Skip to main content
Log in

Silencing of Nuclear Mitotic Apparatus protein (NuMA) accelerates the apoptotic disintegration of the nucleus

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

One main feature of apoptosis is the sequential degradation of the nuclear structure, including the fragmentation of chromatin and caspase-mediated cleavage of various nuclear proteins. Among these proteins is the Nuclear Mitotic Apparatus protein (NuMA) which plays a specific role in the organization of the mitotic spindle. The exact function of NuMA in the interphase nucleus is unknown, but a number of reports have suggested that it may play a role in chromatin organization and/or gene expression. Here we show that upon cleavage in apoptotic cells, the N-terminal cleavage fragment of NuMA is solubilized while the C-terminal fragment remains associated with the condensed chromatin. Using pancaspase inhibitor z-VAD-fmk and caspase-3 deficient MCF-7 cells, we further show that the solubilization is dependent on caspase-mediated cleavage of NuMA. Finally, the silencing of NuMA by RNAi accelerated nuclear breakdown in apoptotic MCF-7 cells. These results suggest that NuMA may provide structural support in the interphase nucleus by contributing to the organization of chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  PubMed  Google Scholar 

  2. Martelli AM, Zweyer M, Ochs RL, Tazzari PL, Tabellini G, Narducci P, Bortul R (2001) Nuclear apoptotic changes: an overview. J Cell Biochem 82:634–646

    Article  CAS  PubMed  Google Scholar 

  3. Berezney R, Coffey DS (1974) Identification of a nuclear protein matrix. Biochem Biophys Res Commun 60:1410–1417

    Article  CAS  PubMed  Google Scholar 

  4. Nickerson JA, Blencowe BJ, Penman S (1995) The architectural organization of nuclear metabolism. Int Rev Cytol 162A:67–123

    CAS  PubMed  Google Scholar 

  5. Mika S, Rost B (2005) NMPdb: database of nuclear matrix proteins. Nucleic Acids Res 33:D160–D163

    Article  CAS  PubMed  Google Scholar 

  6. Taimen P, Viljamaa M, Kallajoki M (2000) Preferential expression of NuMA in the nuclei of proliferating cells. Exp Cell Res 256:140–149

    Article  CAS  PubMed  Google Scholar 

  7. Sun QY, Schatten H (2006) Role of NuMA in vertebrate cells: review of an intriguing multifunctional protein. Front Biosci 11:1137–1146

    Article  CAS  PubMed  Google Scholar 

  8. Lydersen BK, Pettijohn DE (1980) Human-specific nuclear protein that associates with the polar region of the mitotic apparatus: distribution in a human/hamster hybrid cell. Cell 22:489–499

    Article  CAS  PubMed  Google Scholar 

  9. Kallajoki M, Weber K, Osborn M (1991) A 210 kDa nuclear matrix protein is a functional part of the mitotic spindle; a microinjection study using SPN monoclonal antibodies. EMBO J 10:3351–3362

    CAS  PubMed  Google Scholar 

  10. Merdes A, Ramyar K, Vechio JD, Cleveland DW (1996) A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87:447–458

    Article  CAS  PubMed  Google Scholar 

  11. Compton DA, Cleveland DW (1993) NuMA is required for the proper completion of mitosis. J Cell Biol 120:947–957

    Article  CAS  PubMed  Google Scholar 

  12. Silk AD, Holland AJ, Cleveland DW (2009) Requirements for NuMA in maintenance and establishment of mammalian spindle poles. J Cell Biol 184:677–690

    Article  CAS  PubMed  Google Scholar 

  13. Compton DA, Szilak I, Cleveland DW (1992) Primary structure of NuMA, an intranuclear protein that defines a novel pathway for segregation of proteins at mitosis. J Cell Biol 116:1395–1408

    Article  CAS  PubMed  Google Scholar 

  14. Harborth J, Wang J, Gueth-Hallonet C, Weber K, Osborn M (1999) Self assembly of NuMA: multiarm oligomers as structural units of a nuclear lattice. EMBO J 18:1689–1700

    Article  CAS  PubMed  Google Scholar 

  15. Gueth-Hallonet C, Wang J, Harborth J, Weber K, Osborn M (1998) Induction of a regular nuclear lattice by overexpression of NuMA. Exp Cell Res 243:434–452

    Article  CAS  PubMed  Google Scholar 

  16. Luderus ME, den Blaauwen JL, de Smit OJ, Compton DA, van Driel R (1994) Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol 14:6297–6305

    CAS  PubMed  Google Scholar 

  17. Harborth J, Weber K, Osborn M (2000) GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA. J Biol Chem 275:31979–31985

    Article  CAS  PubMed  Google Scholar 

  18. Lelievre SA, Weaver VM, Nickerson JA, Larabell CA, Bhaumik A, Petersen OW, Bissell MJ (1998) Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci USA 95:14711–14716

    Article  CAS  PubMed  Google Scholar 

  19. Abad PC, Lewis J, Mian IS, Knowles DW, Sturgis J, Badve S, Xie J, Lelievre SA (2007) NuMA influences higher order chromatin organization in human mammary epithelium. Mol Biol Cell 18:348–361

