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Abstract In metazoans apoptosis is a major physiological

process of cell elimination during development and in tis-

sue homeostasis and can be involved in pathological

situations. In vitro, apoptosis proceeds through an execu-

tion phase during which cell dismantling is initiated, with

or without fragmentation into apoptotic bodies, but with

maintenance of a near-to-intact cytoplasmic membrane,

followed by a transition to a necrotic cell elimination tra-

ditionally called ‘‘secondary necrosis’’. Secondary necrosis

involves activation of self-hydrolytic enzymes, and swell-

ing of the cell or of the apoptotic bodies, generalized and

irreparable damage to the cytoplasmic membrane, and

culminates with cell disruption. In vivo, under normal

conditions, the elimination of apoptosing cells or apoptotic

bodies is by removal through engulfment by scavengers

prompted by the exposure of engulfment signals during the

execution phase of apoptosis; if this removal fails pro-

gression to secondary necrosis ensues as in the in vitro

situation. In vivo secondary necrosis occurs when massive

apoptosis overwhelms the available scavenging capacity,

or when the scavenger mechanism is directly impaired, and

may result in leakage of the cell contents with induction of

tissue injury and inflammatory and autoimmune responses.

Several disorders where secondary necrosis has been

implicated as a pathogenic mechanism will be reviewed.
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Introduction

‘‘Life is uncertain, death is certain’’. All cells are doomed

to die. Cell death processes can be passive or active. Pas-

sive cell death is the direct, acute killing of a cell by an

exterior aggression damaging enough to produce irrevers-

ible alterations; these occur without the participation of the

cell and can be prevented only by the absence of the

aggression. This is the case, among others, of cell death

due to exposure to high concentrations of detergents or

antiseptics, extreme heat or repeated freeze-thawing, that

is, situations without biological relevance. In this mode of

cell death there is immediate, extensive and irreparable

damage to the cytoplasmic membrane and this damage

affects the membrane from without.

In contrast, active cell death is a suicidal process that is

carried out by the doomed cell using molecules and pathways

that are endogenous to the cell. The term ‘‘programmed cell

death’’, coined by Lockshin and Williams to qualify devel-

opmental cell death [1], has gained wide use to characterize

active cell deaths. However, the term ‘‘programmed’’ has been

used in two distinct senses to characterize either (i) cell death

processes that occur at a precise local and time according to a

developmental program (for example in morphogenesis) or

(ii) cell deaths that, once triggered (as part of a developmental

program or occasionally as in some pathologies), follow cell-

intrinsic biochemical programs controlled by the doomed cell.

Therefore, we will use the term ‘‘active’’ instead of ‘‘pro-

grammed’’ when referring to cell death processes that, once

triggered, unroll following a course of biochemical events

processed and controlled by the dying cell.

Cell death is followed by cell elimination. In multicel-

lular animals, cell elimination is essential for development

and homeostasis, and is mainly carried out by apoptosis.

The initial report by Kerr, Wyllie and Currie, introducing
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the concept of apoptosis [2] was based on in vivo obser-

vations in mammalian tissues and described that process as

comprising a terminal cell elimination stage through the

removal of the apoptosing cell by phagocytosis and deg-

radation by a scavenger cell. However, it was soon

recognized by Kerr and collaborators that in vivo [3, 4] and

in vitro [5, 6], when removal by scavengers does not occur,

the apoptotic process continues until a transition to necrosis

ensues leading to cell elimination by cell disruption. This

terminal disruption of apoptotic cells was initially called

‘‘secondary degeneration’’ [5], a designation later changed

to ‘‘secondary necrosis’’ [7]. This designation achieved

widespread acceptance and is now part of the glossary of

cell death terms, although it is prone to some confusion.

Indeed, necroses that can be also labeled as secondary can

occur in diverse situations; for example, necrosis following

ischemia due to vascular occlusion has been frequently

called secondary necrosis, as in necrotizing fasciitis.

Secondary necrosis was viewed in the initial reports as a

separate process occurring after completion of apoptosis [5,

6] and, thus, it has frequently been called post-apoptotic

necrosis. An alternative view is to consider that necrotic

outcome as part of the apoptotic program of cell elimina-

tion, in which case it has been called late apoptosis.

Secondary necrosis also terminates the apoptotic process

in eukaryotic unicellular organisms like yeasts [8, 9]. A

terminal necrotic elimination can occur at the end of other

active cell death processes besides apoptosis [10, 11].

Therefore, the term apoptotic secondary necrosis is used in

this review to refer the terminal cell disruption that may

follow apoptotic cell death.

After being initially seen as a mere biological curiosity,

apoptotic secondary necrosis was soon recognized as an

event with pathogenic relevance when occurring in multi-

cellular animals. The pro-inflammatory and cytotoxic

consequences of lysis of cells under secondary necrosis due

to the lack of removal by scavengers have initially been

repeatedly predicted or assumed, but supporting evidence

for the pathogenic potential of that outcome of apoptosis

has been progressively gathered as will be here reviewed.

Apoptosis as the prelude of secondary necrosis

Secondary necrosis is a process that affects cells under

advanced apoptosis; thus, the characteristics of secondary

necrotic cells are influenced by alterations previously

occurred during the execution of apoptosis.

After the initial concept that apoptosis was the mecha-

nism behind active cell death, advances in the knowledge

in this area revealed that active cell death may assume

several genetically defined programs (reviewed in Ref.

[12]). In typical situations, these diverse programs dictate

different phenotypes which can be used as a basis for the

classification of active cell death modes [13, 14]. The

presently known clear-cut forms of active cell death include,

besides apoptosis, autophagic cell death [10, 15], primary

necrosis (also known as programmed necrosis) [11, 16–18],

mitotic catastrophe [19], and caspase 1-dependent pyrop-

tosis [20]. These paradigmatic modes of cell death have

been observed in multicellular organisms, but less clear-

cut, intermediate or hybrid cell death modes have also been

described as indicated by the use of terms as apoptosis-like

or necrosis-like cell deaths [12], necrapoptosis [21] and

necroptosis [22].

In multicellular organisms, apoptosis is a major physi-

ological cell killing process used during embryonic

morphogenesis and in adult life in tissue homeostasis and

immune responses for the elimination of unnecessary,

unwanted or dangerous cells [23, 24].

When a cell isolated from a metazoan and maintained in

vitro responds to an apoptotic death stimulus it activates a

sequence of molecular events [25] that proceeds through two

phases which ultimately culminates in cell disruption [5, 25].

In the first phase, molecular alterations produce the classical

apoptotic morphotype (see Table 1 and Figs. 1b, 2b and 4)

that is used to identify this mode of cell death. During this

phase the apoptosing cells may or may not fragment into

apoptotic bodies, and, in contrast with necrosis, the mem-

brane enveloping the apoptosing cells or the apoptotic bodies

remains near-to-intact, that is, except for some structural

alterations like externalization of phosphatidylserine and

exposition of other ‘‘eat-me’’ signals for phagocytosis by

scavengers, it is normal including in regards to selective

permeability [7, 33, 34]. The terminal phase is secondary

necrosis during which necrotic molecular alterations pro-

duce a new morphotype (see Table 1) which is more typical

when there is no fragmentation into apoptotic bodies; this

secondary necrotic morphotype is a mixture of alterations

produced in the apoptotic phase (like nuclear fragmentation

and intense chromatin condensation) and necrotic alterations

(swelling of the cell and damage to the cytoplasmic mem-

brane) [7]. Ultimately the cytoplasmic membrane ruptures

and the cell (or the apoptotic bodies) is dismantled to cell

debris (Fig. 1c, d). This experiment shows that the apoptotic

death of an isolated cell, once triggered, is self-sufficient and

leads to self-elimination by secondary necrosis.

