Skip to main content

Advertisement

Log in

Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Neuronal cell death after traumatic brain injury, Alzheimer’s disease and ischemic stroke may in part be mediated through endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR results in induction of molecular chaperone GRP78 and the ER-resident caspase-12, whose activation has been proposed to be mediated by calpain and caspase processing, although their relative contribution remains unclear. In this study we induced ER stress with thapsigargin (TG), and determined the activation profile of calpain-2, caspase-3, caspase-7, and caspase-12 by analyses of protein levels, corresponding substrates and breakdown products (BDP). Specific calpain and caspase activity was assessed by analysis of αII-spectrin BDP of 145 kDa (SBDP145), BDP of 150 kDa (SBDP150) and BDP of 120 kDa (SBDP120). Decrease in pro-calpain-2 protein and increased SBDP145 levels by 3 h after TG treatment indicated early calpain activity. Active caspase-7 (p20) increase occurred after 8 h, followed by concomitant up-regulation of active caspase-3 and SBDP120 after 24 h. In vitro digestion experiments supported that SBDP120 was exclusively generated by active caspase-3 and validated that kinectin and co-chaperone p23 were calpain and caspase-7 substrates, respectively. Pro-caspase-12 protein processing by the specific action of calpain and caspase-3/7 was observed in a time-dependent manner. N-terminal pro-domain processing of pro-caspase-12 by calpain generated a 38 kDa fragment, while caspase-3/7 generated a 35 kDa fragment. Antibody developed specifically against the caspase-3/7 C-terminal cleavage site D341 detected the presence of large subunit (p20) containing 23 kDa fragment that increased after 24 h of TG treatment. Significant caspase-12 enzyme activity was only detected after 24 h of TG treatment and was completely inhibited by caspase 3/7 inhibitor DEVD-fmk and partially by calpain inhibitor SNJ-1945. ER-stress-induced cell death pathway in TG-treated PC12 cells was characterized by up-regulation of GRP-78 and processing and activation of caspase-12 by the orchestrated proteolytic activity of calpain-2 and caspase-3/7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

GRP-78:

Glucose responsive protein of 78 kDa

TG:

Thapsigargin

BDP:

Breakdown product

TBI:

Traumatic brain injury

References

  1. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  CAS  PubMed  Google Scholar 

  2. Freeze HH (2007) Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med 7:389–396

    Article  CAS  PubMed  Google Scholar 

  3. Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109

    Article  CAS  PubMed  Google Scholar 

  4. Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452

    Article  CAS  PubMed  Google Scholar 

  5. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    Article  CAS  PubMed  Google Scholar 

  6. Larner SF, Hayes RL, Wang KK (2006) Unfolded protein response after neurotrauma. J Neurotrauma 23:807–829

    Article  PubMed  Google Scholar 

  7. Truettner JS, Hu B, Alonso OF, Bramlett HM, Kokame K, Dietrich WD (2007) Subcellular stress response after traumatic brain injury. J Neurotrauma 24:599–612

    Article  PubMed  Google Scholar 

  8. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  CAS  PubMed  Google Scholar 

  9. Momoi T (2004) Caspases involved in ER stress-mediated cell death. J Chem Neuroanat 28:101–105

    CAS  PubMed  Google Scholar 

  10. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024

    Article  CAS  PubMed  Google Scholar 

  11. Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA (2007) Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem 282:14132–14139

    Article  CAS  PubMed  Google Scholar 

  12. Rao RV, Hermel E, Castro-Obregon S et al (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276:33869–33874

    Article  CAS  PubMed  Google Scholar 

  13. Nakagawa T, Yuan J (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150:887–894

    Article  CAS  PubMed  Google Scholar 

  14. Saleh M, Vaillancourt JP, Graham RK et al (2004) Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 429:75–79

    Article  CAS  PubMed  Google Scholar 

  15. Sanges D, Marigo V (2006) Cross-talk between two apoptotic pathways activated by endoplasmic reticulum stress: differential contribution of caspase-12 and AIF. Apoptosis 11:1629–1641

    Article  CAS  PubMed  Google Scholar 

  16. Shirasaki Y, Miyashita H, Yamaguchi M, Inoue J, Nakamura M (2005) Exploration of orally available calpain inhibitors: peptidyl alpha-ketoamides containing an amphiphile at P3 site. Bioorg Med Chem 13:4473–4484

    Article  CAS  PubMed  Google Scholar 

  17. Cryns V, Yuan J (1998) Proteases to die for. Genes Dev 12:1551–1570

    Article  CAS  PubMed  Google Scholar 

  18. Nath R, Raser KJ, Stafford D et al (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319(Pt 3):683–690

    CAS  PubMed  Google Scholar 

  19. Newcomb JK, Kampfl A, Posmantur RM et al (1997) Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat. J Neurotrauma 14:369–383

    Article  CAS  PubMed  Google Scholar 

  20. Newcomb-Fernandez JK, Zhao X, Pike BR et al (2001) Concurrent assessment of calpain and caspase-3 activation after oxygen-glucose deprivation in primary septo-hippocampal cultures. J Cereb Blood Flow Metab 21:1281–1294

    Article  CAS  PubMed  Google Scholar 

  21. Nath R, Huggins M, Glantz SB et al (2000) Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis. Neurochem Int 37:351–361

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14(11):1289–1298

    Article  CAS  PubMed  Google Scholar 

  23. Harriman JF, Liu XL, Aleo MD, Machaca K, Schnellmann RG (2002) Endoplasmic reticulum Ca(2+) signaling and calpains mediate renal cell death. Cell Death Differ 9:734–741