    Article  CAS  PubMed  Google Scholar 

  20. Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dube K, Rego EM, Bhaumik M, Bailey DJ, Wells RA, Kamel-Reid S, Pandolfi PP (2004) Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene 23:665–678

    Article  CAS  PubMed  Google Scholar 

  21. Gueth-Hallonet C, Weber K, Osborn M (1997) Cleavage of the nuclear matrix protein NuMA during apoptosis. Exp Cell Res 233:21–24

    Article  CAS  PubMed  Google Scholar 

  22. Kivinen K, Kallajoki M, Taimen P (2005) Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Exp Cell Res 311:62–73

    Article  CAS  PubMed  Google Scholar 

  23. Taimen P, Kallajoki M (2003) NuMA and nuclear lamins behave differently in Fas-mediated apoptosis. J Cell Sci 116:571–583

    Article  CAS  PubMed  Google Scholar 

  24. Taimen P, Berghäll H, Vainionpää R, Kallajoki M (2004) NuMA and nuclear lamins are cleaved during viral infection–inhibition of caspase activity prevents cleavage and rescues HeLa cells from measles virus-induced but not from rhinovirus 1B-induced cell death. Virology 320:85–98

    Article  CAS  PubMed  Google Scholar 

  25. Lin HH, Hsu HL, Yeh NH (2007) Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification. J Biomed Sci 14:681–694

    Article  CAS  PubMed  Google Scholar 

  26. Holmström TH, Tran SE, Johnson VL, Ahn NG, Chow SC, Eriksson JE (1999) Inhibition of mitogen-activated kinase signaling sensitizes HeLa cells to Fas receptor-mediated apoptosis. Mol Cell Biol 19:5991–6002

    PubMed  Google Scholar 

  27. Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  28. Kisurina-Evgenieva O, Mack G, Du Q, Macara I, Khodjakov A, Compton DA (2004) Multiple mechanisms regulate NuMA dynamics at spindle poles. J Cell Sci 117:6391–6400

    Article  CAS  PubMed  Google Scholar 

  29. Hirata H, Takahashi A, Kobayashi S, Yonehara S, Sawai H, Okazaki T, Yamamoto K, Sasada M (1998) Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J Exp Med 187:587–600

    Article  CAS  PubMed  Google Scholar 

  30. Harborth J, Weber K, Osborn M (1995) Epitope mapping and direct visualization of the parallel, in-register arrangement of the double-stranded coiled-coil in the NuMA protein. EMBO J 14:2447–2460

    CAS  PubMed  Google Scholar 

  31. Compton DA, Luo C (1995) Mutation of the predicted p34cdc2 phosphorylation sites in NuMA impair the assembly of the mitotic spindle and block mitosis. J Cell Sci 108(Pt 2):621–633

    CAS  PubMed  Google Scholar 

  32. Weaver VM, Carson CE, Walker PR, Chaly N, Lach B, Raymond Y, Brown DL, Sikorska M (1996) Degradation of nuclear matrix and DNA cleavage in apoptotic thymocytes. J Cell Sci 109(Pt 1):45–56

    CAS  PubMed  Google Scholar 

  33. Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360

    Article  CAS  PubMed  Google Scholar 

  34. Bortul R, Zweyer M, Billi AM, Tabellini G, Ochs RL, Bareggi R, Cocco L, Martelli AM (2001) Nuclear changes in necrotic HL-60 cells. J Cell Biochem Suppl 36:19–31

    Article  PubMed  Google Scholar 

  35. Haren L, Merdes A (2002) Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J Cell Sci 115:1815–1824

    CAS  PubMed  Google Scholar 

  36. Berezney R, Coffey DS (1977) Nuclear matrix. Isolation and characterization of a framework structure from rat liver nuclei. J Cell Biol 73:616–637

    Article  CAS  PubMed  Google Scholar 

  37. Hancock R (2000) A new look at the nuclear matrix. Chromosoma 109:219–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor D. Compton for donating the GFP constructs and Dr. A. Merdes for providing the sequence for NuMA siRNA oligonucleotide. Dr. Gudrun Wahlström is thanked for her help and expertise in the GFP work. Harry Kujari and Jaakko Matomäki are thanked for their help in the statistical analysis of the data. Dr. Ellen Valle is thanked for her help in the proof-reading of the text. This work was supported by the Finnish Medical Foundation, the Finnish-Norwegian Medical Foundation, the Emil Aaltonen Foundation, the Emil and Blida Maunula Trust of the University of Turku, the EVO Grant of the Turku University Central Hospital, the Turku University Foundation, Valto Takala Trust, The Varsinais-Suomi Regional Fund of the Finnish Cultural Foundation, the Medical Faculty of the University of Turku and the Turku Graduate School of Biomedical Sciences (TuBS).

Conflict of interest statement

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katri Kivinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivinen, K., Taimen, P. & Kallajoki, M. Silencing of Nuclear Mitotic Apparatus protein (NuMA) accelerates the apoptotic disintegration of the nucleus. Apoptosis 15, 936–945 (2010). https://doi.org/10.1007/s10495-010-0506-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0506-8

Keywords

Navigation