/D)

R has either (a) one of the premises (F,L) �GMD+cut B ⇒ H and
(F,L) �GMD+cut G, A ⇒ ; or (b) all of the three premises

B ⇒ F F ⇒ H E ⇒ A

for some Opf(E/F) or PO
pf (E/F) from L; or (c) all of the three premises

B ⇒ F F ⇒ H ⇒ A, E

for someFpf(E/F) fromL. However, the first case of (a) gives a contradictionwith the

premise B ⇒ H of the application ofOOpf(G/H)

L using validity of the proto-derivation.

The second case gives a contradiction with the premise G, A ⇒ ofOOpf(G/H)

L , again
using validity of the proto-derivation. Case (b) gives a contradiction because the not-

excepted block of the application of OOpf(G/H)

L contains one of the premises

(F,L) �GMD+cut B ⇒ F (F,L) �GMD+cut F ⇒ H (F,L) �GMD+cut E ⇒ A

and the proto-derivation is valid. Case (c) is similar, but with (F,L) �GMD+cut ⇒ A, E
instead of the last underivability statement. Hence this case also cannot occur.

The case of OOpf(C/D)

R versus OFpf(G/H)

L is analogous. 	
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Mı̄mām. sā deontic reasoning using specificity: a proof… 393

References

Abraham M, Gabbay DM, Schild U (2011) Obligations and prohibitions in Talmudic deontic logic. Artif
Intell Law 19(2–3):117–148

Bartolini C, Lenzini G, Santos C (2018) An agile approach to validate a formal representation of the GDPR.
In: Kazuhiro K, Maki S, Koji M, Ken S (eds) New frontiers in artificial intelligence. JSAI-isAI 2018,
volume 11717 of LNCS. Springer, pp 160–176

Bathia KL (2010) Legal language and legal writing. Universal Law Publishing Co, New Delhi
Batsakis S, Baryannis G, Governatori G, Tachmazidis I, Antoniou G (2018) Legal representation and

reasoning in practice: a critical comparison. In: Legal knowledge and information—JURIX 2018. IOS
Press, pp 31–40

Boella G, van der Torre LWN (2004) Regulative and constitutive norms in normativemultiagent systems. In:
Didier D, Christopher AW,Mary-AnneW (eds) Principles of knowledge representation and reasoning:
proceedings of the ninth international conference (KR2004), June 2–5, 2004. AAAI Press, Whistler,
Canada, pp 255–266

Bonatti PA, Olivetti N (2002) Sequent calculi for propositional nonmonotonic logics. ACM Trans Comput
Log 3(2):226–278
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from an interdisciplinary point of view, volume II of history of science, philosophy, and culture in

123

http://www.collegepublications.co.uk/handbooks/?00001


394 B. Lellmann et al.

Indian civilization: life, thought, and culture in India. Munshiram Manoharlal Publishers Pvt. Ltd.,
New Delhi, pp 615–625

Lellmann B, Pattinson D (2013) Constructing cut free sequent systems with context restrictions based on
classical or intuitionistic logic. In: ICLA 2013, volume 7750 of LNCS. Springer, pp 148–160

Libal T, Norotná T (2020) Towards automating inconsistency checking of legal texts. In: Jusletter IT:
IRIS 2020. Editions Weblaw. https://doi.org/10.38023/336778dc-530a-48ac-95da-336a8bd40995

Libal T, Pascucci M (2019) Automated reasoning in normative detachment structures with ideal conditions.
In: ICAIL 2019. ACM, pp 63–72

Libal T, Steen A (2020) NAI: towards transparent and usable semi-automated legal analysis. In: Jusletter
IT: IRIS 2020. Editions Weblaw, pp 265–272. https://doi.org/10.38023/2eb63e02-f13e-45f5-9a7b-
d7fe55e42c6c

MakinsonD, SchlechtaK (1991) Floating conclusions and zombie paths: two deep difficulties in the ’directly
skeptical’ approach to inheritance nets. Artif Intell 48:199–209

Makinson D, van der Torre L (2000) Input/output logics. J Philos Log 29(4):383–408
Nute D (1997) Apparent obligation. In: Nute D (ed) Defeasible deontic logic. Springer, Dordrecht, pp

287–315
Nute D (2003) Defeasible logic. In: INAP 2001, volume 2543 of LNCS. Springer, pp 151–169
PrakkenH,SartorG (1999)A system for defeasible argumentation,with defeasible priorities. In:Wooldridge

MJ, Veloso MM (eds) Artificial intelligence today: recent trends and developments, volume 1600 of
lecture notes in computer science. Springer, pp 365–379

Prakken H, Sergot M (1997) Dyadic deontic logic and contrary-to-duty obligations. In: Nute D (ed) Defea-
sible deontic logic. Kluwer, Dordrecht, pp 223–262

Royakkers LMM (1998) Extending deontic logic for the formalisation of legal rules, volume 36 of law and
philosohpy library. Springer

Straßer C, Antonelli GA (2016) Non-monotonic logic. In: Zalta EN (ed) The Stanford encyclopedia of
philosophy (Fall 2016 Edition). Stanford University, pp 1–62. https://plato.stanford.edu/archives/
fall2016/entries/logic-nonmonotonic/

Straßer C, Arieli O (2019) Normative reasoning by sequent-based argumentation. J Log Comput 29(3):381–
415

Taber J (2004) Is Indian logic nonmonotonic? Philos East West 54:143–170
Troelstra AS, Schwichtenberg H (2000) Basic proof theory, 2nd edn. Cambridge University Press, Cam-

bridge
van der Torre LWN (1994) Violated obligations in a defeasible deontic logic. In: ECAI 94. Wiley, pp

371–375
van Fraassen BC (1972) The logic of conditional obligation. J Philos Log 1(3–4):417–438
von Wright GH (1964) A new system of deontic logic. Dan Yearb Philos 1:173–182
von Wright GH (1965) A correction to a new system of deontic logic. Dan Yearb Philos 2:103–107

123

https://doi.org/10.38023/336778dc-530a-48ac-95da-336a8bd40995
https://doi.org/10.38023/2eb63e02-f13e-45f5-9a7b-d7fe55e42c6c
https://doi.org/10.38023/2eb63e02-f13e-45f5-9a7b-d7fe55e42c6c
https://plato.stanford.edu/archives/fall2016/entries/logic-nonmonotonic/
https://plato.stanford.edu/archives/fall2016/entries/logic-nonmonotonic/

	Mīmāṃsā deontic reasoning using specificity: a proof theoretic approach
	Abstract
	1 Introduction
	2 The base logic: bMDL
	3 Reasoning with more specific obligations in Mīmāṃsā
	3.1 Sequent calculus for specificity/gunapradhāna

	4 Extending bMDL with new deontic operators
	5 Defeasible reasoning in Mīmāṃsā
	5.1 Consequences of cut elimination

	6 Applications: deciding between different interpretations
	6.1 The evaluation criterium of vikalpa

	7 Conclusion
	A Appendix
	References