When incorporated in the multicellular organism, that

same cell will respond to an apoptotic death stimulus again

by activating its endogenous apoptotic mechanism but the

outcome may well be quite different from that occurring in

vitro because now the cell is part of the social context of

the multicellular organism [35]. Indeed, the apoptotic

program triggers a mechanism for cell elimination that

calls for the cooperation of a scavenger cell to engulf and

digest by heterolysis the apoptosing cell before transition to
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secondary necrosis, that is, while the apoptosing cell still is

enveloped by a near-to-intact membrane. This process of

cell elimination, described in the initial report by Kerr,

Wyllie and Currie as the second stage of apoptosis in

mammals and as the physiological mechanism for elimi-

nation of apoptosing cells or apoptotic bodies [2] is

activated in the in vitro setting but cannot operate because

of the lack of the scavenger.

Biochemical events that are behind the apoptotic mor-

photype may include caspase activation, PARP-1

inactivation, mitochondrial permeability transition with

loss of membrane potential (Dw), release of AIF, EndoG

or cytochrome c from the mitochondrial intermembrane

space, moderate increased production of ROS, moderate

cytosolic Ca2+ overload and internucleosomal DNA deg-

radation (reviewed in Refs. [25, 36, 37]. There is

proteolytic degradation of many substrates mainly effected

by activated effector caspases [36] but caspase-indepen-

dent effector mechanisms may also participate [38], and

may have the participation of autophagy [39]. The degra-

dative events occurring during the execution of apoptosis

produce a partial cell dismantling which confers to apop-

tosis an autolytic character and is the basis of the apoptotic

morphotype. This initial autolytic degradation is signifi-

cantly increased when apoptosing cells are phagocytosed

and heterolytically digested by scavengers or when apop-

tosis transits to secondary necrosis where further,

extensive, autolytic degradation leads to cell disruption.

For the normal progress of the apoptotic pathways energy

is required, and an initial increase in cytosolic ATP

in apoptosing cells has been reported [40, 41]. ATP is

required for cell shrinkage, bleb formation, caspase activa-

tion, enzymatic hydrolysis of macromolecules, chro-

matin condensation, DNA internucleosomal fragmentation,

Table 1 Morphotypes in

apoptosis, apoptotic secondary

necrosis and primary necrosis

Main morphological alterations

that allow the identification of

cells in the execution phase of

apoptosis, in apoptotic

secondary necrosis and in

primary necrosis (reviewed in

Refs. [7, 14, 26–29])

The apoptotic alterations of

secondary necrosis are in bold;

in italic are the necrotic

alterations

Apoptosis (see Figs. 1b, 2b

and 4)

Cell rounding and shrinking

Loss of microvilli

Membrane blebbing

Nuclear fragmentation and/or

Intense chromatin condensation

Mitochondrial ‘‘thread-grain’’ transition

Production of apoptotic bodies

Impermeability of the cytoplasmic membrane to PI

Apoptotic secondary necrosis

(see Figs. 1c, 1d, 2c and 4)

Nuclear fragmentation

Intense chromatin condensation

Cytoplasmic swelling

Intense mitochondria swelling

Damaged cytoplasmic membrane (revealed by PI-positive staining and
release of LDH)

Primary necrosis No nuclear fragmentation

Moderate chromatin condensation

Cytoplasmic swelling

Intense mitochondrial swelling

Damaged cytoplasmic membrane (revealed by PI-positive staining and

release of LDH)

Fig. 1 Apoptotic cell death in vitro. Hemacolor staining of sea bass

peritoneal phagocytes exposed in vitro to the apoptogenic exotoxin

AIP56 of the gram-negative pathogen Photobacterium damselae ssp.

piscicida [30]. (a) Normal phagocyte. (b) Phagocyte under apoptosis,

showing cell rounding and shrinkage, nuclear fragmentation and

intense chromatin condensation. (c) Phagocyte under apoptotic

secondary necrosis, showing nuclear apoptotic changes (fragmenta-

tion and intense chromatin condensation) and a lysed cytoplasm. (d)

A more advanced secondary necrosis with chromatolysis and cell

swelling. Technical details in Ref. [30]
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nuclear fragmentation, exposure of engulfment signals and

apoptotic body formation (reviewed in Refs. [25, 37, 41, 42].

Apoptotic bodies may be formed during the degradation

phase by the fragmentation of apoptosing cells as already

described in the initial report of Kerr, Wyllie and Currie

[2]. Although formation of apoptotic bodies is frequently

considered as constant during apoptosis, in some otherwise

typical apoptotic processes occurring in vitro or in vivo

apoptotic bodies are not produced or are rare (see for

example [6, 7, 26–28, 43, 44]), so that the elimination of

apoptosing cells frequently affects non-fragmented cells.

The non-fragmented, shrunken, apoptosing cell can be

considered a single apoptotic body [45], as in the case of

the so-called sunburn cells, apoptotic keratinocytes induced

by UV irradiation of the skin [46]. Apoptotic bodies are

produced while the apoptosing cell still has a near-to-nor-

mal cytoplasmic membrane and they are as well enveloped

by a near-to-intact membrane [2, 47]. Like apoptosing

cells, they express signals for engulfment and are phago-

cytosed by scavengers [2] or undergo secondary necrosis if

not engulfed [7, 47].

In multicellular animals the timely removal of apoptosing

cells through phagocytosis by scavengers is the clue for the

physiological outcome of apoptosis because it prevents the

occurrence of secondary necrosis [23, 48, 49]. In higher

multicellular animals, phagocytosis is mainly accomplished

by monocytes/macrophages and neutrophils, the profes-

sional phagocytes [50], which constitute up to 10–15% of

cells in most mammalian tissues [23]. Typically, the pro-

fessional scavenger of dying/dead cells is the macrophage

[51, 52], which is located in all body territories and is highly

phagocytic [53]. When macrophages are not available, for

example due to a particular location of the dying/dead cells,

neutrophils [54], or neighbor cells functioning as surrogate

‘‘amateur’’ phagocytes, may fulfill the role of removal of

dying/dead cells; most cell types, including dendritic, epi-

thelial, endothelial, and glomerular mesangial cells,

fibroblasts, myocytes, and tumor cells, are able to perform

this task [7, 49, 51, 52, 55]. This situation is the rule in simple

multicellular animals, like Caenorhabditis elegans, where

professional phagocytes are not present and apoptosing cells

are removed by neighbor cells [56].

Although less efficiently than macrophages [49, 57–59],

dendritic cells may engulf apoptosing cells, mainly when

extensive apoptosis overwhelms the macrophage availability

[60–62] or in territories where dendritic cells outnumber

macrophages [63]. It has been reported that dendritic cells are

more prone than macrophages to develop a pro-inflammatory

response following the uptake of apoptosing or secondary

necrotic cells [61, 62]. This point will be further discussed in

‘‘Pathogenic consequences of apoptotic secondary necrosis’’

section.

Like molecules involved in cell death processes, mole-

cules involved in the removal by scavengers of dying/dead

cells are present, and are in part similar, in worms, flies and

mammals [64], indicating that such a clearance represents a

crucial mechanism that has been conserved through evolu-

tion. Encounter of apoptosing cells with phagocytes may

require attraction of phagocytes; specific attraction signals

released by apoptosing cells in a caspase 3-dependent

manner have been described [65, 66]. The recognition and

engulfment of dying/dead cells by phagocytes involves the

interaction between a number of molecules (reviewed in

Refs. [67–70]). ‘‘Eat me’’ signals are exposed on the surface

of apoptosing cells and are recognized by receptors on the

surface of scavengers. The interactions between the

engulfment signals and the receptors are facilitated by

bridging molecules present in serum such as b2 glycopro-

tein, milk fat globule protein (MFG-E8), protein S, growth

arrest-specific 6 (Gas6), thrombospondin, pentraxins and

complement factors. This mechanism of attraction between

apoptosing cells and scavengers is complemented by the loss

by the apoptosing cells of expression of ‘‘don’t eat me’’

signals that normally prevent engulfment of living cells.