    Article  CAS  PubMed  Google Scholar 

  24. Walsh JG, Cullen SP, Sheridan C, Luthi AU, Gerner C, Martin SJ (2008) Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA 105:12815–12819

    Article  CAS  PubMed  Google Scholar 

  25. Machleidt T, Geller P, Schwandner R, Scherer G, Kronke M (1998) Caspase 7-induced cleavage of kinectin in apoptotic cells. FEBS Lett 436:51–54

    Article  CAS  PubMed  Google Scholar 

  26. Chan SL, Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58:167–190

    Article  CAS  PubMed  Google Scholar 

  27. Wang KK (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26

    Article  PubMed  Google Scholar 

  28. Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431

    Article  CAS  PubMed  Google Scholar 

  29. Wang KK, Posmantur R, Nath R et al (1998) Simultaneous degradation of alphaII- and betaII-spectrin by caspase 3 (CPP32) in apoptotic cells. J Biol Chem 273:22490–22497

    Article  CAS  PubMed  Google Scholar 

  30. Tran H, Pankov R, Tran SD, Hampton B, Burgess WH, Yamada KM (2002) Integrin clustering induces kinectin accumulation. J Cell Sci 115:2031–2040

    CAS  PubMed  Google Scholar 

  31. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7:1013–1030

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Article  CAS  PubMed  Google Scholar 

  33. Truettner JS, Hu K, Liu CL, Dietrich WD, Hu B (2009) Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res 1249:9–18

    Article  CAS  PubMed  Google Scholar 

  34. Rao RV, Castro-Obregon S, Frankowski H et al (2002) Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277:21836–21842

    Article  CAS  PubMed  Google Scholar 

  35. Voccoli V, Mazzoni F, Garcia-Gil M, Colombaioni L (2007) Serum-withdrawal-dependent apoptosis of hippocampal neuroblasts involves Ca++ release by endoplasmic reticulum and caspase-12 activation. Brain Res 1147:1–11

    Article  CAS  PubMed  Google Scholar 

  36. Muruganandan S, Cribb AE (2006) Calpain-induced endoplasmic reticulum stress and cell death following cytotoxic damage to renal cells. Toxicol Sci 94:118–128

    Article  CAS  PubMed  Google Scholar 

  37. Hiroi T, Wei H, Hough C, Leeds P, Chuang DM (2005) Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Pharmacogenomics J 5:102–111

    Article  CAS  PubMed  Google Scholar 

  38. Shimoke K, Kishi S, Utsumi T et al (2005) NGF-induced phosphatidylinositol 3-kinase signaling pathway prevents thapsigargin-triggered ER stress-mediated apoptosis in PC12 cells. Neurosci Lett 389:124–128

    Article  CAS  PubMed  Google Scholar 

  39. Lee W, Kim DH, Boo JH, Kim YH, Park IS, Mook-Jung I (2005) ER stress-induced caspase-12 activation is inhibited by PKC in neuronal cells. Apoptosis 10:407–415

    Article  CAS  PubMed  Google Scholar 

  40. Korfali N, Ruchaud S, Loegering D et al (2004) Caspase-7 gene disruption reveals an involvement of the enzyme during the early stages of apoptosis. J Biol Chem 279:1030–1039

    Article  CAS  PubMed  Google Scholar 

  41. Jang M, Park BC, Lee AY et al (2007) Caspase-7 mediated cleavage of proteasome subunits during apoptosis. Biochem Biophys Res Commun 363:388–394

    Article  CAS  PubMed  Google Scholar 

  42. Stegh AH, Kesari S, Mahoney JE et al (2008) Bcl2L12-mediated inhibition of effector caspase-3 and caspase-7 via distinct mechanisms in glioblastoma. Proc Natl Acad Sci USA 105:10703–10708

    Article  CAS  PubMed  Google Scholar 

  43. Van de Craen M, Vandenabeele P, Declercq W et al (1997) Characterization of seven murine caspase family members. FEBS Lett 403:61–69

    Article  PubMed  Google Scholar 

  44. Hoppe V, Hoppe J (2004) Mutations dislocate caspase-12 from the endoplasmic reticulum to the cytosol. FEBS Lett 576:277–283

    Article  CAS  PubMed  Google Scholar 

  45. Korge P, Weiss JN (1999) Thapsigargin directly induces the mitochondrial permeability transition. Eur J Biochem 265:273–280

    Article  CAS  PubMed  Google Scholar 

  46. Baumgartner HK, Gerasimenko JV, Thorne C et al (2009) Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem 284:20796–20803

    Article  CAS  PubMed  Google Scholar 

  47. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277:34287–34294

    Article  CAS  PubMed  Google Scholar 

  48. Mao W, Iwai C, Keng PC, Vulapalli R, Liang CS (2006) Norepinephrine-induced oxidative stress causes PC-12 cell apoptosis by both endoplasmic reticulum stress and mitochondrial intrinsic pathway: inhibition of phosphatidylinositol 3-kinase survival pathway. Am J Physiol Cell Physiol 290:C1373–C1384

    Article  CAS  PubMed  Google Scholar 

  49. Fujita E, Kouroku Y, Jimbo A, Isoai A, Maruyama K, Momoi T (2002) Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ 9:1108–1114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant R01NS051431 to R. L. H. Dr. K. K. W. Wang and Dr. R. L. Hayes hold equity in Banyan Biomarkers, Inc. (Alachua, FL), a company commercializing the brain injury biomarker technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan A. Martinez or Stephen F. Larner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, J.A., Zhang, Z., Svetlov, S.I. et al. Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis 15, 1480–1493 (2010). https://doi.org/10.1007/s10495-010-0526-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0526-4

Keywords

Navigation