Fig. 2 Apoptotic cell death in vivo. Transmission electron micros-

copy of peritoneal sea bass phagocytes that where induced to enter

apoptotic death by the exotoxin AIP56 secreted by intraperitoneally

injected Photobacterium damselae ssp. piscicida [31, 32]. (a) A

normal looking phagocyte. (b) A phagocyte under apoptosis, showing

cell shrinkage, loss of microvilli, nuclear fragmentation and intense

chromatin condensation and a continuous cytoplasmic membrane. (c)

A phagocyte under apoptotic secondary necrosis showing an apop-

totic (hyper-condensed) nuclear fragment together with rupture of the

cytoplasmic membrane and leakage of cell components. Technical

details in Ref. [32]
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Much less is known about how scavengers recognize

cells under active primary necrosis as compared to apop-

tosing cells, but it has been reported that some of the

engulfment signals in necrosing cells are different from

those exposed by apoptosing cells [68]. In this context, it is

of note that many studies on this topic (and on the

immunological effects of necrotic cells) used cells made

necrotic by physical methods like heating, or exposure to

detergents or fixatives. These methods produce passive

necrotic cells with protein inactivation that consequently

cannot be representative of cells dying in vivo due to active

necrotic processes which induce proteolytic alterations and

exposure of engulfment signals. It is therefore important

that more studies be conducted on the process of recogni-

tion of necrosing cells by scavengers and on the pathogenic

effects of necrosis using cells under active necrosis.

Elimination of apoptosing cells by a scavenger involves

the degradation by the hydrolytic enzymes of the phago-

lysosomes of the scavenger (heterolysis). This heterolytic

degradation superimposes on the autolysis ongoing in the

apoptosing cell [2, 4]. Several results indicate that the role of

macrophages in removal of apoptosing cells is not solely to

eliminate cell corpses, but rather to degrade those cells to

harmless and largely re-utilizable molecules; this disman-

tling can be extensive when the dying/dead cells are engulfed

very early in the apoptotic process [71, 72]. Indeed, uptake of

apoptosing cells can occur with different timings after death

triggering, depending on the timing of exposition of surface

engulfment signals and on the availability of scavengers.

Therefore, the extension of the executed apoptotic curricu-

lum can vary, manifesting different morphologies. Apop-

tosing cells can be engulfed so early that the typical

morphological changes or DNA fragmentation have not yet

occurred [73–75] which would explain why under physio-

logical conditions cells with apoptotic indicators are rarely

seen in tissues [7, 76]. The swift removal of apoptosing cells

is particularly advantageous in embryogenesis.

There are important differences in the processes of

removal of cells under apoptosis or under active necrosis:

(i) Apoptosing and necrosing cells are phagocytosed by

macrophages through different mechanisms [77, 78]. (ii)

Engulfment of cells under active necrosis is delayed and

quantitatively and kinetically less efficient as compared to

the uptake of apoptosing cells [77, 79]. (iii) Engulfment of

apoptosing cells by scavengers normally occurs before the

transition to secondary necrosis, that is when the dying/

dead cells or the apoptotic bodies still have a near-to-nor-

mal cytoplasmic membrane [7, 33] (Fig. 3). In contrast,

engulfment of necrosing cells usually occurs after cyto-

plasmic membrane damage and cell rupture so that cell

fragments are engulfed [77, 78, 80] (Fig. 3).

Although the macrophage response to the phagocytosis

of apoptosing cells may occasionally be pro-inflammatory

(see discussion in Refs. [14, 52, 68], that phagocytosis

typically fails to induce an inflammatory response [81] due

to active inhibition of the release of pro-inflammatory

Fig. 3 Schematic representation of the two cell elimination processes

that can operate in active primary necrosis and apoptosis (heterolysis

after removal by scavengers or cell burst due to autolysis). The

cytoplasmic membrane of the cells under death processes is normal in

the green area and damaged in the red area. A central issue is that, in

apoptosis, in contrast with primary necrosis, the timely removal by

scavengers of dying/dead cells is carried out before occurrence of

damage to the cytoplasmic membrane. Leakage of cell contents is

most extensive and involves large molecules when there is cell

disruption (large blue arrows). See text in ‘‘Apoptotic secondary

necrosis’’ section for details
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mediators and to generation of anti-inflammatory factors

such as transforming growth factor-beta (TGF-beta) and

anti-inflammatory eicosanoids [82–84]. This contrasts with

the effect of necrotic cell engulfment, which usually, but

not always [77, 85], induces pro-inflammatory responses

by the engulfing phagocytes [68, 69, 86, 87]. The pre-

vailing view is that the delayed and deficient removal

mechanism of cells under primary necrosis allows the

persistence of leaky cells and necrotic debris which leads to

activation of pro-inflammatory and immuno-stimulatory

responses [11, 16] (see ‘‘Pathogenic consequences of

apoptotic secondary necrosis’’ section). Necrotic cells may

induce an inflammatory response not only by spilling their

contents after lysis, but also by actively secreting inflam-

matory molecules, including cytokines (reviewed in Ref.

[68]). However, there are reports of occurrence of exten-

sive necrotic processes in vivo in the absence of important

inflammatory responses [79, 80, 85, 88]. It is also of note

that necrosis-associated inflammation, when not excessive,

can be beneficial for the organism, for example during a

protective immune response [17]. The removal by phago-

cytosis of cells under secondary necrosis will be discussed

in ‘‘Pathogenic consequences of apoptotic secondary

necrosis’’ section.

Central for the topic of this review is that, in multicel-

lular animals, the physiological removal of apoptosing cells

by scavengers may fail allowing the occurrence of sec-

ondary necrosis with potential pathogenic consequences.

Failure of this process may be due to defects of the scav-

engers (insufficient number or functional incapacity) or of

molecules involved in the recognition and engulfment of

apoptosing cells, as will be reviewed later.

Apoptotic secondary necrosis

As already recognized in the initial reports on apoptosis

[3, 4], when removal by scavengers fails in vivo, the

apoptotic process fully unrolls and apoptosis transits to

the self-elimination by secondary necrosis. A paradig-

matic example is provided by apoptosis of cartilage

chondrocytes; due to the avascular nature of articular

cartilage and the lack of direct cell-cell contacts, apop-

totic chondrocytes, induced for example in poly-arthritis

[89], cannot be removed by scavenger cells and are

eliminated by secondary necrosis [90]. Occurrence of in

vivo secondary necrosis associated with pathology will be

reviewed in ‘‘Pathogenic consequences of apoptotic sec-

ondary necrosis’’ section.

Contrary to the heterolytic degradation that dismantles

apoptotic cells within scavengers, the hydrolytic processes

of secondary necrosis involve autolytic enzymes. The

available scant data regarding the molecular events in

secondary necrosis suggest that this is an active necrotic

process with biochemical and structural features common

to those of active primary necrosis.

Recent advances in the knowledge of signaling and

biochemical events in active primary necrosis are reviewed

in Refs. [11, 17, 18, 91, 92]. During the degradation phase

of active necrosis several biochemical alterations have

been described including mitochondrial dysfunction, high

production of ROS, serious ATP depletion, intense ionic

imbalance, and activation of non-caspase proteases; these

alterations ultimately converge in extensive lysosome

rupture, which assumes a decisive role in active necrosis

[93]. ATP depletion, ROS production and Ca2+ fluxes

involve complex feedback and feed-forward interactive

loops, some of them self-amplifying, as comprehensively

reviewed by Brookes [94]. The important Ca2+ overload

[95–97] induces enhanced activation of hydrolysing

enzymes, including calpains [98], and leads to exaggerated

energy consumption and impairment of energy production

[99]; ATP depletion and activated calpains were shown to

induce lysosome rupture [93, 100, 101], and released

lysosomal cathepsins contribute to cytoplasmic membrane

damage [102, 103], a hallmark of necrosis [7]. Thus,

contrary to what happens in passive necrosis, cytoplasmic

membrane damage in active necrosis is produced from

within. This damage is due to the cumulative activity of

hydrolytic enzymes and of ROS, and to serious energy

failure; these events result in progressive membrane per-

meabilization to molecules of increasing size until the

rupture of the membrane. This rupture is a consequence of

the continuous cell swelling (oncosis or necrotic volume

increase [104]) due to the maintenance within the cell of

large molecules, including proteins and nucleic acids

(Gibbs–Donnan effect [105–108]). Thus, the progressive

deterioration of the cytoplasmic membrane of necrosing

cells leads to initial leakage of small ions like K+, then

leakage of small macromolecules and finally leakage of

large macromolecules [105].

The essential events occurring in active primary necro-

sis, culminating in cytoplasmic membrane rupture, are

likely to operate in secondary necrosis. As discussed, the

development of apoptosis requires energy. When apoptosis

progresses without engulfment of apoptosing cells, the

progression eventually leads to a late depletion of the

intracellular ATP pool [109–111] likely due to early ATP-

consuming apoptotic reactions together with a late com-

plete loss of mitochondrial function [109]. This

endogenously originated late serious energy depletion has

been considered the trigger for the transition from the end

of a fully developed execution phase of apoptosis to sec-

ondary necrosis [21, 101, 112, 113]. It is known that

serious ATP depletion provoked during early apoptosis

induces a switch to necrosis (see below).
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On the other hand, occurrence of secondary necrosis in

caspase 3-dependent apoptosis induced by ultra-sounds has

been found to be inhibited by the antioxidant N-acetyl-L-

cysteine, suggesting the involvement of ROS in the tran-

sition to secondary necrosis [114].

During apoptosis, caspase 3 cleaves proteins involved in

intracellular Ca2+ regulation including the Na+/Ca2+

exchanger, the inositol 1,4,5-trisphosphate receptors

(IP3Rs), and the plasma membrane Ca2+ ATPases (PMCA)

(reviewed in Ref. [115]). Caspase cleavage of the IP3R1

and of the Na+/Ca2+ exchanger has been shown to result in

cytosolic Ca2+ overload [115]. On the other hand, two

groups have shown that the PMCA 4b isoform is cleaved

by caspase 3 during apoptosis [116, 117], but there is

discrepancy regarding the reported functional consequence

of that cleavage. While the results from Nicotera’s group

suggest inactivation leading to a decreased rate of Ca2+

efflux from the cells and consequent cytosolic Ca2+ over-

load [116], the results form Enyedi’s group suggest that the

cleavage product remains functionally active and would

not contribute to Ca2+ overload [117–119]. An intense rise

in intracellular Ca2+ was observed prior to the transition of

apoptosis to secondary necrosis in prostate and bladder

cancer cell lines [120], human B cell line FMO [121] or

chicken B-lymphocytes [115]. In two of these studies [115,

121], the dramatic Ca2+ cytosolic overload was considered

to be involved in that transition.

As in active primary necrosis, serious energy depletion,

high Ca2+ cytosolic overload and high ROS production will

lead to activation of calpains and to lysosome rupture, two

events which have been suggested to participate in the

cytoplasmic membrane damage in secondary necrosis [101,

122]. That lysosomal enzymes participate in secondary

necrosis is also suggested by the observation that, in

apoptosis induced in vitro in the epithelial cell line LLC-

PK1 by S-(1,2-dichlorovinyl)-L-cysteine, inhibition of

cathepsin B resulted in inhibition of secondary necrosis

[123]. In support of this interpretation, recent results with

caspase 3-associated apoptosis induced in Jurkat cells by

treatment with anti-Fas showed that the terminal cell lysis

due to secondary necrosis was concomitant with lysosome

rupture [124].

Two frequently used assays to evaluate the cytoplasmic

membrane condition during cell death processes are vital

staining with the membrane impermeant propidium iodide

(PI) and quantification of release of the intracellular enzyme

lactate dehydrogenase (LDH). Permeability to PI (molecular

mass about 0.67 kD) indicates a relatively initial cytoplas-

mic membrane damage [106, 108], while leakage of LDH

(molecular mass about 140 kD) indicates terminal mem-

brane rupture [107]. When apoptosing cells enter the

secondary necrosis process those two assays change from

negative to positive [33, 125, 126], revealing the ensuing of

cytoplasmic membrane damage. Like in primary necrosis, in

secondary necrosis PI-positivity precedes release of LDH

and of other large molecules like activated caspase 3 (about

19 kD) (see Figs. 1D and 3C in Ref. [126]). As will be

discussed in ‘‘Pathogenic consequences of apoptotic sec-

ondary necrosis’’ section, these observations are relevant in

the context of the potential pathogenic role of secondary

necrotic cells, since it is likely that only ruptured secondary

necrotic cells will release large molecules like DNA, RNA

and proteins including high mobility group box 1 (HMGB1)

protein (about 30 kD) with inflammatory and immunogenic

capacities.

The necrotic degradation in secondary necrosis affects

cells that already were partially dismantled during the

execution phase of the apoptotic process. The cell degra-

dation during apoptosis involves proteolysis due to the

activity of proteinases, mainly of effector caspases. During

secondary necrosis there is additional proteolysis in a

caspase-independent manner [127]. This late proteolysis,

that contributes to the final dismantling of the apoptotic

cell, may originate autoantigens that, when released by the

lysing cell, send danger signals to the immune system and

stimulate autoantibody responses [62, 128–130].

Serious energy failure provoked during early apoptosis

by mechanisms external to the apoptotic process induces a

switch to necrosis [131–133]. This switch occurs earlier

than the spontaneous transition to secondary necrosis

triggered by the endogenous failure of ATP associated with

the complete progression of the apoptotic process. Indeed,

the switch induced by ATP depletion from without inter-

rupts the normal progression of apoptosis preventing the

occurrence of biochemical events, like caspase activation,

that produce the typical apoptotic morphotype. Conse-

quently, cells under necrosis due to the switch apoptosis–

necrosis do not exhibit the mixed secondary necrotic

morphotype previously discussed (see Table 1 and

Figs. 1c, 2c and 4) but rather that of active primary

necrosis. This ‘‘switched necrosis’’ does not comply with

the classical definition of apoptotic secondary necrosis

discussed in the beginning of this review. However, it may

lead to similar pathological consequences since the cells

undergoing this switched necrosis autolyse and release

cytotoxic or immunogenic molecules.

Apoptotic secondary necrosis was initially described in

in vitro experiments [5, 6]. The frequent lack of consid-

eration of the fact that induction of apoptosis in vitro

(usually in the absence of scavengers) inevitably results in

secondary necrosis can lead to misleading interpretations

of induction of active primary necrosis, or of a switch from

apoptosis to necrosis, when the actual event was the natural

transition of an ongoing apoptosis to secondary necrosis.

Confusion between the occurrence of active primary or

secondary necrosis in vitro is particularly frequent when no
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kinetic studies are carried out, preventing the observation

of apoptosis preceding secondary necrosis. The same

problem arises when studying apoptosis of unicellular

eukaryotic cells like yeasts because also in this case

apoptosis is always followed by secondary necrosis [8, 9].

Identification of apoptotic secondary necrosis

Detailed morphological descriptions of apoptotic second-

ary necrosis are available [26, 27, 134].

Since typically secondary necrosis is a necrotic event

affecting late apoptosing cells, the secondary necrotic

morphotype (see Table 1) is characterized by the

co-existence in the same cell of some apoptotic alterations

(like nuclear fragmentation and/or intense chromatin

condensation) and some necrotic alterations (like a dam-

aged cytoplasmic membrane). As already discussed,

before they are cleared by scavengers or enter secondary

necrosis, apoptotic cells exclude membrane impermeant

stains like PI [33] (it is of note that the exclusion of

membrane impermeant stains is only observed when these

stains are used in low concentrations and for short periods

[135] as in the protocol in reference [136]). PI positivity

in secondary necrotic cells can be detected after combined

vital staining with Hoechst 33342/PI (see Fig. 4 and Ref.

[134]). Also typical of apoptotic secondary necrotic cells

is the association of nuclear apoptotic alterations and

cytoplasmic membrane rupture detected by transmission

electron microscopy (Fig. 2c), depicting the terminal

stage of secondary necrosis. Particularly informative is

the time-lapse observation by phase contrast and fluores-

cence microscopy of Hoechst 33342/PI stained

preparations [134]. This continuous scrutiny of the same

cell allows the observation of the apoptotic morphotype

(with apoptotic nuclear alterations, cell shrinkage, bleb-

bing, and production of apoptotic bodies (when it occurs)

and PI-negativity) followed by entrance into the second-

ary necrotic process as indicated by the change to

PI-positivity, followed by cell swelling with reduction in

cytoplasm density (Fig. 4), chromatolysis, and finally cell

burst.

Like LDH and other large molecules, activated caspases

are released at the end of apoptotic secondary necrosis

when membrane rupture occurs, while only procaspases are

released in the case of cytolysis due to caspase-independent

death processes [126]. Furthermore, the procaspases

released by primary necrotic cells are not significantly

processed extracellularly by proteolysis despite the pres-

ence of released proteases [126]. Therefore, when the cell

death process has been characterized as caspase-dependent

apoptosis, occurrence of relevant apoptotic secondary

necrosis can be detected in vivo by the presence of

increased levels of extracellular activated caspases which

can be quantified in the blood [31, 137–139].

Non-pathogenic apoptotic secondary necrosis

Lack of removal by engulfment of apoptosing cells can

occur in vivo without serious consequences. This is the

case when those cells are shed into ducts or into territories

topologically outside the organism (like the gut and air-

ways lumen) where the chances of encountering or

attracting scavengers are small but where release of cell

contents is not critical.

For example, prostate apoptosing cells induced by cas-

tration detach and are shed in the lumina of the acini where

Fig. 4 A group of enterocytes of sea bass under detachment-induced

apoptosis (anoikis). Cells incubated ex vivo and viewed by phase

contrast (panel a) and by fluorescence after double vital Hoechst

33342 and PI stainings (merged in panel b). Apoptosis is identified by

the presence of fragmented and/or hyper-condensed, PI-negative

nuclei in panel b. The cells labeled with asterisks in panel a are lysed

as shown by the reduction in cytosol density; these cells have

PI-positive fragmented and hyper-condensed nuclei (panel b), indi-

cating that they are under apoptotic secondary necrosis. Reproduced

from [134] with permission of the publisher
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they undergo secondary necrosis [3]. During the first days

of involution of lactating breast after weaning, abundant

apoptosis of epithelial cells occurs; many of these apop-

tosing cells are shed into the alveolar lumen [140, 141] and

undergo secondary necrosis [140].

In a mechanism of clearance, neutrophils and eosin-

ophils in lung tissue can be removed through egression

across the epithelial lining into the airway lumen where

they may undergo apoptosis with engulfment by scaveng-

ers or progress to secondary necrosis [142, 143]. These

granulocytes or their remnants are eventually eliminated

with airway mucus and expectoration.

Pathogenic consequences of apoptotic secondary

necrosis

Introduction

In physiological situations, the apoptotic mode of cell

elimination is useful since it is triggered when appropriate, is

silent, induces a safe mechanism for cell disposal by scav-

engers, and, although spending energy, is economical in

terms of re-utilization of the products of this disposal [2].

Implicit in that perspective of apoptosis in multicellular

organisms is that ‘‘the individual cellular fate is sacrificed

for the benefit of a higher order of life—the organism’’

[144]. However, this perspective of apoptosis as a physio-

logical, and sometimes programmed, process is restrictive

since this mode of cell elimination can be subverted, leading

to pathological situations that are harmful to the organism

where it occurs. Apoptosis turns pathological when the kil-

led cells are necessary and functional, for example when

pathogens evade phagocytic defense mechanisms by

inducing apoptotic destruction of macrophages, neutrophils

or both, or in neurodegenerative disorders with apoptotic

elimination of functional neurons. Or, within the frame of

this review, pathological apoptosis may also result when the

timely elimination of apoptosing cells by scavengers fails in

vivo and secondary necrosis ensues.

The acquisition during evolution of the apoptotic cell

death process [145], with the inherent mechanism for the

elimination of cell corpses through removal by scavengers

before damage to the cytoplasmic membrane, represented a

crucial step forward for multicellular organisms because it

avoids the potentially dangerous secondary necrosis.

However, the normally efficient and non-pathogenic

mechanism of assisted cell elimination associated with

apoptosis can be overridden in vivo in pathological situa-

tions with the occurrence of secondary necrosis. The

constraint associated with the process of removal by

scavengers is that it is not self-sufficient: depending on a

functional scavenger cell, that process fails if this cell is not

available despite exposition of engulfment signals, as is

known to occur in several pathological situations to be

reviewed below.

Failure of timely removal of apoptosing cells with

occurrence of secondary necrosis may lead to two types of

pathological consequences: (i) progress of secondary

necrosis until cell disruption will result in leakage of cell

contents which may be cytotoxic and induce tissue injury

or (ii) secondary necrotic cells or their debris may be taken

up by antigen presenting cells, mainly dendritic cells, and

induce inflammation and autoimmunity. As discussed in

‘‘Apoptosis as the prelude of secondary necrosis’’ section,

when macrophages fail to clear apoptosing cells, a second

route can operate for the uptake using dendritic cells.

Macrophages completely degrade ingested cells without

antigen presentation, but when that uptake is by dendritic

cells, these present antigens and activate the immune sys-

tem, which may lead to autoimmunity [57, 58, 60, 146].

Phagosomes containing phagocytosed cells mature more

rapidly in macrophage than in dendritic cells; in these cells,

low levels of lysosomal proteases and a decreased ability to

degrade internalized protein favors their ability to present

antigen [69, 147].

Removal by scavengers of apoptotic secondary necrotic

cells in vivo does not usually occur because those cells

typically originate due to lack of functional scavengers or of

molecules involved in the removal process. If engulfment

does occur, for example because secondary necrosis resulted

from delayed instead of absent clearance, or because den-

dritic cells replace the lacking macrophages as scavengers,

the engulfment affects cells with damaged cytoplasmic

membranes or even ruptured cells and involves mechanisms

that would be similar to those operating with cells under

active primary necrosis. It has been suggested that efficient

removal of apoptosing cells versus deficient removal of

primary or secondary necrosing cells depends on the pres-

ence of an intact or a damaged cytoplasmic membrane,

respectively [77]. When injected into the peritoneal cavity of

mice, cells under apoptotic secondary necrosis were found to

be phagocytosed by macrophages [148]. Removal of sec-

ondary necrotic cells co-cultured with macrophages in vitro

was found to be less efficient and slower than removal of

apoptosing cells [77]. It is thus likely that, in the in vivo

situations, if engulfment of cells under apoptotic secondary

necrosis occurs, it would be a deficient process as in the case

of primary necrotic cells. Moreover, as discussed in

‘‘Apoptosis as the prelude of secondary necrosis’’ section,

phagocytosis of necrosing cells, in contrast to phagocytosis

of apoptosing cells, usually results in pro-inflammatory and

pro-immunogenic responses with potential to induce auto-

immunity, as will be reviewed later.

Disruption of non-engulfed cells under apoptotic sec-

ondary necrosis may therefore ensue in vivo and it may
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aggravate the consequences of the generalized, irreparable

cytoplasmic membrane damage that occurs during the

secondary necrotic process previous to cell rupture,

because it causes the additional release of larger molecules

with higher cytotoxic or immunogenic potential. Release of

toxic molecules like elastase, myeloperoxidase and

HMGB1 protein from cells under secondary necrosis has

been demonstrated [149–154]. Although some reports

suggest that phagocytosis by macrophages of secondary

necrotic cells, like phagocytosis of early apoptosing cells,

is not pro-inflammatory [59, 86, 87, 155], there are several

publications showing that engulfment of secondary necro-

tic cells may be pro-inflammatory and immunogenic [60,

62, 129, 156–160]. The discrepant results may be explained

by the use of secondary necrotic cells at early (non-rup-

tured cytoplasmic membrane) or terminal (ruptured

cytoplasmic membrane) phases and/or by the use of dif-

ferent types of engulfing cells (macrophages, dendritic cells

or other cell types).

As it will be reviewed in this section, the available data

furnishes compelling evidence indicating that extensive or

persistent in vivo secondary necrosis may have relevant

pathogenic consequences.

Several mechanisms may lead to relevant in vivo sec-

ondary necrosis [76]. One regards situations of induction of

excessive apoptosis that overwhelms the available scav-

enging capacity; this may occur in hyper-inflammation

associated or not with infection. Other possibility is when

the scavenging capacity is directly impaired by intrinsic

defects in the phagocytic function of scavengers or by

extrinsic defects in signaling molecules involved in the

engulfment process; in this case accumulation of apoptotic

cells and transition to secondary necrosis may occur even

in situations of normal levels of apoptosis. Observation of

high numbers of apoptosing cells in tissues implies a

deficiency in their removal [7, 161, 162] with the likely

occurrence of secondary necrosis. Examples of pathologi-

cal situations generated by these different ways of

induction of secondary necrosis will be now reviewed.

Deficiency in the clearance of apoptosing cells due to

extensive apoptosis occurs particularly in solid organs

[163]. Secondary necrosis of hepatocytes resulting in

severe hepatitis has been described in rodents with exten-

sive hepatocyte apoptosis induced by LPS [164], Fas

antibody [138, 165], galactosamine [166] or carbon tetra-

chloride [137]. Apoptotic secondary necrosis was also

reported in brains subjected to focal ischemia [167], in

hepatic [112] and renal [168] ischemia-reperfusion, in

acute myocardial infarction [169, 170], and in other heart

pathologies [171].

Failure of removal of cells that entered an apoptotic

process can also occur in vivo because of lack of exposure

of engulfment signals when the ongoing apoptotic process

is interrupted by lack of activation of effector caspases

before the caspase-dependent exposure of engulfment sig-

nals on the apoptosing cell [172, 173]. This interruption

can be induced by impairment of energy metabolism [131–

133], by defects due to genetic alterations or by generation

of inhibitors in injured areas [173], and, as already dis-

cussed, leads to a switch to necrosis. These non-cleared,

necrosing cells undergo lysis that may have pathogenic

implications [174] as in the case of apoptotic secondary

necrosis. The switch apoptosis–necrosis has been reported

in several ischemic pathologies including in the brain

[173–175] and heart [170, 176]. ATP dependence of

apoptosis and (almost) independence of active necrosis [37,

40, 177] might explain the frequent appearance of necrotic

and apoptotic cells in pathological areas in vivo, such as

the center of solid tumors and ischemic regions in solid

organs; indeed, limitation of blood flow in those areas leads

to ATP exhaustion due to insufficient oxygenation and

reduced glycolysis by lack of glucose [178] and may result

in the switch apoptosis–necrosis.

In neurodegenerative disorders there is an increased rate

of neuronal apoptosis [179]. As in other pathologies dis-

cussed above, this apoptosis may be blocked and switched

to necrosis [173], again with possible pathogenic

implications.

Secondary necrosis of monocytes/macrophages,

eosinophils and neutrophils in acute and chronic

inflammation

Tissue injury due to secondary necrosis of apoptosing cells

may be particularly serious when it involves cells rich in

cytotoxic molecules like monocytes/macrophages, eosin-

ophils and mainly neutrophils, in situations of intense

inflammation.

In the protective inflammatory response there is migra-

tion of neutrophils from the reserve pools to infectious and

noninfectious inflammatory foci, where they accumulate in

large numbers for in situ elimination of invading micro-

organisms or damaged tissues [180]. For these activities,

neutrophils use phagocytosis and are stimulated to release

effector molecules upon exposure to various cytokines and

chemoattractants [181]. Neutrophils are very rich in

inflammatory mediators and in proteases and oxidants

which, if released in high amounts, can damage many types

of cells, with the potential to produce tissue injury [182–

184]. Released neutrophil contents also induce the secre-

tion of pro-inflammatory cytokines and chemokines which

may amplify leukocyte infiltration and associated tissue

injury [185, 186]. Release of noxious neutrophil compo-

nents may occur during neutrophil degranulation in

inflammatory foci and after lysis due to apoptotic second-

ary necrosis.

472 Apoptosis (2008) 13:463–482

123



Under normal conditions, neutrophil activities at

inflammatory foci are tightly controlled. Mobilization of

neutrophil cytoplasmic granules and secretory vesicles is

regulated, minimizing the risk of externalization of exces-

sive amounts of cytotoxic molecules [187]. Additionally,

under physiological conditions, neutrophil cytotoxic prote-

ases, including elastase, one of the most tissue destructive

enzymes known [185], have their potentially dangerous

activity tightly regulated by endogenous protease inhibitors

[188]. Moreover, neutrophils have a short lifespan and are

constitutively programmed to undergo apoptosis, which

induces the exposure of engulfment signals and leads to their

rapid recognition and removal by macrophages; this limits

their pro-inflammatory and tissue injury potential and leads

to resolution of inflammation with restitution of tissue

homeostasis soon after the neutrophils have accomplished

their task [76, 189, 190]. Pneumococcal pneumonia is a

paradigm for complete resolution of inflammation without

relevant subsequent lung injury indicating that, in some

situations, extensive neutrophil accumulation can be ade-

quately resolved [76]. Neutrophil apoptosis with timely

removal of apoptosing neutrophils by lung macrophages was

shown to be a mechanism for that resolution in a murine

model of pneumococcal pneumonia [191]. However, this

control of neutrophil activity and physiological resolution of

inflammation by clearance of apoptotic neutrophils can fail

and release of cytotoxic components by neutrophils accu-

mulated at inflammatory foci can occur with the potential to

produce collateral tissue damage; for instance, elimination

of alveolar macrophages in the above model of pneumo-

coccal pneumonia affected the clearance of accumulated

neutrophils and resulted in extensive apoptotic secondary

necrosis of neutrophils and in an exaggerated lung inflam-

mation and increased lethality [191].

Several mechanisms can delay neutrophil apoptosis at

inflammatory foci as has been observed in acute and

chronic inflammatory diseases [192, 193]. This delay

extends the time frame of neutrophil intervention but at the

same time increases the chances of tissue injury. When

accumulation of activated neutrophils at the inflammatory

foci is massive, as is the case in several diseases, release of

cytotoxic neutrophil molecules due to degranulation or

lysis can be extensive [149, 150], overcoming the activity

of the endogenous inhibitors [181, 188, 194]. Conse-

quently, tissue injury ensues [195–197]. Removal by

scavengers of accumulated apoptosing neutrophils can be

deficient leading to neutrophil secondary necrosis. This

occurs when neutrophil accumulation is massive and dis-

proportionate compared to the availability of scavengers or

when neutrophil apoptosis is accelerated by microbial

products [198, 199]. Impairment of scavenger macrophages

by bacterial products [31] or by functional defects (see

later) also causes excessive neutrophil secondary necrosis.

The bypass of the balanced, physiological control of

neutrophil pro-inflammatory activities due to extensive

degranulation or secondary necrosis switches to pathogenic

a beneficial defense mechanism. Neutrophil-mediated tis-

sue injury can affect several organs like the liver [200,

201], the brain [202, 203], and the lung (see below).

A variety of severe infectious and noninfectious insults

can result in the systemic inflammatory response syndrome

(SIRS) [204]. Frequent complications of SIRS are the

development of acute lung injury (ALI) and its more severe

form acute respiratory distress syndrome (ARDS), and of

multiple organ dysfunction syndrome (MODS) [205, 206].

Neutrophil accumulation has been associated with the

above serious clinical situations [206], and released

phagocyte proteinases have been implicated in the devel-

opment of MODS [207].

Severe ALI with extensive accumulation of neutrophils

can complicate human and experimental infection by the

most virulent strains of influenza virus, including H1N1

[208] and H5N1 [209, 210]. However, no studies on the

possible occurrence of neutrophil secondary necrosis in

these infections have been conducted.

In patients with chronic lung inflammatory disorders

like obstructive pulmonary disease (COPD) [211, 212],

emphysema [213], chronic bronchitis [214], severe asthma

[215, 216] or cystic fibrosis [217] there is accumulation of

leukocytes including high numbers of neutrophils; there is

evidence that these granulocytes release excessive amounts

of proteinases including elastase [218, 219], a variety of

inflammatory cytokines, and reactive oxygen species [212],

which may cause airway tissue injury. Released proteinases

overcome the activity of natural anti-proteases [194] and

impair the anti-microbial activity of neutrophils [220].

Besides egression to the airway lumen [142, 143], an

efficient mechanism for removal of neutrophils accumu-

lated in the inflamed lung is through neutrophil apoptosis

and removal by macrophages [76, 191]. Alveolar macro-

phages from patients with COPD are deficient in the

capacity to engulf apoptotic cells [221], deficiency that is

aggravated by smoking [222]. This clearance defect con-

tributes to the accumulation of apoptotic cells in the lungs

of COPD patients and in animal models of COPD [223],

and the occurrence of pathogenic neutrophil apoptotic

secondary necrosis associated with lung neutrophil accu-

mulation has been considered in chronic lung inflammatory

diseases including COPD and cystic fibrosis [186, 219,

220]. Secondary necrosis of neutrophils was also impli-

cated in human [198, 199] and murine [224] lung infections

by gram-negatives and in a mouse model of lung inflam-

mation induced by nasal instillation of LPS [225, 226].

In accordance with a role of released neutrophil cytotoxic

molecules in the above reviewed situations, the level of

plasma neutrophil elastase or of products of elastase activity
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were found to be significantly elevated in patients with SIRS

and even more when this was complicated with ALI/ARDS

[227, 228]. Active neutrophil elastase was also detected in

increased levels in the blood of fish with massive neutrophil

accumulation and neutrophil apoptotic secondary necrosis

in advanced septicemic pasteurellosis [31].

Liu et al. [149] showed that neutrophils undergoing

apoptotic secondary necrosis release active elastase with

cytotoxic activity, indicating that this potent proteinase is

not destroyed by the apoptotic and secondary necrotic

proteolysis and directly demonstrating that neutrophil

apoptotic secondary necrosis is prone to induce tissue

damage. Moreover, topical or systemic administration of

neutrophil elastase produced lung injury in rodents [185].

There is evidence in cystic fibrosis that neutrophil elastase,

released by accumulated neutrophils possibly through

apoptotic secondary necrosis, can impair apoptotic cell

clearance [229] thus leading to a vicious circle that pro-

motes further neutrophil secondary necrosis.

The effect of elastase inhibitors has been investigated in

several situations with lung hyper inflammation, and some

reports described beneficial results in patients with ALI/

ARDS or in rodent models of ALI further supporting the

pathogenic role of released elastase (see for example [230–

232] and references herein).

Accumulation of eosinophils in airways occurs in

patients with asthma or COPD (reviewed in Ref. [143]),

and secondary necrosis of these leukocytes has been found

in airways in patients with asthma [143] and in lung tissue

of mouse models of the disease [233]. Eosinophil granules

contain cytotoxic molecules [234] and apoptotic secondary

necrosis of eosinophils was shown to induce inflammatory

responses [156].

Although to a lesser degree as compared with neutro-

phils and eosinophils, monocytes/macrophages also

contain tissue-damaging molecules including several pro-

teases [235], which are released upon cell disruption due to

secondary necrosis. Pathogenic macrophage secondary

necrosis has been described in several situations including

infection [31]. Besides inducing pro-inflammatory respon-

ses and tissue injury, macrophage secondary necrosis is a

self-amplifying process with accumulation of apoptotic

cells and further secondary necrosis because macrophages

are the main scavenger cell [31].

Secondary necrosis in bacterial infection

Acute fish pasteurellosis is a lethal septicemic infection due

to Photobacterium damselae ssp. piscicida (Phdp) and

characterized by massive extracellular multiplication of the

pathogen with extensive tissue necrosis [31]. One mecha-

nism of the necrotic alterations typical of the advanced phase

of this septicemia is systemic secondary necrosis of accu-

mulated neutrophils and macrophages induced by an

apoptogenic exotoxin (AIP56) secreted by virulent Phdp [30,

31]. The AIP56-induced fish phagocyte apoptosis involves

activation of caspase 8, 9 and 3, and mitochondrial dys-

function with loss of Dwm and cytochrome c translocation to

the cytosol [30, 31, 236] (C. Costa-Ramos et al. unpublished

results). That the AIP56-induced phagocyte apoptosis pro-

ceeds to secondary necrosis and cytolysis is directly

demonstrated by the occurrence of lysing phagocytes with

apoptotic nuclear alterations in advanced infection (Fig. 2c;

see also Fig. 3b, c in Ref. [32]). The simultaneous apoptotic

destruction of macrophages and neutrophils by AIP56 leads

to reduction in the number of available phagocytes that

accumulated during the initial phase of the infection and

efficient evasion of the pathogen from the host phagocytic

defense; moreover, that destruction seriously decreases the

host capacity to clear apoptosing cells. This phagocyte

destruction has additional pathogenic consequences for the

host: AIP56 exotoxin secreted by Phdp in infected fish is

systemically distributed and induces disseminated phago-

cyte apoptosis that proceeds to secondary necrosis with

extensive lysis of the phagocytes and release of cytotoxic

molecules including neutrophil elastase [31]. Two concur-

rent mechanisms operate in the induction of the secondary

necrotic outcome of the apoptotic process induced in

phagocytes by AIP56: first, the exotoxin-induced phagocyte

apoptosis is extensive leading to the production of great

numbers of apoptosing leukocytes and, most importantly, it

affects the principal scavenger cell, the macrophage, thus

impairing the capacity to clear apoptosing cells by a self-

amplifying process. This is an example of cell elimination

adding more pathogenic consequences to those associated

with the loss of function accompanying cell death. The

‘‘clever’’ nature of this pathogenicity mechanism is that it

uses the intrinsic apoptotic machinery of the host cells, which

is put at work by the pathogen to its own advantage.

Extensive phagocyte secondary necrosis was also

described in the skin of mice with experimental infection by

Mycobacterium ulcerans [237]. This pathogen, agent of the

human disease Buruli ulcer, secretes an apoptogenic exo-

toxin, mycolactone, which is a key virulence factor [238]. As

in fish pasteurellosis, the secondary necrosis observed in

M. ulcerans infection was considered as resulting from the

mycolactone-induced apoptotic destruction of both neutro-

phils and macrophages and to contribute to the tissue

necrosis typical of this mycobacteriosis [237].

Other acute and serious infections with necrotic lesions

and destruction of host phagocytes have been reported. For

example, septicemic plague is a rapidly fatal septicemia,

with massive accumulations of extracellular Yersinia pestis

and occurrence of apoptotic cell destruction with cell lysis

and tissue necrosis [239]. The finding that in septicemic

474 Apoptosis (2008) 13:463–482

123



plague, Y. pestis targets macrophages and neutrophils [240]

suggests the possibility of occurrence of apoptotic sec-

ondary necrosis of phagocytes as in acute fish

pasteurellosis, but such a possibility has not been assessed.

In a mouse model of lung infection by pyocyanin-pro-

ducing Pseudomonas aeruginosa with extensive pulmonary

accumulation of neutrophils and occurrence of neutrophil

apoptotic secondary necrosis, a defect in the macrophage

phagocytosis of apoptosing cells was recently described

[224]; this defect was shown to be mediated by a non-

apoptogenic effect of pyocyanin on macrophage phagocytic

function.

In vivo studies on the role of apoptotic secondary

necrosis of macrophages and neutrophils in the pathogen-

esis of infectious diseases have been neglected. New in

vivo studies on bacteria-induced apoptotic phagocyte

destruction may well reveal other situations where the

pathogens use virulence mechanisms based on the induc-

tion of apoptotic secondary necrosis as in acute fish

pasteurellosis and Buruli ulcer. In particular, infections

caused by bacteria that, like Phdp and M. ulcerans, are

known to produce apoptogenic molecules that target host

phagocytes [241, 242], should be studied under this

perspective.

Secondary necrosis in autoimmune diseases

Another possible consequence of in vivo occurrence of

secondary necrosis due to increased rates of apoptosis [243,

244] and, mainly, failure of clearance of apoptotic cells is

induction of autoimmune responses associated with dis-

ease. Several factors have been implicated in the

pathogenesis of autoimmune disorders, including altered

apoptosis [245]. Although autoimmunity may not follow

impaired clearance of apoptosing cells [70, 246, 247],

many studies show that such an impairment may result in

immunogenicity and autoimmune disorders. There is a

large body of evidence for the existence of a deficiency in

clearance of apoptotic cells in autoimmune disorders

including systemic lupus erythematosus (SLE), both in

mouse models [61, 248] and in humans [58, 129, 244, 249–

253]. Several genetically modified mice with defective

apoptotic cell clearance have been developed and most of

them show signs of autoimmune disease [52, 159, 254–

256]. The defect in clearance of apoptosing cells in SLE

and likely in other autoimmune disorders may have several

mechanisms, including intrinsic impairment of engulfment

capacity of phagocytes combined with extrinsic defects in

bridging molecules involved in the recognition and

engulfment of apoptosing cells by scavengers, like com-

plement factors [61, 129, 253, 257, 258].

Apoptosis and secondary necrosis of neutrophils from

blood of patients with SLE cultivated in vitro were found to

be increased as compared to neutrophils from controls;

moreover, a poor ability of macrophages from patients with

SLE to phagocytose apoptotic neutrophils was observed

[251]. Although an alternative has been proposed [87],

apoptotic secondary necrosis has been implicated in the

pathogenesis of autoimmune disorders including SLE

through the release of autoantigens and cytotoxic mole-

cules which induce pro-inflammatory and autoimmune

responses [48, 62, 129, 159, 244, 259].

One important molecule involved in cytolysis-associ-

ated pro-inflammatory situations is HMGB1 protein, a

prototypical alarmin [260]. This non-histone nuclear pro-

tein with a role in transcriptional regulation, functions as a

potent pro-inflammatory cytokine when released in the

extracellular space [261]. This protein is released during

primary necrosis [262] and, contrary to initial reports, was

found to be also released during secondary necrosis of

several cell types [11, 151–154] and has been considered to

participate in the pathogenesis of autoimmune diseases

[151, 152]. HMGB1 is a protein of about 30 kD, and its

release during secondary necrosis follows a kinetics similar

to that of LDH release [152, 154], suggesting that progress

of secondary necrosis until cell lysis is required for its

externalization (see in ‘‘Apoptotic secondary necrosis’’

section discussion on membrane damage in secondary

necrosis).

Autoantigens cleaved during the execution phase of

apoptosis [263] undergo an additional wave of caspase-

independent proteolysis during secondary necrosis, with

the production of lower molecular weight products [127]. If

released during secondary necrosis, these products might

induce inflammation and stimulate pathogenic autoimmune

responses [127].

Nucleosomes produced during the apoptotic death

process by internucleosomal DNA degradation can be

released when secondary necrosis occurs [244]. Nucleo-

somes are present in increased amounts in the circulation

of patients with SLE and are targets of anti-DNA and

anti-histone autoantibodies (reviewed in Ref. [257]).

Serum levels of nucleosomes were found to be increased

in various autoimmune diseases besides SLE [139]; the

fact that blood caspase levels were increased together

with nucleosomes in those diseases, favors the interpre-

tation that apoptotic secondary necrosis is involved in the

release of nucleosomes. Autoantigens in SLE patients are

composed of or are intimately associated with RNA and

DNA sequences that are endogenous ligands, respectively,

for toll-like receptor (TLR) 7 and/or TLR9 present in

plasmacytoid dendritic cells and B lymphocytes, contrib-

uting to autoimmune disease [159, 264, 265]. TLR9

activation by DNA-containing immune complexes was

found to require an interaction of the complexes with

HMGB1 [265].

Apoptosis (2008) 13:463–482 475

123



Conclusions

Active suicidal death programs are intrinsic to cells in uni-

cellular and multicellular organisms. Activation of these

programs not only kills cells but additionally promotes

mechanisms for elimination of the dying/dead cells. In

multicellular animals, cells under apoptotic death can be

eliminated by two processes with contrasting physiopatho-

logical consequences. One is the safe, physiological

clearance by phagocytosis of the dying/dead cell or of

apoptotic bodies through the timely assistance of a partner

cell (the scavenger); this intervention of the scavenger

removes the apoptosing cells or the apoptotic bodies while

they still have a near-to-intact cytoplasmic membrane thus

preventing leakage of dangerous molecules. However, this

physiologically convenient mechanism is not self-sufficient

because it depends on the participation of other cell and can

be overridden in vivo when the scavenging mechanism fails.

In this situation cell elimination is by transition of full-blown

apoptosis to secondary necrosis that leads to cytoplasmic

membrane damage and cell disintegration. This has poten-

tial pathogenic consequences and available data provides

evidence suggesting that secondary necrosis is implicated in

the pathogenesis of several diseases including autoimmune

and neurodegenerative disorders, ischemia, and infection.

The pathogenic consequences of extensive or persistent

apoptotic secondary necrosis result from (i) the leakage of

cytotoxic molecules (mainly when involving neutrophils)

that induce tissue injury and pro-inflammatory responses;

(ii) the uptake by macrophages and dendritic cells of sec-

ondary necrotic cell debris and released autoantigens, which

may be pro-inflammatory and immunogenic. Apoptotic

secondary necrosis may therefore produce acute and chronic

pathology, thus being a mechanism for apoptosis turning

pathogenic. It is important to recognize that cell disruption

due to a necrotic process can be an outcome of apoptosis in

vivo so that pathological consequences of this outcome may

be inhibitable by anti-apoptotic interventions, prompting the

use of (and research on) therapeutic interventions based on

anti-apoptotic drugs. Contrasting with the available exten-

sive studies on apoptosis and on the clearance of apoptosing

cells by scavengers, the study of apoptotic secondary

necrosis has been largely neglected and is much needed to

better understand the full potential of this outcome of

apoptosis in promotion of pathology.
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